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Abstract—In recent years, a suite of Glauber dynamics-based
CSMA algorithms have attracted great attention due to their
simple, distributed implementations with guaranteed throughput-
optimality. However, these algorithms often suffer from poor
delay performance and the starvation problem. Among sev-
eral attempts to improve the delay performance, a remarkable
improvement has recently been made in a class of CSMA
algorithms that utilize multiple instances of the algorithm (or
Markov chains). In this paper, we develop a new approach via
an antithetic coupling (AC) method, which can further improve
the delay performance of those that virtually emulate multiple
chains. The key enabler of utilizing AC method lies in our
skilful choice of manipulating the driving sequences of random
variables that govern the evolution of schedule instances, in such
a way that those multiple instances of chains become negatively
correlated as oppose to having them run independently. This
contributes faster change of the link state, rendering it more
like a periodic process and thus leading to better queueing
performance. We rigorously establish an ordering relationship for
the effective bandwidth of each net-input process to the queue,
between our proposed algorithm (AC-CSMA) and other state-
of-the-art existing algorithms in the literature, under a mild set
of assumptions. The proposed algorithm involves very simple
modification onto existing CSMA-based algorithms, and can be
implemented in a fully distributed manner without any additional
message overhead. Our extensive simulation results also confirm
that AC-CSMA always delivers better queueing performance over
a variety of network scenarios.

I. INTRODUCTION

In wireless networks, packet scheduling and queue manage-

ment play an important role in achieving efficient utilization

of wireless resources and providing satisfactory quality-of-

service. Designing such good scheduling algorithms, however,

is a challenging problem, as users in a wireless network may

experience a complicated contention relationship among the

participants. In an early work by Tassiulas and Ephremides [1],

a scheduling algorithm known as Maximum Weight Scheduling

(MWS) was proposed to achieve the maximum capacity, but it

requires to solve a complicated combinatorial problem based

on global information. Subsequent works have attempted to

address practical issues, but they often suffer loss of capacity

or require a huge amount of message overhead [2].

Recently, a certain class of CSMA-based scheduling algo-

rithms have gained great attention as a new solution to the

design of scheduling algorithm. These algorithms are based

on a so-called Glauber dynamics, which enables to find the
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schedules that are close to the max-weight schedules. The

main appealing feature of the CSMA-based algoirthms is

that they effectively achieve the throughput optimality while

imposing only little or no message overhead. For example,

Jiang and Walrand [3] characterized the achievable throughput

of the CSMA algorithm as a function of locally adjustable

control parameters and developed an algorithm that adaptively

chooses these parameters. They showed that the algorithm

achieves the throughput optimality under a time scale sep-

aration assumption, i.e., the schedule dynamics converges

to its steady state quicker than the time-scale of parameter

adaptation. In a similar spirit, several approaches have been

devised for adapting the parameter based on queue-length

information, and have been shown to guarantee the stability

or the throughput optimality [4], [5], [6].

Despite the advantage of simplicity in implementation, the

CSMA algorithms often exhibit large delay. The major reason

for the poor performance is due to the fundamental constraint

imposed from schedule dynamics. Specifically, the current

schedules by the CSMA algorithms are constrained to change

to a limited set of feasible schedules next. This leads to the

starvation phenomenon for the link service processes, i.e.,

links tend to be unable to obtain transmission time slots for

a long time. This issue has triggered a strong interest in

improving the delay performance [7], [8], [9], [10].

A notable approach to deal with the poor delay performance

of the CSMA algorithms is to utilize multiple instances of

such schedulers. For example, in [11], the authors consider

the CSMA algorithms with multiple channels and quantify the

effect of the number of channels on the starvation problem.

Huang and Lin [12] propose a virtual multiple channel scheme

to maximize the aggregate of utilities of links, while achieving

asymptotically bounded head-of-line waiting time. In [13],

Kwak et al. propose a so-called delayed CSMA algorithm

that can effectively emulate such an effect by utilizing past

history of link schedules, and deliver sizable performance

improvement in terms of reducing average queue sizes. Later,

it has been shown that this algorithm can be harnessed to

achieve constant-bounded time-averaged queueing delay [14].

In this paper, we focus on the delayed CSMA algorithm [13]

and propose a new approach that can further improve its delay

performance by incorporating the antithetic coupling (AC).1

The AC method has been known as an efficient way to improve

the accuracy in multiple MCMC simulations [15], [16], [17],

[18]. The underlying idea is, for some sample paths generated,

1It is also referred to as antithetic variates method in the statistics literature.
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to take advantage of its antithetic path to reduce variance. In a

nutshell, the delayed CSMA algorithm can be viewed as if it

runs multiple instances of Markov chains, and thus constitutes

a suitable setup on which we can apply AC approach so as

to improve the queueing performance. Our rationale behind

applying AC idea is to negatively correlate such multiple

chains, going beyond having them run independently. By doing

so, the resulting service process of each individual link tends

to be closer to a periodic process, leading to better delay

performance overall. However, it is uncertain how precisely

we can utilize AC idea at no additional cost and whether

it really leads to provable better queueing performance. This

question arises because the AC method may even worsen the

performance when wrongly applied [17], and thus it has to be

used with great care.

