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Abstract

Window growth function for congestion control is a strong determinant of proto-
col behaviors, especially its second and higher-order behaviors associated with the
distribution of transmission rates, its variances, and protocol stability. This paper
presents a new stochastic tool, called convex ordering, that provides an ordering of
any convex function of transmission rates of two multiplicative-decrease protocols
and valuable insights into high order behaviors of protocols. As the ordering deter-
mined by this tool is consistent with any convex function of rates, it can be applied
to any unknown metric for protocol performance that consists of some high-order
moments of transmission rates, as well as those already known such as rate vari-
ance. Using the tool, it is analyzed that a protocol with a growth function that
starts off with a concave function and then switches to a convex function (e.g., an
odd order function such as x3 and x5) around the maximum window size in the
previous loss epoch, gives the smallest rate variation under a variety of network
conditions. Among existing protocols, BIC and CUBIC have this window growth
function. Experimental and simulation results confirm the analytical findings.
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1 Introduction

Congestion control is an integral component of a transport protocol in a packet-
switched network; much of the Internet’s success is attributable to TCP, a commonly
used transport protocol of the Internet. As the Internet evolves in its capacity and
characteristics, demands for new congestion control adapting to the new operating
conditions and goals are constantly increasing. As a result, many new protocols whose
behaviors significantly deviate from TCP have lately been proposed. An emerging
class of congestion control, called high-speed TCP variants (e.g., [2–10]) are designed
specifically for high bandwidth-delay product networks.

One goal of these high speed TCP protocols is to increase the scalability of Reno-
style TCP which uses an Additive-Increase-Multiplicative-Decrease (AIMD) window
adjustment algorithm, and many of these protocols differ mainly in their choices of
window adjustment algorithms, in particular in the functions used in the growth
phase of the congestion window – for simplicity, however, most of them use the same
multiplicative decrease function with possibly different multiplicative factors to reduce
the window during packet losses. The choices of growth functions are diverse from
exponential to some polynomial functions. For instance, STCP [4] uses an exponential
growth function, HSTCP [3] uses a polynomial function, HTCP [6] uses a square
function, BIC [5] uses a combination of logarithmic and exponential functions, and
CUBIC [11] uses a cubic function.

The goal of this paper is to compare these growth functions, especially in terms of the
second or higher-order stochastic behaviors of the protocols that employ these func-
tions. Stochastic behaviors of congestion control protocols beyond the first order are
important because of the richness of information they provide. A higher-order stochas-
tic analysis offers a rich set of information about protocols, including the distribution
of transmission rates, its variance and protocol stability. These are important infor-
mation about protocols. For instance, the variance of transmission rates is critical for
a large class of Internet applications. Predictable, low-latency access to high-volume
real-time data is required for applications like scientific collaboration, telemedicine,
etc. High rate variability incurs delays or loss of quality which lessen the value of
information received for these applications. So the requirements for a good transport
protocol are ever more stringent as it has to be adaptive to fluctuations in available
bandwidth and also exhibit smaller rate variations under steady-state.

Stability is also an important goal of congestion control as it can affect the general
well-beings of the network including utilization, queue oscillations and packet loss
characteristics. In practice, stability has been frequently associated with the variance
of rate distributions. Protocol rate variations can influence fluctuations and oscil-
lations in router queues and thus, queue overflows. The severity of these overflows
may cause loss synchronization across many co-existing flows and therefore, under-
utilization of link capacity, which are the general signs of network instability. Thus,
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measuring the rate variations of flows is commonly used in practice to quantify the
practical sense of “protocol stability”. For instance, [8,11,12] use the CoV (coefficient
of variance, defined by the standard deviation over its mean) of per-flow transmission
rate to measure stability. Therefore, it is clear that in practice, a quantifiable degree
of stability is closely related to some higher order behaviors of protocols.

