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Stability of Network Congestion Control with Asynchronous Updates
Han Cai† and Do Young Eun†

Abstract— For network congestion control with many flows,
current theoretical models predict worse performance than
what the empirical study shows. In this paper, we introduce
asynchronism among many flows to the traditional fluid-
based model and develop an asynchronous model for network
congestion control where each end-user sees slightly different
snapshots of the network. Based on our model, we prove that
the system is always stable when there are many flows with
asynchronous updates. Both our theoretical and numerical re-
sults confirm that the asynchronism plays a dominant role in the
stability of network congestion control and our asynchronous
model reflects the reality far better than any other traditional
fluid models with synchronous updates.

I. INTRODUCTION

Transmission Control Protocol (TCP) and Active Queue
Management (AQM) are the two major components of
Internet congestion control and cooperate in a distributed
manner to form a feedback control system. Implemented
on each end-node, TCP specifies packet transmission rate
based on the signal from the network. Routers, on the other
hand, calculate the level of congestion signal from what they
observe and return this feedback signal to end-nodes, which
triggers the end-nodes to adjust their injection rates into the
network. For these feedback networked systems, stability has
been the most important measure and crucial to the overall
network performance as it ensures smoothness or conver-
gence of average ‘state’ of the system to its equilibrium point.

Fluid models have received most attention in analyzing the
stability of network congestion control. The stability criterion
of the system conveniently offers guidelines on how to design
TCP/AQM systems [1], [2], [3], [4], [5] to the benefit of
higher bandwidth utilization and smaller variations in delay
or throughput [3]. In addition, it has been shown that the fluid
model becomes accurate and a faithful representation of a
system as the number of flows and the link capacity increase
at the same time [4], [6]. This implies that the stability
property of the system is mostly invariant with respect to
the system size.

However, recent empirical studies have shown [7], [8] that
the system performance critically depends on the number of
flows. In particular, it is observed [7] that although there
exists global synchronization among flows in a small system
under drop-tail policy at the routers, the synchronization
disappears and all the flows become almost independent of
each other when the number of flows in the system is larger
than certain value, say, few hundreds, thus resulting in higher
link utilization and smaller buffer size requirement. In other
words, the system tends to be more ‘stable’ for larger number
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of flows in the system. This partially supports the long-
held observation that real networks tend to perform better
than what the theory suggests [9], [10] and puts forward
the following questions: How can we fill this gap between
the theory and the reality? What is lost in the current fluid
modeling approach? Can we modify the current model to
reflect the reality and obtain better design guidelines?

In this paper, we show that we can fill this gap by
introducing asynchronism to the current fluid model. In fact,
the existence of asynchronism in a system with many flows
is not new. For instance, even when many flows sharing
the same link have the same round-trip-time (RTT), very
small variation in router’s processing time is shown to be
sufficient to prevent synchronization [11]. Similarly, many
other sources of randomness and imperfection in the network
algorithms also contribute to the asynchronism in part. Up
till now, however, only simulation and experiment results are
available [7], [8] in showing the existence of asynchronism
and its influence on system stability, and how to introduce it
to the current fluid model is still an open problem. In this pa-
per, we explicitly take the asynchronism among many flows
into account and develop a simple fluid-based model with
asynchronous updates, where each end-user sees slightly
different pictures of the network status (receives slightly
different congestion signal from others). We prove that under
our asynchronous model, a system becomes always linearly
stable regardless of the system configuration as the number
of flows increases. Our theoretical results thus signify the
importance of asynchronism in the stability analysis and
design of networked systems. Our results also provide a
theoretical explanation on the empirical observations in [7]
and in some sense eliminate the aforementioned discrepancy
between theory and practice.

Due to similar reason, the problem of how asynchronism
affects the system stability has been an important consider-
ation in many kinds of control systems other than network
congestion control [12], [13], [14]. Research work in iterative
methods for solving a set of linear equations have provided
the basis for modeling and analyzing asynchronous systems.
As will be shown later on, we point out that our approach
to the asynchronous model for congestion control is very
different from all those work on the asynchronous system in
the literature.