To set the stage, we fist look into the performance impli-

cations expressed by the correlation structure of the standard

CSMA. This gives insights on why CSMA algorithms suffer

from poor delay performance. Specifically, we formally prove

that all the eigenvalues of CSMA algorithms (Markov chains)

are non-negative, implying that the service process of any

link by the CSMA algorithm is positively correlated over

all time. As a goal of this paper, we then aim at showing

that the proposed algorithm provides guaranteed performance

improvement. To accomplish this, we resort to the effective

bandwidth of the net-input process, which quantifies the degree

of queue occupancy by incorporating the dynamics of arrival

and service processes altogether. (More precise statements

will be given in Section V.) We prove that utilizing the AC

method in the way we propose here indeed achieves smaller

effective bandwidth, which in turn leads to better queueing

performance and smaller delay. The biggest difficulty in our

analysis lies in the fact that the configurational state space of

the involved CSMA algorithm (set of feasible schedules or

independent sets of the conflict graph) defies the conventional

notion of monotonicity – a necessary ingredient to create

antithetically coupled sample paths. Nonetheless, we are able

to prove the desired performance ordering under a reasonable

set of assumptions on the graph topologies. The assumptions

are purely for technical purpose, and we believe that they are

not necessary in practical settings. This argument is further

supported by our extensive simulation results on a wide range

of network scenarios.

The rest of this paper is organized as follows. In Section 2,

we present our network model and preliminaries on the CSMA

scheduling, as well as the delayed CSMA algorithm. In Section

3, we provide our theoretical findings that were unknown to

some of previous works. In particular, our results reveal that

strong correlations indeed persist in the link state process. In

Section 4, we first introduce the concept of antithetic coupling

and investigate several methods that can practically implement

the idea. We then present our main idea with a motivating

example and provide detailed procedure of our proposed

algorithm. In Section 5, we provide analysis on showing that

the proposed algorithm achieves smaller effective bandwidth,

which in turn leads to better queueing performance. Section

6 presents our extensive simulation results under various

network scenarios, and Section 7 concludes the paper.

II. PRELIMINARIES

A. System Model

Consider a wireless network with a conflict graph G =
(N , E) where N is the set of links (or nodes in the conflict

graph2) and E is the set of edges. An edge (i, j) ∈ E
exists between two links i and j if they cannot be active

at the same time due to their mutual interference. Define by

σ = (σv)v∈N ∈ {0, 1}|N | that represents the set of link

states. A link v is active if it is included in the schedule,

i.e., σv = 1, and is inactive if otherwise. A schedule is called

to be feasible if the links in the schedule can be active at the

same time slot according to the conflict graph relationship G.

Evidently, a feasible schedule σ should satisfy the independent

set constraint i.e., σv + σw ≤ 1 for all (v, w) ∈ E . We denote

by Ω the set of all feasible schedules. We assume the network

runs in a time-slotted manner, and therefore we denote by σ(t)
the schedule instance at time t for t = 0, 1, . . ..

Each link is associated with a queue fed by some exogenous

traffic arrivals and serviced when the link is active. We

consider that Av(t) amount of packets arrive to the queue

of link v at each time slot t in an i.i.d. manner according

to some distribution provided that E{Av(t)} = νv and

Var{Av(t)} = ν∗v <∞. Let ν = (νv)v∈N be the set of arrival

rates to the queues in the network. Let Q(t) = (Qv(t))v∈N be

the number of packets in the queue at time t. Then the queue

dynamics is governed by the following recursion:

Qv(t) = max{Qv(t−1) +Av(t)− σv(t), 0}, t ≥ 1. (1)

The capacity region of the network is the set of all arrival

rates ν for which there exists a scheduling algorithm that can

support the arrivals. It is known [1] that the region is given

by the convex combination of all feasible schedules, i.e.,

C =

{

∑

σ∈Ω

θσσ :
∑

σ∈Ω

θσ = 1, θσ ≥ 0, ∀σ ∈ Ω

}

and, an algorithm is called throughput-optimal if it can main-

tain all the queues in the network finite for any arrival rates

within the capacity region.

B. Glauber Dynamics and CSMA Scheduling

While the MWS algorithm has been known to achieve the

throughput-optimality [1], it is not a practical solution because

it requires to solve a complicated combinatorial problem every

time slot. Recently, several CSMA algorithms have emerged

that offer the capability of achieving the full capacity region

and thus match the optimal throughput performance of the

MWS. Central to these CSMA algorithms is the so-called

Glauber dynamics, which is a method of sampling independent

sets with a desired probability distribution. The traditional

Glauber dynamics works as follows. At each time slot t,
links select a set of links m(t) that is interference free in

2We will use the term ‘node’ and ’link’ interchangeably.
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a distributed manner. For those selected links v ∈ m(t), if

the link senses the transmission of any conflicting link, then

it keeps silent. If none of its conflicting links is transmitting,

then it transmits data with probability λv

1+λv
.

In this setup, the schedule σ(t) forms a Markov chain which

is irreducible, aperiodic, and reversible over Ω, and achieves

the stationary distribution given by π(σ) = 1
Z

∏

i∈N λσv

v

where Z =
∑

σ∈Ω

∏

i∈N λσv

v is a normalizing constant. A

link v ∈ N then receives an average service rate sv =
lims→∞

1
s

∑s

t=1 σv(t) =
∑

σ:σv=1 π(σ). The fundamental

idea for establishing the throughput-optimality comes from the

fact that there exists {λv}v∈N such that the average service

rate is strictly larger than the average arrival rate, i.e., νv < sv,

∀v ∈ N . There have been several approaches that adaptively

find appropriate values for the λ’s using queue information [4],

[5] or experienced arrival and service rate [19].