One way to study the higher order behaviors of protocols would be to directly cal-
culate the distribution of transmission rates 1 stochastically [13–17]. However, com-
puting the distribution of stationary window sizes of various protocols is prohibitive
and only a handful of results are available for few protocols under a limited setting.
(See Section 2-B for further details.) The main contribution of this paper is to use an
alternative tool, called stochastic convex ordering or simply the convex ordering that
provides a powerful insight into the high-order behaviors of protocols. Although it
cannot be used to compute the rate distribution itself, convex ordering is extremely
useful in comparing any convex function of congestion window sizes of protocols. We
find that convex ordering can be applied to many existing protocols that use multi-
plicative decrease (we call MD-style protocols) such as Scalable TCP, HSTCP, BIC,
HTCP, etc. There are also non-MD style protocols such as XCP [2], FAST [8] and
RCP [9], etc. They are also important TCP variants, but are out of the scope of our
discussion in this paper. A salient feature of convex ordering is that the ordering can
be applied to any (unknown) convex function. Thus, for any metric of protocol per-
formance defined in terms of some high-order functions (or statistics) of transmission
rates, our tool can be applied to define the ordering of metrics among protocols. At
the minimum, we can use it to compare the rate variance or CoV of per-flow rates of
protocols (note that the function is convex).

Our study of convex ordering on various existing growth functions has revealed the
followings:

• Under stationary conditions, protocols with a more concave growth function has a
lower convex ordering than those with a more convex function.

• Under non-stationary conditions, a protocol with a growth function that starts
off with a concave function and then switches to a convex function at the origin
(which we call a concave-convex function) has a lower convex ordering than those
with just concave or convex functions. Concave-convex functions have an inflection
point where growth becomes zero at the origin. For instance, an odd order function
such as x3, x5, etc. has this profile.

Our results indicate that, under a variety of network conditions, a protocol with
a concave-convex window growth function that uses the maximum window size in
the last congestion epoch to be the inflection point, has mostly a concave window
growth profile during steady state where available bandwidth remains stationary and

1 The transmission rates are obtained by dividing the congestion window size by RTT.
Since we assume the same RTT for every protocol we compare, we use the window sizes
and rates interchangeably for convenience.

3



a concave-convex window growth profile during non-stationary conditions where avail-
able bandwidth undergoes abrupt change. Thus according to our analysis, such a
protocol has the lowest convex ordering. Among the existing protocols, BIC and CU-
BIC have this property. Our NS-2 simulation and Linux-based experimental results
confirm these findings.

The remainder of this paper is organized as follows. Section 2 gives preliminaries
on the comparison between stochastic and fluid methods, as well as related work.
Section 3 presents our main theoretical results, including the stochastic behavior of
congestion control protocol under stationary case, a direct conclusion derived from our
main result showing the significance of stochastic method, and the stochastic behavior
under non-stationary case through a closer look at single loss interval. Section 4
discusses how to shape the increasing behavior of protocol under changing network
environment. Section 5 provides simulation result to support all our theoretical results
in Section 3. Section 6 presents the experimental evaluation of existing protocols and
Section 7 concludes.

2 Preliminaries

2.1 Stochastic vs. Fluid method

Most congestion control algorithms can be written in the form of the following stochas-
tic recursion:

Xt+1 = F (Xt, Ut), (1)

where Xt is in general a random vector in a suitably chosen state-space and {Ut}
is a stationary “driving” sequence, independent of Xt. Mapping F defines how the
system evolves in an appropriate time scale. On the other hand, the so-called fluid
model system dynamics take the following form:

xt+1 = E{Xt+1 | Xt = xt} = E{F (xt, Ut)} = G(xt), (2)

i.e., (2) captures the average behavior of (1). 2

As the first-order behavior is under discussion, the fluid method is much simpler and
convenient than the stochastic counterpart. For instance, the stability in this case
refers to the convergence of the recursion xt+1 = G(xt) to its fixed point x̂ where
x̂ = G(x̂), which is approximation of the average of Xt. Other performance metrics
including fairness and responsiveness can also be analyzed through the relationship

2 For example, a fluid model for AIMD with rate-based AQM can be written as xt+1 =
(xt + 1)(1 − p(xt)) + xtp(xt)/2, while the stochastic one Xt+1 always takes either Xt + 1
with probability 1 − p(Xt) or Xt/2 with probability p(Xt). Here, p(x) is the probability of
receiving congestion signal when the current rate or the window size is x.
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among the average throughput (the fixed point x̂) and other system parameters. In
contrast, under the stochastic setting in (1), suppose it is ‘stable’ and thus Xt is
stationary. Then, in principle, one should be able to solve the corresponding distri-

butional equation Xt
d
= F (Xt, Ut) to obtain the distribution of Xt. Unfortunately,

however, this kind of equation is extremely hard to solve and its solutions are known
only for a very small set of functions F [18]. Thus this approach seems to be severely
limited in computing and comparing any meaningful performance metric given by
some function of Xt. Although there exist other stochastic approaches providing a
feasible way to give accurate steady-state value, the fluid method is typically favored
because of its simplicity.