The rest of the paper is organized as follows. In Section II,
we provide some background on the fluid model and present
related work in asynchronous iteration and its difference
from our work. Section III provides stability analysis for syn-
chronous model. We then develop our asynchronous model
and prove its stability in Section IV. Section V provides
simulation and numerical results, and Section VI concludes.
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II. PRELIMINARIES

A. Fluid Model for Congestion Control with Many Flows

Fluid model is widely used for TCP congestion control
to describe how the average rates evolve over time and
determine its convergence property or stability. Consider a
link with capacity NC shared by N flows (end-users). Let
each RTT be normalized to one time slot, xj(t) be the
rate of flow j (or the number of packets to be transmitted)
during the tth time slot (j = 1, 2, ..., N ; t = 1, 2, ...), and
S̄(t) =

∑N
k=1 xk(t)/N present the average rate seen at the

link. Assume that congestion signal depends only on S̄(t).
Then, the fluid model for flow j becomes

xj(t+1) = f (xj(t))
(
1−p

(
S̄(t)

))
+g (xj(t)) p

(
S̄(t)

)
= hj(x1(t), x2(t), ..., xN (t)), (1)

where p(x) is the marking function denoting the probability
that the flow receives congestion signal when the average rate
is x. When the current rate is x, the rate at the next time
slot becomes g(x) under congestion and f(x) otherwise. We
then impose the following assumptions on these functions:

(A1) f(x) = x + α for some constant α > 0.
(A2) 0 < g(x) < x and 0 < g′(x) < 1.
(A3) p(x) : [1,∞) → [0, 1] is non-decreasing in x.
Remark 1: (A1) means that the rate increases linearly

under no congestion. For instance, we have α = 1 in case of
AIMD as in the current TCP. Assumption (A2) means that
in case of congestion, (i) the new rate should be smaller than
the current one (g(x) < x) and (ii) for current rate x1 < x2,
we have g(x1) < g(x2) and also x1 − g(x1) < x2 − g(x2),
i.e., the sender should reduce more from a higher sending
rate. This includes g(x) = βx with β ∈ (0, 1) as in AIMD
and g(x) = x −√

x for x ≥ 1.
From (1), the fluid model for one flow becomes

x(t+1)=f(x(t))(1−p(x(t)))+g(x(t))p(x(t))=F (x(t)). (2)

The system (2) is linearly stable if and only if |F ′(x∗)| < 1
where x∗ is the equilibrium point of (2), i.e., x∗ = F (x∗).

From (A1)–(A3), after some manipulation, it follows that
the condition |F ′(x∗)| < 1 is equivalent to

p(x∗) (1 − g′(x∗)) + αp′(x∗)/p(x∗) < 2. (3)

B. Related Work in Asynchronous Iteration

The following model is one of the most popular models
used in the study of asynchronous iteration [15]:

xi(t+1)=

{∑N
j=1 aijxj

(
k−d(i, j, t)

)
, if i ∈ S(t),

xi(t), otherwise,
(4)

where A = {aij} ∈ R
N×N is the transition matrix,

d(i, j, t) are nonnegative integers denoting iteration delay,
and S(t) ∈ {1, 2, ..., N} is the updating set indicating which
flows should be updated at time t.

Let |A| = {|aij |} be the matrix whose elements are |aij |
and ρ(A) be the spectral radius of matrix A, i.e.,

ρ(A) = max
i

|λi|, (5)

where λi (i = 1, 2, ..., N ) are eigenvalues of matrix A. The
following result has received much attention in the study of
asynchronous iteration [16].