C. Delayed CSMA

The delayed CSMA algorithm runs with a parameter T ≥ 1
which captures the number of chains used for deciding link

activities. If T = 1, the algorithm becomes the conventional

CSMA algorithm, and hence Algorithm 1 can be understood

as a generalized version of it.

Algorithm 1 Delayed CSMA [13]

1: Initialize: for all links v ∈ N , σv(t) = 0, t = 0, 1, . . . , T−1.
2: At each time t ≥ T : links find a decision schedule, m(t) through

a randomized procedure, and
3: for all links v ∈ m(t) do
4: if

∑

w∈N(v) σw(t− T ) = 0 then

5: σv(t) = 1 with probability λv

1+λv

6: σv(t) = 0 with probability 1
1+λv

7: else σv(t) = 0 end if
8: end for
9: for all links w /∈ m(t) do

10: σw(t) = σw(t− T )
11: end for

In the conventional CSMA algorithm, i.e., Algorithm 1 with

T = 1, the schedule may easily get trapped in a particular

subset of feasible schedules for a long period of time. This

phenomenon, a.k.a. temporal starvation problem, is due to

the fundamental constraint imposed by the Markov chain

that limits state transition from one schedule to another. The

delayed CSMA algorithm (with T ≥ 2) enables to effectively

resolve this problem by allowing more drastic changes of the

schedules over time.

There is a certain trade-off in choosing the parameter T in

the delay performance. As far as the steady state performance

is of a concern, larger T is always preferable. A recent work

has shown that this algorithm can be delay-optimal in that

there exists some T such that the average delay can be bounded

by a constant [14]. However, larger T entails longer time

for scheduling instances to reach steady state, resulting in

degrading the performance in the transient phase [13]. In this

paper, we propose a new algorithm, called AC-CSMA, that can

provide better delay performance over the delayed CSMA with

any given T ≥ 2 in use. Our idea is based on the concept of

antithetic coupling that has been widely used in the statistics

literature. In Section IV, we will briefly discuss its concept

and how to utilize it in the CSMA setup.

III. REVISITING CORRELATION STRUCTURE OF THE

STANDARD CSMA ALGORITHM

According to the queueing theory literature in geneal, the

variability of arrival and service processes significantly affects

its queueing performance. In particular, it has been reported

through a number of works in the literature that the positive

correlation of the arrival and/or service process has an adverse

impact on the queueing delay [20], [21], [22]. From this

viewpoint, understanding the correlation structure is pivotal

in analyzing the performance of a queueing system. Thus, we

here investigate the correlations of the link service process

modulated by the standard CSMA algorithm (or the delayed

CSMA with T = 1 in Algorithm 1).

Let σ(t) ∈ Ω be a Markov chain that represents a feasible

schedule by the CSMA algorithm at time slot t. Since we are

interested in the long-term behavior of queueing performance,

we assume that the Markov chain σ(t) is in its stationary

regime, i.e., P{σ(t) = x} = π(x) for all t ≥ 0. For any given

function f : Ω → R, we define the correlation coefficient

of lag k by ψ(f, k) , Corr{f(σ(t)), f(σ(t + k))}, where

Corr{X,Y } = Cov{X,Y }√
Var{X}

√
Var{Y }

. Let Bv be the set of all states

for which a link v is active, i.e., Bv , {x ∈ Ω : xv = 1} ⊂ Ω.

We can then write the correlation at lag k for the service

process of a particular link v by ψ(1v, k), where 1v(x) ,

1{x ∈ Bv} for x ∈ Ω.

In [23], it has been shown that for any finite state reversible

Markov chain, the correlations at even-lags, i.e., ψ(f, k), for

k = 2, 4, . . . are all positive. For the CSMA algorithm, the

authors in [13] have shown that the degree of correlation for

the service process is quite high for a wide range of time

scales by quantifying the correlations for lag-1 and even-lags.

A natural question is whether the same is true for all odd-lags

other than lag-1.

In the statistics literature, we found in [24] that for a class

of Gibbs sampler,3 the positive correlations hold for all lags

and for any bounded function f : Ω → R and over a finite

state space Ω. The authors in [24] focused only on a unitary

random scan scheme, i.e., updating a single entity at random,

which translates into choosing only a single link as a decision

schedule at every time slot. In CSMA, however, the network

decides multiple links to update in a single time slot [19],

[26], [27], [13], which is not covered by their analysis. We

here verify that similar results hold for the multi-site update

cases. We consider a class of multi-site update schemes that

select an independent set of nodes at every time i.i.d. with

some probability. To be more specific, the network selects

a decision schedule m(t) ∈ Φ at every time t i.i.d. with

probability α(m) where
∑

m∈Φ α(m) = 1. For example, if

each link i can attempt the channel with access probability ai,

3Glauber dynamics is a special instance of Gibbs sampler [25].
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the link i is then selected if it is interference free among its

neighbors. The resulting decision schedule clearly forms an

independent set.

Proposition 1. For any function f :Ω→R, it holds ψ(f, 1)≥0.

Proof: See our technical report in [28].

[13] shows the positive correlation of lag-1 for the service

process, i.e., ψ(f, 1) ≥ 0 for f = 1v only, while Proposition 1

holds for any arbitrary function f . This extension is in fact

strong enough to characterize the entire spectrum of the CSMA

algorithm as shown next.

Proposition 2. Let ρj , j = 1, . . . , |Ω| be the left eigenvalues

of the transition probability matrix of the standard CSMA

algorithm. Then ρj ≥ 0 for all j = 1, . . . , |Ω|.