Theorem 1: If ρ(|A|)<1, the system in (4) is asymptoti-
cally stable under all possible iteration delays and updating
sets. If ρ(|A|)≥1, there exists a sequence of iteration delays
and updating sets for (4) to be not asymptotically stable. �

Other related work about the asynchronous iteration in-
cludes parallel computations, neutral networks, among oth-
ers [15], [17], [18], [19]. Most of these studies focus on the
case of ρ(|A|) = 1 and try to construct an asynchronous
updating scheme for which the system is unstable, find
a group of asynchronous updating schemes for which the
system is stable when A is symmetric, etc. In short, they are
interested in studying the effect of different asynchronous
schemes for fixed transition matrix A as required by the
application. For example, in parallel computations, one of
the optimization objectives is to minimize the time to finish
computations under fixed ‘rules’ [17], i.e., to find the optimal
asynchronous scheme under a fixed transition matrix.

In contrast, our interest lies in the effect of the number
of flows on network stability. For example, suppose there
are N flows sharing the network. Then, the transition matrix
becomes N × N matrix. At the same time, note that the
randomness in the network makes any asynchronous updat-
ing scheme possible. However, since we mainly focus on the
system stability as N increases, in this paper, we consider
different transition matrices under a fixed asynchronous
updating scheme.

III. STABILITY ANALYSIS FOR SYNCHRONOUS MODEL

By linearizing N equations (j = 1, 2, ..., N ) in (1) around
its equilibrium point �x∗ = (x∗

1, . . . , x
∗
N )T , we obtain

�x(t + 1) = F�x(t), (6)

where �x(t) = (x1(t), x2(t), ..., xN (t))T and F = {fij} is
the N × N transition matrix with

fij = (∂hi/∂xj)
∣∣∣
�x=�x∗

(7)

where hi is defined in (1). We then have the following.
Proposition 1: The system in (1) is linearly stable if and

only if the condition in (3) is satisfied. �
Remark 2: Note that under the synchronous model, the

system stability does not depend on the number of flows N ,
which contradicts the empirical observation in [7], [8].

Proof: We only need to consider the linearized version
of (1) as in (6). It is well-known [15] that a linear system as
in (6) is stable if and only if ρ(F ) < 1 [15] where ρ(F ) is
defined in (5).

Since all N flows are symmetric, their equilibrium points
are the same, i.e., x∗

1 = x∗
2 = ... = x∗

N = x∗. Substituting
this into N equations in (1) yields

x∗ = f(x∗) (1 − p(x∗)) + g(x∗)p(x∗)

where f(x) and g(x) satisfy (A1)–(A2). Define

a = p(x∗) (1 − g′(x∗)) , c = αp′(x∗)/p(x∗), (8)
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then from (A1)–(A3), we have 0 < a < 1 and c ≥ 0. Thus,
the transition matrix can be written as F ={fij} where

fij =
(
1 − a − (c/N)

)
1{i=j}+(−c/N)1{i�=j}. (9)

Eigenvalues of F will be identified by the following result.
Lemma 1: [20] Suppose N ×N matrix A is nonsingular.

Then, for any N × 1 column vectors d and e, we have

det(A + deT ) = det(A)(1 + eT A−1d) (10)

Using (10) and A=
[
(1−a−λ)N/c

]
I, d=e=(1 1 . . . 1)T ,

det(F−λI) = (1 − a − λ)N−1(1 − a − c − λ) (11)

Hence, the matrix F has N − 1 identical eigenvalues at λ =
1− a and another eigenvalue at λ = 1− a− c, where a and
c are from (8). Since 0 < a < 1, we have |1− a| < 1. Thus,
the system is linearly stable if and only if

|λN | = |1 − a − c| < 1,

which is identical to (3) since 0 < a < 1 and c ≥ 0. This
completes the proof.

IV. STABILITY ANALYSIS WITH ASYNCHRONOUS
UPDATES

A. Asynchronous Model Description

Proposition 1 in the previous section asserts that the
stability of the system in (1) does not change as the number
of flows N increases. This is in fact well expected since, by
appealing to the law of large numbers type arguments, the
fluid model in (1) becomes more and more accurate as N
increases and thus its stability property will be largely insen-
sitive to N . However, still, this model does not explain the
observed discrepancy between the model and the reality. In
this section, we develop a simple, yet effective asynchronous
model to fill this gap and provide better design guidelines
for congestion control with many flows.

1 1

1 1

2 2

2 3

N N

N

t

t

1t+

1t+

Time slot

Time slot

       

Synchronous
update

       

Asynchronous
update

Fig. 1. Synchronous and asynchronous updates

Note that in system (1), every flow makes decision at
(t + 1)th time slot based on the same feedback signal
p
(∑N

k=1 xk(t)/N
)
. In other words, all the N flows update at

the same time instance and see the same picture of network
status. See Figure 1 for illustration. In reality, however, the
situation is far more complicated. While drop-tail policy
surely contributes to the synchronization among flows( by
dropping all the incoming packets from different flows at
time of congestion), there are many other factors that help

make all the flows ‘out-of-synch’. For example, each source
updates its window size (sending rate) per each return
acknowledgement (ACK) packet rather than per RTT, i.e.,
the real updating process is much finer than what the model
shows. In addition, each of these ACK packets that carry a
‘snapshot’ of the network status, will share its return path
with other crossing traffic and suffer small delay variations.
All in all, the network is more like a chaotic system in
which different flows see slightly different pictures of the
network even when they have the same updating period
(RTT). As in Figure 1, under asynchronous update scheme,
N flows update consecutively, and each flow’s change will
affect the network status at the router. This in turn affects
the congestion signal for other subsequent flows. In this way,
all the N flows have the same update period, but they are
out-of-synch.

In our asynchronous model, N flows update in order in
one time slot, and the most up-to-date information of each
flow is shared immediately by all the other subsequent flows.
Let yj(t) be the rate of flow j during the tth time slot
(j = 1, 2, ..., N ; t = 1, 2, ...). Then, our asynchronous fluid
model for flow j is

yj(t+1) = f
(
yj(t)

)[
1−p

(∑j−1
k=1 yk(t+1)+

∑N
k=j yk(t)

N

)]

+ g
(
yj(t)

)
p
(∑j−1

k=1 yk(t+1)+
∑N

k=j yk(t)
N

)
(12)

where f, g, p satisfy (A1)–(A3). Since Section (III) has
already given the linearizing process, in stead of going
through the similar process again, we next provide two
equivalent descriptions of linearized versions of (12) based
on its relationship with the synchronous model (1).

1) Asynchronous Model (Description 1): In contrast to the
synchronous model, now we update step by step. Let

�yj(t+1)=(y1(t+1), . . . , yj(t+1), yj+1(t), . . . , yN (t))T , (13)

and Fi (i = 1, ...N) be transition matrix for each step, then
instead of (6), now we have �y1(t+1)=F1�y

N (t), �y2(t+1)=
F2�y

1(t+1), ... �yN (t+1)=FN�yN−1(t+1). On ith step, only
yi is updated, and other flows remain the same, hence the
ith row of Fi is the same as F in (9), and the other rows of
Fi is the same as identity matrix I .

Define �y(t)=(y1(t), ..., yN (t))T and note that �y(t)=�yN (t)
from (13). The asynchronous model can then be written as

�y(t + 1) = (FNFN−1...F1)�y(t), (14)

i.e., now the transition matrix is FNFN−1...F1, and the
system is stable if and only if ρ(FNFN−1...F1) < 1.

2) Asynchronous Model (Description 2): Rewrite the orig-
inal synchronous model (6) as

�y(t + 1) = DF �y(t) − LF �y(t) − UF �y(t)

where DF = (1 − a − c/N)I is a diagonal matrix, LF is a
strictly lower triangular matrix with all elements being c/N ,
and UF is a strictly upper triangular matrix.