Proof: Let (ρj ,vj), j = 1, 2, . . . , |Ω|, be the jth eigen-

value and eigenvector pair of the transition probability matrix.

For any two functions f, g : Ω → R (or |Ω|-dimensional

vectors), define 〈f, g〉π =
∑|Ω|

i=1 f(i)g(i)π(i). Since the chain

σ(t) is reversible, we have 〈vi,vj〉π = 0 for i 6= j, i.e., they

are orthogonal [29]. Define a random variable Λ such that

P{Λ = ρj} = |〈f,vj〉π |
2/C, j = 2, . . . , |Ω|

where C =
∑|Ω|

j=2 |〈f,vj〉π|2 > 0 is a normalizing constant.

Now, we utilize the spectral characterization of the correlation

function as shown in [30]. Specifically, for any ergodic re-

versible chain, Lemma 1 in [30] states that ψ(f, k) = E{Λk}.

Thus, we have ψ(f, 1) = E{Λ} and our Proposition 1

guarantees that this is non-negative for any choice of f . Set

f = vj . The result then follows by noting that {vi} are

orthogonal and thus P{Λ = ρj} = 1, i.e., E{Λ} = ρj ≥ 0.

By using the above two Propositions, we can now show that

the correlations at all lags are positive.

Proposition 3. For any f :Ω→R, ψ(f, k)≥0, ∀k ≥ 1.

Proof: Proposition 2 asserts that the random variable Λ
takes on non-negative values, i.e., Λ ≥ 0. Thus,

ψ(f, k) = E{Λk} ≥ E{Λ}k = ψ(f, 1)k ≥ 0,

where the first inequality is from the Jensen’s inequality and

the second inequality is from Proposition 1.

Our findings here have several implications on some of

previous works. In [8], the authors study the impact of decision

schedules on the delay performance where their analysis is

based on the assumption that the second largest eigenvalue

in modulus (SLEM), max{ρ2, |ρ|Ω||}, is equivalent to ρ2. Our

Proposition 2 verifies that the SLEM is indeed equal to ρ2
without any assumption. Also, in [13], the improvement on

delay performance of delayed CSMA was demonstrated by the

smaller variance of the cumulative service process, based on

the assumption that correlations of a link service process are

all non-negative for all lags. Again, our Proposition 3 indicates

that such assumption is actually not necessary.

IV. ANTITHETIC COUPLING APPROACH TO

DELAYED-CSMA ALGORITHM

In this section, we propose our main algorithm that is based

on a novel concept of antithetic coupling. We start this section

by briefly introducing its concept, and then present our idea

on how to utilize it in CSMA scheduling.

A. Antithetic coupling

The antithetic coupling method is a variance reduction

technique used in parallel Monte Carlo simulations [15], [16].

The key principle is, for some sample paths generated, to take

advantage of its antithetic path to reduce variance. To illustrate,

consider two Markov chains, Xt and Yt, each with the same

state space Ω and transition probability P. Suppose that each

chain has produced t samples after sufficient amount of burn-

in time to remove dependency from its initial state. A natural

estimator that combines the two set of t samples would be

θ̂(f, t) =
(

SX
t + SY

t

)

/2t.

where SX
t =

∑t−1
i=0 f(Xi) and SY

t =
∑t−1

i=0 f(Yi). In case

where the two sample paths are independent, the variance is

Var(θ̂(f, t)) =
[

Var(SX
t ) + Var(SY

t ) + 2Cov(SX
t , S

Y
t )

]

/4t2

=
[

Var(SX
t ) + Var(SY

t )
]

/4t2 = Var(SX
t )/2t2.

The antithetic method is to generate the second sample path

Y0, . . . , Yt−1 in a way that SX
t and SY

t are not just indepen-

dent, but negatively dependent with Cov(SX
t , S

Y
t ) < 0, while

keeping the distribution of each SX
t and SY

t intact.

To describe the method more precisely, we employ the

canonical representation of a Markov chain [31] as follows.

Any given Markov chain Xt can be written as Xt =
F (Xt−1, Ut), t ≥ 1, where {Ut : t ≥ 0} is a sequence of

i.i.d. random variables uniformly distributed in [0, 1], and the

function F determines the rule of state transition. For example,

suppose the state space Ω is indexed by Ω = {1, . . . , n} and

let (P)ij = P{Xt+1 = j|Xt = i} for i, j ∈ Ω. Given i ∈ Ω,

set r(i, 0) = 0 and r(i, j) =
∑j

k=1(P)ik for j ≥ 1. Then

one can construct such a function F : Ω × [0, 1) → Ω such

that F (i, u) = j if r(i, j − 1) ≤ u < r(i, j). A typical way

[15], [32] to induce negative correlations between two Markov

chains Xt and Yt is to use a paired coupling via {Ut, 1−Ut}
according to

Xt = F (Xt−1, Ut), and Yt = F (Yt−1, 1− Ut), t ≥ 1.

This idea has been recently generalized in [18] to the cases

with k ≥ 2 chains, where the authors utilized the concept of

negative association (NA) as defined next.