Compare (1) and (12), the only difference of asynchronous
model from the synchronous one, is that when flow j (j =
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1, 2, ...N) updates its sending rate during the (t + 1)th time
slot, any flow k (k < j) who has already updated in this
time slot will contribute its most up-to-date information to
flow j’s congestion signal. Hence, the asynchronous model
can be written as

�y(t + 1) = DF �y(t) − LF �y(t + 1) − UF �y(t),

which leads to

�y(t + 1) = (I + LF )−1(DF − UF )�y(t) = J�y(t), (15)

where J = (I + LF )−1(DF − UF ) is now our transition
matrix for the asynchronous model.

Remark 3: For a fixed N ∈ N, let A = F , d(i, j, t) =
0×1{j≥i}−1×1{j<i}, S(t)={1, 2, ..., N} in (4), we can get
(15). This scheme is called Gauss-Seidel iteration [15]. But,
as mentioned earlier, we study the stability of system with
various transition matrices according to different N under a
fixed updating scheme, which turns out to be Gauss-Seidel
iteration.

B. Stability Analysis for Asynchronous Model

Based on the argument in the proof of Proposition 1, the
equilibrium point �y∗ = (y∗

1 , . . . , y∗
N ) for (12) satisfies y∗

1 =
· · · = y∗

N = y∗, which again is equal to x∗, the equilibrium
point for the synchronous model in (1).

We now present our main result.
Theorem 2: The system in (15) is linearly stable if

p(y∗) (1 − g′(y∗)) + αp′(y∗)/
(
Np(y∗)

)
< 2. (16)

�
Remark 4: The only difference between (16) and (3) is the

1/N factor for αp′(y∗)/p(y∗) in (16). Note that p(y∗)(1 −
g′(y∗)) is always less than 1 from (A2) and (A3), so the term
c = αp′(y∗)/p(y∗) plays a key role in deciding whether or
not the system is linearly stable. (16) shows that regardless
of the values of c, the system will be always stable as long
as N is larger than certain value.

Proof: It suffices to show that under (16) we have
ρ(J) < 1 [15], which means all its eigenvalues lie inside
the unit circle on complex plane. For any λ ∈ C, we have

det(λI − J)

= det
(
λI − (I + LF )−1(DF − UF )

)
= det

(
(I + LF )−1

)
det (λ(I + LF ) − (DF − UF ))

= det (λ(I + LF ) − (DF − UF )) , (17)

where (17) is from det
(
(I+LF )−1

)
=[det ((I+LF ))]−1 =1

since I is diagonal matrix, LF is strictly lower triangular
matrix.

Define matrix H(λ)=λ(I+LF )−(DF−UF ) as a function
of λ. If there is no λ, |λ|≥1 for which det(H(λ))=0, then
all J’s eigenvalues must be inside the unit circle, hence the
system (15) is linearly stable. Thus, we only need to find
conditions under which all the roots of det(H(λ)) = 0 are
inside the unit circle.

Similarly to (8), define

a = p(y∗)
(
1 − g

′
(y∗)

)
, c = αp

′
(y∗)/p(y∗) (18)

Let κ1 =λ−(1−a), κ2 =c(λ−1)/N , e=(1, 1, . . . , 1)T , and
A={aij} where aij =κ21{i>j}+κ11{i=j}. Then, we have

H(λ) = A + (c/N)eeT .

In order to apply Lemma 1 to get det(H(λ)), the matrix
A must be non-singular, i.e. κ1 �= 0. If κ1 = 0, we have λ =
1−a ∈ (0, 1) from (A1)–(A3), which is inside the unit circle.
Thus, from now on, we can assume that κ1 �= 0 and the
matrix A is non-singular. Moreover, when λ = 1, H(λ) =
aI + (c/N)eeT . From (10), det(H(λ)) = aN

(
1+ c

a

) �= 0,
which means λ = 1 is not the root of det(H(λ)) = 0, hence
we can also safely assume that λ �= 1, i.e., κ2 �= 0.