Definition 1. [33], [18] Real random variables,

X1, X2, . . . , Xn are said to be negatively associated (NA) if

for every pair of disjoint finite subsets A1, A2 ⊂ {1, . . . , n},

Cov {f1(Xi, i ∈ A1)f2(Xj , j ∈ A2)} ≤ 0,

whenever f1 and f2 are non-decreasing (or non-increasing)

in each of their arguments .
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One useful property of NA is that it is closed under indepen-

dent unions [33]. Therefore, if we can generate independent

vectors ~Ut = {U1
t , . . . , U

k
t } where each ~Ut, t ≥ 0 is a

collection of NA random variables, then so will be the whole

collection {U1
t , . . . , U

k
t , t ≥ 0}. Consequently,

Cov{f(U i
t , t ≥ 0), f(U j

t , t ≥ 0)} ≤ 0, i 6= j,

for any function f that is monotone (either non-increasing

or non-decreasing) in each of its arguments. Taking func-

tion f to be multiple composition of the chain mapping

X i
t+1 = F (X i

t , U
i
t+1), i = 1, . . . , k, yields that the resulting

samples from two different chains, i 6= j are NA, i.e.,

Cov(f(X i
t1
), f(Xj

t2
)) ≤ 0 for some t1, t2 ≥ 0, when F (X,U)

is monotone in both X and U [18]. The monotonicity with

respect to U often can be followed when we use inverse

transform sampling method, that is, generating a r.v. Y by

taking Y = F−1
Y (U) from U ∼ Uni(0, 1) where FY is

the cumulative distribution function (CDF). However, the

monotonicity with respect to X is often very difficult to verify,

especially when the state space of X is high-dimensional and

there is no natural ordering relationship among states.

B. Generation of NA random variables

An integral step to realize the antithetic coupling method is

to implement a sub-module that generates negatively associ-

ated {U1, . . . , Uk}, each having the same marginal distribution

as the Uni(0, 1). In case of k = 2, this step is trivial (by taking

U and 1 − U where U ∼ Uni(0, 1)). However, the matter is

more complicated when k ≥ 3.

Quantitatively, it is desirable to generate those r.v.s such that

resulting samples are correlated as negatively as possible. As

a measure of the degree of negative dependence, the authors

in [18] used the notion of extreme antithesis (EA) which is

defined as follows.

Definition 2. A set of r.v.s {X1, . . . , Xk} is said to achieve

extreme antithesis (EA) with respect to a marginal distri-

bution G if they are exchangeable and Corr(Xi, Xj) =
min{Corr(Yi, Yj)} where Y1, . . . , Yk are exchangeable, and

∀i, Yi ∼ G.

It has been known that the paired coupling, {U, 1− U} in

case of k = 2 achieves both NA and EA, however, there’s no

universal way of achieving both NA and EA in case of k ≥ 3
[17], [18]. Ref [18] provides a good survey on comparing

different methods, and we here briefly revisit their pros and

cons, for the completeness of our paper.

Permuted displacement method: First generate u1 ∼
Uni(0, 1), and then construct

ui = {2i−2u1 + 1/2}, i ∈ [2, k − 1], and uk = 1− {2k−2u1}

where {x} = x − ⌊x⌋ is the fractional part of x. The

consequence of this method is that ui’s are not exchangeable,

nor NA in general, when k ≥ 3.

Multivariate normal method: This method is based on the

fact that negatively correlated normal r.v.s are NA [33].

1) Generate (Z1, . . . , Zk−1 ∼ Normal(0,Σ) where

(Σij = −(k − 1)−1 for i 6= j and Σii = 1, and set

Zk = −(Z1 + . . .+ Zk−1).
2) Compute Ui = Θ(Zi) for all i ∈ {1, . . . , k} where Θ is

the CDF of normal distribution Normal(0, 1).

Due to the monotonicity of Θ, {U1, . . . , Uk} are exchangeable

and NA because {Z1, . . . , Zk} are NA. This method, how-

ever, does not achieve EA since the nonlinear transformation

Ui = Θ(Zi) causes an additional correlation, resulting in

Corr(Ui, Uj) being larger than the minimal possible value

−(k − 1)−1 [18].

Iterative Latin Hypercube Sampling method:

1) Set Uk
0 = (U1

0 , . . . , U
k
0 )

⊤ where {U
(j)
0 }1≤j≤k are i.i.d.

Uni(0, 1).
2) For t = 0, 1, 2, . . ., find a permutation Pt =

(̺t(0), . . . , ̺t(k−1)) from {0, . . . , k−1} independently,

and then set Uk
t+1 = 1

k
(̺t + Uk

t ), where Uk
t =

(U1
t , . . . , U

k
t )

⊤ for t ≥ 0.

The consequence of this method is that {U
(1)
t1
, . . . , U

(k)
tk

} are

NA for any finite {t1, . . . , tk}, and it also practically achieves

EA in the sense that Corr(U
(i)
t , U

(j)
t ) = − 1

k−1 (1 − 1
k2t ) as

the loss of EA quickly approaches to zero as t grows.

C. Proposed algorithm: AC-CSMA

Based on the concept of antithetic coupling, we propose a

new CSMA algorithm, termed AC-CSMA. In the proposed al-

gorithm, we utilize the antithetically coupled random variables

in deciding on-off activity at each link. An intuition behind our

idea is described in the following example.