From (10), we get

det(H(λ)) = det(A)
(
1 +

c

N
eT A−1e

)
(19)

Clearly, det(A) = κN
1 . As for A−1 = {a′

ij}, let γ = κ2/κ1,
γi =−γ(1−γ)i−1 (i∈N), where by assumption κ1,2 �= 0, γ
is well defined and γ �=0, then

a′
ij = (γi−j/κ1)1{i>j} + (1/κ1)1{i=j}.

Hence, det(H(λ)) = κN
1

[
1 + c/N

κ1
× 1−(1−γ)N

γ

]
. Under

κ1 �= 0, assume there exists λ′ (|λ′| ≥ 1) for which
det(H(λ′)) = 0, i.e.

1 +
c/N

κ1
× 1 − (1 − γ)N

γ
= 0.

Substituting κ1 =λ′−(1−a), κ2 = c
N (λ′−1), γ = κ2

κ1
gives

(λ′)1/N = 1 − (c/N)(λ′ − 1)
λ′ − (1 − a)

,

and thus

|(λ′
)1/N | =

∣∣λ′∣∣1/N =
∣∣∣∣1 − c(λ′ − 1)/N

λ′ − (1 − a)

∣∣∣∣. (20)

Let λ′ = λ1 + iλ2, λ1, λ2 ∈ R, with λ2
1 + λ2

2 ≥ 1. Since
|λ′| > 1, |λ′|1/N > 1 for any N . So, from (20), we have

[λ1(1− c

N
)−(1−a− c

N
)]2+[λ2(1− c

N
)]2 ≥ [λ1−(1−a)]2+λ2

2,

which becomes

[λ1− (1 − a

2−(c/N)
)]2 + λ2

2 ≤ a2

(2−(c/N))2
. (21)

Suppose

1 −a/(2−c/N) < 1 and a/(2−c/N) < 1, (22)

then (21) becomes a circle as shown in Figure 2.
Note that (22) holds when a+c/N < 2. From (18), this is

equivalent to (16). Under condition (16), the only intersection
of solid-line circle (21) in Figure 2 with the region |λ′| ≥ 1
or λ2

1 + λ2
2 ≥ 1 is (λ1, λ2) = (1, 0). However, we already

proved that λ′ = 1 is not the root for det(H(λ′)) = 0.
Consequently, (16) is the sufficient condition for all the roots
of det(H(λ)) = 0 to be strictly inside the unit circle. This
completes the proof.

To see the difference between the synchronous and the
asynchronous models, we take an example as follows. Set
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the capacity per flow to C = 0.2 Mbps, RTT = 42ms,
and the size of each packet to L = 4800 bits. Then, under
buffer size B (packets), the probability of packet drop is well
approximated by that of M/M/1/B queue [2], [21], i.e.,

p(x) = ρB(1 − ρ)/(1 − ρB+1), (23)

where Cper-flow = C ×RTT/L + B/N and ρ = x/Cper-flow.
Figure 3 shows the set of operating points (N,B) for

which the synchronous/asynchronous model is stable. Specif-
ically, for given N and B, we first obtain the equilibrium
point by solving x∗ = F (x∗) where F (x) is from (2). As
mentioned before, since N flows are symmetric, their equi-
librium points are the same, independently of which model
we use. Then, we decide whether this operating point is
linearly stable or not: if (3) holds, then it is stable under both
synchronous and asynchronous models; or if only (16) holds,
then it is stable under asynchronous model but unstable under
synchronous model; if neither of the conditions holds, this
operating point is unstable. Figure 3 clearly shows that for
a given N , the stability region of synchronous model does
not change with N , whereas that of the asynchronous model
is enlarged as N increases. In particular, for large N with
asynchronous updates, we see that the system is mostly stable
for any possible configuration, thus predicting all the good
performance as empirically observed.