Consider a network where the delayed CSMA with T = 2
is used for the scheduling algorithm, and λv = 1 for all

v ∈ N . Suppose that a particular link v has sensed its channel

state idle for two consecutive time slots, t = 0 and t = 1,

i.e.,
∑

j∈N(v) σj(0) = 0 and
∑

j∈N(v) σj(1) = 0, and is

selected in the decision schedules in these slots as illustrated

in Figure 1. In the conventional delayed CSMA algorithm, the

link v generates independent uniform random variables Uv(2)
and Uv(3) each distributed with i.i.d. Uni(0, 1). And then it

updates its activity according to

σv(2) = 1

{

Uv(2) <
λv

1+λv

}

, and σv(3) = 1

{

Uv(3) <
λv

1+λv

}

,

respectively. The resulting joint probability distribution of

these schedules is given in Table I-(a). Applying the antithetic

coupling idea, on the other hand, if we update the link activity

using negatively coupled r.v.s by Uv(2) ∼ Uni(0, 1) and

Uv(3) = 1−Uv(2), the resulting joint probability distribution

changes as shown in Table I-(b), such that events {σv(2) =
0, σv(3) = 0} or {σv(2) = 1, σv(3) = 1} does not occur. As

a result, the service process for the link v tends to be closer

to periodic behavior as opposed to that with i.i.d. updates,

and hence better delay performance is expected. Generalizing

this idea, we propose to have each link locally generates

T negatively associated uniform r.v.s to be used at time t
(mod T ) ≡ 0, where those r.v.s are independent across nodes.
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Idle Idle
Node v’s

Channel state

Time slots0 1 2 3

…

Fig. 1. An instance of channel state where link v can update its activities
for the time slots t = 2 and 3.

(a) Without AC
P
P
P
P
P
P

σv(3)
σv(2)

0 1

0 1/4 1/4

1 1/4 1/4

(b) With AC
P
P
P
P
P
P

σv(3)
σv(2)

0 1

0 0 1/2

1 1/2 0

TABLE I
PROBABILITY DISTRIBUTION OF THE LINK v’S ACTIVITY FOR THE TWO

CONSECUTIVE TIME SLOTS, σv(2) AND σv(3), GIVEN THAT THE LINK IS

ALLOWED TO UPDATE IN THESE SLOTS.

Clearly, our algorithm does not impose any additional message

overhead, and this feature is well suited to the distributed

setting of wireless networks.

For more formal description of our algorithm, we write the

state transition function of the CSMA algorithm described

in Algorithm 1 by a function F : Ω × Φ × [0, 1]n → Ω
with σ(t) = F (σ(t − T ),m(t), ~U(t)), where {m(t)}t≥1 are

i.i.d. random variables with probability distribution α(m) in

Φ which determines the set of nodes to be updated by the

decision schedule made at time t, and ~U(t) , {Ui(t)}i∈N is

a set of i.i.d. random variables each uniformly distributed in

[0, 1] used to update transmission activity of each node. To

identify an explicit expression of F , we define a node update

function Fi : Ω× [0, 1] → Ω. More precisely, given a previous

state σ ∈ Ω and a node i ∈ N to be updated, the next state

σ
′ ∈ Ω is generate by the function σ

′ = Fi(σ, u) given by

σ′
j =

{

1{∑
k∈N(i) σk = 0}1{u < λi/(1 + λi)}, if j = i,

σ′
j = σj , if j 6= i,

(2)

where u ∈ [0, 1]. Note that the decision schedule m(t) ∈ Φ at

any time t is clearly an independent set. Suppose elements in

an instance of decision schedule m is sorted in an arbitrary

order by m = {j1, j2, . . . , jm}. Define a set update function

of m by F[m] : Ω× [0, 1]n → Ω such that

F[m](σ, ~u) , Fjm(Fjm−1
(...(Fj1 (σ, uj1), ..., ujm−1

), ujm), (3)

where ~u = {uj}j∈N . Then, the state transition function F can

be expressed as choosing F[m] based on the decision schedule

m(t) selected at time t, i.e., F (σ(t − T ),m(t), ~U(t)) =
F[m(t)](σ(t−T ), ~U(t)). In our proposed algorithm, we gener-

ate T NA uniform r.v.s for each node i and for every time slot

t (mod T )≡ 0, and use them for updating its link activities

for the corresponding time slots.

An additional modification we made on the delayed CSMA

is that we fix the decision schedule for the T consecutive

time slots, and the new ones are selected every other T time

slots. In many practical network scenarios, the probability of

a link being selected by the decision schedules is quite small,

and therefore, it is often the case that links may not have

Algorithm 2 AC-CSMA

1: Initialize: for all links i ∈ N , σi(t) = 0, t = 0, 1, . . . , T−1.
2: At each time slot of t ≥ T :
3: if t is the first time slot of every T slots, i.e., t (mod T ) = 0

then
4: links find a decision schedule, m(t) through a randomized

procedure.
5: for all links i ∈ m(t) do
6: Locally generate negatively associated r.v’s

[Ui(t), . . . , Ui(t+ T − 1)], where marginal distribution of
each Ui(·) is Uni(0, 1).

7: end for
8: else m(t) = m(t− 1)
9: end if

10: for all links i ∈ m(t) do
11: if

∑

j∈Ni
σj(t− T ) = 0 then

12: if Ui(t) <
λi

1+λi
then σi(t) = 1 else σi(t) = 0 end if

13: else σi(t) = 0 end if
14: end for
15: for all links j /∈ m(t) do
16: σi(t) = σi(t− T )
17: end for

a chance to fully utilize the NA property of the uniform

r.v.s within the T time slots. The rationale behind fixing

the decision schedules is to maximize the impact of such

negative dependence property. See Algorithm 2 for the detailed

procedure of our proposed algorithm.