V. SIMULATION RESULTS

In this section we present simulation results using ns-
2 [22] to verify that our asynchronous model is indeed more
suitable for system with many flows and much closer to
reality. Figure 4 shows the network configuration for our sim-
ulation. There are N symmetric sources whose propagation
delays are all identical. They all share the same bottleneck
link n0–n1 with capacity NC (C = 0.2 Mbps) and the

2L (10 Mbps, 1 ms, 20 pkts)

1L (10 Mbps, 1 ms, 20 pkts)

NL (10 Mbps, 1 ms, 20 pkts)
L(0.2N Mbps, 20 ms, B)

1S

2S

NS

0n 1n

Fig. 4. Network configuration for ns-2 simulation.
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Fig. 5. Effect of the number of flows N and the buffer size B on system
stability via ns-2.

buffer size B ∈ {2, 10, 100, 1000} (packets), and again each
packet length is set to L = 4800 bits. Drop-tail buffer
management scheme is used everywhere. Since each sender
updates its sending rate per acknowledgement(ACK), and the
packets from N senders will arrive to the bottleneck link
at random time instance, we expect that the probability of
getting congestion signal is still given by that of M/M/1/B
(or something similar) and the whole system can be regarded
as a rate-based congestion controller as in (1) if synchronous
or in (12) if asynchronous. In this way, different choices of
B will give different stability properties of each system.

Figure 5 shows the normalized average window size over
N flows via ns-2 simulation. We have simulated all possible
combinations of (N, B) with N ∈ {5, 50, 500} and B ∈
{2, 10, 100, 1000} (packets). Note that for fixed B, the long-
term means of the average sending rate for different N are
different. This is because the average capacity for each flow
is Cper-flow = C×RTT/L+B/N , a decreasing function of
N . For easy comparison, we normalized the average window
size to Cper-flow to ensure that it always fluctuates around 1.

As Figure 5 shows, for any given B, the system tends to be
more stable with less fluctuation of the average window size
as N increases. Note that this is in line with the observation
from our asynchronous model and the synchronous model
cannot predict this behavior as the stability property does
not depend on N . Similarly, for given N (say N = 500), we
observe that larger buffer size tends to yield slightly larger
fluctuations. As we can see from Figure 3, increasing the
buffer size B under the same N moves the system toward
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Fig. 6. Normalized average window size for N = 500, 2000 using ns-2
under B = 1000 packets. System becomes more stable as N increases.
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Fig. 7. Effect of the number of flows N and the buffer size B on system
stability. We use Matlab to iterate (1) and (12).

the boundary for stability region, making the system prone
to larger fluctuations. For B = 1000, if we increase the
number of flow N even further, the system becomes more
stable as shown in Figure 6. This is again well expected from
Figure 3 and Theorem 2 in that the system becomes always
stable for larger N under asynchronous updates, as is the
case in reality.

Figure 7 shows numerical result using Matlab for the
same system as in Figure 4. Specifically, we use the set of
recursions in (1) and (12) with the same set of parameters as
before. At each run, we randomly choose the initial window
size for each flow between 0 and Cper-flow. Due to space
constraint, we only report results for B = 2, 1000 and
N = 5, 50, 500. (We have also tested under other scenarios
and obtained the similar behavior.) When the buffer size
is small (B = 2), both models are stable showing almost
no fluctuation in the normalized average window sizes. For
larger buffer size (B = 1000), the synchronous model
becomes unstable and displays wild fluctuations regardless
of N . In contrast, our asynchronous model clearly shows that
even for B = 1000, the system gets stabilized for larger N .

VI. CONCLUSION

In this paper we have proposed an asynchronous model for
network congestion control with many flows in which each

flow sees slightly different snapshots of the network status. In
contrast to traditional fluid models with synchronous updates,
for which system stability remains almost independent of
the number of flows N , our model predicts that the system
becomes more stable as N increases and yields all the
good performance, which coincides with recent empirical
results. In particular, we have proven that a system becomes
stable for all sufficiently large N with asynchronous updates
regardless of the system configuration. Our simulation results
and numerical analysis also support that our asynchronous
model is simple, yet effective in predicting the realistic
behavior and is a better choice for the analysis and design
of the network congestion control with many flows.
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