We note that the uniform r.v.s generated at step 6 in

Algorithm 2 have the same marginal distribution as Uni(0, 1),
and they are independent across every T slots. This implies

that the process σ(k),σ(k+T ),σ(k+2T ), · · · ,σ(k+nT ), · · ·
for each choice of k ∈ {0, 1, . . . , T−1}, evolves in the same

way as that of the standard CSMA chain, thus possessing the

same marginal distribution as π(σ) across all k. From this

reason, our proposed algorithm also preserves the throughput-

optimality. We omit this proof for brevity, and focus instead

on the impact of our approach on the delay performance.

V. ANALYSIS ON THE PERFORMANCE IMPROVEMENT

In this section, we investigate the impact of using antithetic

coupling on the queueing performance. Without loss of gen-

erality, we consider a particular link v ∈ N in the network

G. For ease of exposition, we denote by Q the queue size

at time t = 0 (or equivalently, the stationary queue size)

assuming that the system has started from t = −∞. Let

I(t) = A(t) − σ(t) be the net-input into the queue at time

t, with E{I(t)} = νv − π(Bv) = −ζ < 0, and define

I(s, t) ,
∑t

k=s I(k). Then, the recursion in eq. (1) admits

P{Q > x} = P

{

sup
t≥0

I(−t, 0) > x

}

(4)

Instead of directly dealing with the quantity in (4), we employ

the notion of effective bandwidth that has been widely used

in the queueing theory literature [22], [34], [35], [36], [37].

Conceptually, the effective bandwidth of a traffic source is

related to the bandwidth needed to achieve a given QoS

requirement (i.e. buffer overflow probability) when the source
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is offered to a constant service rate. Most of the studies in the

literature has been focused on analyzing the arrival process;

however, it is straightforward to generalize it to consider both

arrival and service process as a single net-input process.

Specifically, we consider the log moment generating func-

tion of the process I(−t, 0) defined by

Λt(θ) = logE
[

eθI(−t,0)
]

, θ > 0. (5)

The effective bandwidth of the net-input process can then

be written as Λt(θ)/(θt) [22]. Since our state-space is finite,

the quantity Λt(θ) is finite and well-defined for any given t, θ,

and thus there is one-to-one relationship between Λt(θ) and

the distribution of I(−t, 0).

While the usage of the effective bandwidth in capturing

queueing performance is very rich and its full demonstration

is clearly beyond the scope of this paper, the following steps

epitomize the utility of Λt(θ) in analyzing the queueing

performance

logP

{

sup
t≥0

I(−t, 0) > x

}

≈ sup
t≥0

logP {I(−t, 0) > x}

≤ sup
t≥0

inf
θ>0

logE
[

eθI(−t,0)−θx
]

= − inf
t≥0

sup
θ>0

(θx− Λt(θ)) , (6)

where the first approximation is referred to as the principle

of the largest term [38], and the inequality is from Chernoff

bound. The term on the RHS of (6) is often called a rate

function and plays a crucial role in quantifying the queueing

performance. In particular, the above approximation and in-

equality can be made precise and becomes asymptotic equality

in the large deviation theory [38], [21], [39], [22].

In what follows, we show that our proposed algorithm

yields smaller Λt(θ) than that of the delayed-CSMA algorithm,

for any given θ and t. As a byproduct, we also show that

the same ordering holds between the delayed-CSMA and

the standard CSMA algorithm. Note that, in view of (6),

smaller Λt(θ) means larger decay rate of P{Q > x}, thus

better queueing performance and smaller delay. We will use

different superscripts ’std’, ’del’, and ’AC’ to distinguish Λt(θ)
for the standard CSMA, delayed CSMA, and AC-CSMA,

respectively. For the delayed CSMA and AC-CSMA, the same

parameter T ≥ 2 is chosen for fair comparison in our analysis.

The major part of our analysis is to show monotonicity

properties on the state transition function in (3) in order

to derive a certain correlation inequality between the two

algorithms in comparison. Unfortunately, we find that this

is a very complicated task, as the state space Ω forms a

configurational space in {0, 1}|N |, i.e., the set of all feasible

schedules (independent sets), as opposed to be a simple

real domain. Even worse, it is at first sight unclear how to

define an ‘ordering’ between two states (i.e., two feasible

schedules σ1,σ2 ∈ Ω), a necessary component to establish

the notion of monotonicity (e.g., increasing or decreasing).

Nevertheless, we are able to derive the precise ordering of

the moment generating function Λt(θ) among the considered

algorithms under a slightly limited setting. Specifically, we

(a) Complete (b) Grid (c) Star (d) Random

Fig. 2. Simulation topologies

consider a situation where the conflict graph forms bipartite

in which nodes can be divided into two groups such that any

neighboring node of a given node in one group belongs to the

other group. For example, topologies in Figure 2-(b) and 2-(c)

are bipartite, whereas those in Figure 2-(a) and 2-(d) are not.

We now state our main result in the following theorem. The

entire proof involves detailed analysis, and thus we omitted

here for brevity. We refer to our technical report [28] for

detailed steps.

Theorem 1. Under the condition that the conflict graph forms

bipartite, we have

ΛAC
t (θ) ≤ Λdel

t (θ) ≤ Λstd
t (θ)

for any given 0 < θ, t <∞. ✷

Several remarks are in order. First, while we assumed that

the arrival process to the queue is i.i.d. Bernoulli process,

as typically done in the current literature, we here point out

that our Theorem 1 holds true for any other general arrival

process for which the moment generating function in (5) is

well defined. To see this, note that (5) can be written as sum

of two components, one for the arrival process and the other

for the service process. Since the arrival here is assumed to be

the same and independent of the service process, the ordering

on Λt(θ) implies the ordering on the same for the service

process counterpart.

Second, if the net-input process is assumed to be Gaussian

as in [13], part of our Theorem 1 readily recovers the main

result in that paper. Specifically, if I(−t, 0) is Gaussian with

mean −ζt and variance v(t), the ordering between Λdel
t (θ)

and Λstd
t (θ) reduces to the ordering of the variance function

v(t) for each t, by noting that logE{eθX} = θµt+ θ2v(t)/2

for X
d
= N (µt, v(t)). Our result here on the ordering of

the moment generating function is far stronger than just

a variance ordering in [13], and has natural interpretation

toward the ordering of the effective bandwidth as explained

earlier. In addition, Theorem 1 shows that our proposed AC-

CSMA is superior than the delayed-CSMA in that it produces

smaller effective bandwidth (or larger decay rate function for

P{Q > x}) without any Gaussian assumption on the service

process. Lastly, although our theoretical result holds under the

stated assumptions, we again maintain that this is purely for

technical purpose and our extensive simulation results in the

next section confirm the same performance ordering for more

general settings of network topologies.

VI. SIMULATION RESULTS

In this section, we present numerical results for our pro-

posed algorithm. We consider four conflict graph types: Ran-
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Fig. 3. Correlations of service process measured at the designated node in
the Random network.

dom, Complete, Star, and Grid, as shown in Figure 2. We

collect simulation data at a node denoted by red circle in the

figure. In obtaining simulation data, we have taken average

over run time of 3 × 108 time slots, where first 105 slots of

data have been discarded to remove bias from initial states. For

all cases of simulation, we have fixed the access probability

to 0.25 for every node.

In generating NA uniform r.v.s, we choose to use Iterative

Latin Hypercube Sampling method since it is advantageous

over the other methods discussed in Section IV-B in that

it achieves both NA and EA in the steady state. With this

method in use, we first look at the impact of our algorithm on

correlation structure of the service process. We run simulation

in Random topology with λi = 1.0 for each node i in

the network. We plot in Figure 3 the correlation of the

service process for a range of lags under the same T in use

by comparing the two algorithms: delayed CSMA and AC-

CSMA. As expected, the negative correlations indeed exist at

every lag that is not multiple of T .

Next, we measure the average queueing delay at the des-

ignated node for each network topology. We chose λv = 1.5
for every node v ∈ N of all simulation cases. We choose it

based on our observation that 1.5 is reasonably high enough

to achieve link capacities that are fairly close to a boundary

of achievable capacity region. In the case of complete graph

topology, for instance, each link obtains 89% of achievable

capacity with λv = 1.5, v ∈ N . These parameters can be

selected in a more sophisticated way by adopting the approach

in [3]. Along with the parameter setting, we plot in Figure 4

the ratio of average delay under AC-CSMA over that under

the delayed CSMA, while varying the traffic intensity with

the same T = 2. Here, the traffic intensity of a link is the

ratio of the average arrival rate to the average service rate of

the link, i.e., νv/π(Bv) = E{Av(t)}/E{σv(t)}. Notice that

the improvement of AC-CSMA becomes larger as the system

gets closer to the boundary of the capacity region, in which

the induced negative dependence of the service process over

time plays a bigger role.

Figure 5 shows the ratio of the average delay as before under

the same traffic intensity of 0.7, while the parameter T varies

from 2 to 15. The impact of T on the amount of improvement

depends on the topology type and the interference relationship

of the node being monitored for measurement. For instance,

the improvement becomes more noticeable for larger T in
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Fig. 4. Normalized ratio of average queuing delay for each topology type
as traffic intensity varies. The parameter T = 2 is used for delayed CSMA
and AC-CSMA.
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Fig. 5. Normalized ratio of average queueing delay for each topology type
as T varies from 2 to 20. Here the traffic intensity is set to be 0.7.

Grid and Complete topology, while such difference is almost

negligible in case of Star topology. Still, in all scenarios

considered, AC-CSMA clearly displays smaller delay than the

delayed-CSMA, which was already known to perform better

than the standard CSMA algorithm [13].

Figure 6 shows the CCDF of the queue-length in Grid and

Random topologies under various choices of T and algorithms

used. As expected from our Theorem 1, this tail distribution

decays fastest for AC-CSMA than all others, under the same

choice of T . We observed similar results in other topologies

as well and omit them here due to space constraint.

VII. CONCLUSION

We have proposed to employ the concept of antithetic

coupling method that has been used to improve the accuracy
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Fig. 6. P{Q > x} in linear-log scale for (a) Grid and (b) Random topology.

of statistical estimation in parallel and multiple Monte Carlo

simulations, for multi-chain based CSMA scheduling. Our

proposed algorithm, AC-CSMA, can be implemented in a

fully distributed manner by having each node (transmitter of a

link) locally generate negatively associated random variables,

to induce negative correlations in the link service process for

better queueing performance. We have rigorously proved per-

formance ordering via effective bandwidth among the standard

CSMA, delayed-CSMA, and our AC-CSMA under a mild

set of assumptions, and our simulation results demonstrate

that the same ordering holds under much wider range of

network scenarios. Our main technical contribution lies in

establishing certain monotonicity for multiple instances of

Glauber dynamics (or Gibbs samplers) over configurational

state space with independent set constraints, for which the

conventional notion of ordering no longer applies. We expect

that our approach toward negatively coupled processes can

also be applicable to outside of CSMA scheduling, whenever

a need arises for faster simulation and computation involving

multiple instances of Glauber-dynamics algorithms over highly

complicated domains.
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