As the second or higher-order behaviors of protocols, such as rate variations, are under
discussion, the stochastic method becomes more attractive. The main reason lies in
that (2) loses too many details originally contained in (1). For example, suppose Ut,
t = 1, 2, . . . is i.i.d. and Xt takes only a discrete value in Ω = {1, 2, . . . , M}. Then, (1)
becomes a homogeneous discrete-time Markov chain with its transition probability
pij =P{Xt+1=j |Xt=i} (i, j ∈ Ω) and the equation (2) becomes G(i) =

∑M
k=1 kpki. If

this equation and
∑M

j=1 pij = 1 hold true for all i ∈ Ω, (2) remains invariant. That is,
we only have 2M equations for M×M unknown variables pij (i, j ∈ Ω). Obviously, for
large M , many different Markov chains will be mapped into the same deterministic
recursion, and we lose all the detailed stochastic information of Xt when we simply
focus on the fluid model represented as (2). In other words, two different “protocols”
may have totally different stochastic behaviors and variability even though they use
the same fluid model and thus have the same first-order behavior. This observation
leads us to believe that we need a stochastic tool to compare two different protocols
in terms of its variability and high order behaviors.

2.2 Related Work

In the literature there have been numerous results on the stability and the first-
order behaviors of congestion control protocols based on fluid models [19–23]. While
all these fluid-based studies provide clear-cut conditions on system parameters for
stability, they do not tell us how to compare two “stable” protocols in terms of more
practically meaningful high-order behaviors such as the degree of rate fluctuations.
On the other hand, most results via stochastic models have focused on the average
values of stochastic quantities [24–26] or have been obtained under some limiting
conditions to make the analysis more tractable [16,17,26–28].

There exist several results that attempt to calculate the stationary distribution of
transmission rates [13–17]. For example, [13] studies AIMD protocols where the evo-
lution of window is modeled as an infinitely divisible fluid, and a steady-state Kol-
mogorov equation for the distribution of the window size is obtained. [14] has extended
the work in [13] to Adaptive Window Protocol (AWP) with a more general increase
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and decrease profile. Stochastic differential equations are used in [15] to model the
window size evolution, and results in [26,16,17] have been obtained via asymptotic
distributions of Markov processes under consideration. These work not only use vari-
ous stochastic methods, but also model the loss process differently. For example, [26]
considered independent segment losses with constant probability, [13] modeled the
congestion events as an independent Poisson process, and [14,15] used a Poisson loss
process whose rate depends on the window size (rate) of the protocol.

While these existing results could be useful in calculating (or approximating) the sta-
tionary distribution of transmission rates under a given protocol, the sheer complexity
involved in computing the stationary rate makes it extremely difficult to compare dif-
ferent protocols under consideration and to obtain meaningful insight into protocol
designs for better performance. Instead, our goal is to develop a framework in which
one can easily compare different protocols characterized by their window growth func-
tions in terms of some powerful stochastic ordering metric, without having to com-
pute (or approximate) the stationary distribution of transmission rates under various
protocols. The only comparison result we can find in the literature based on some
stochastic model is in [14] showing that steady-state window sizes with a larger upper
bound is stochastically larger than with a smaller bound, which is then used for prov-
ing the stochastic stability of their model and obtaining its stationary distribution
solution. Yet, it does not show how to provide any ordering of high-order protocol
performance such as rate variations.

3 Convex ordering for congestion control

In this section we show there exists a convex ordering between two congestion control
protocols. We first consider stationary inter-loss processes, and then discuss non-
stationary loss processes later in Section III-D.

3.1 Model Description

A congestion event (or loss event) is defined to be a chunk of time during which
Reno-style TCPs make one window reduction using fast recovery. Thus, one loss
event includes multiple packet losses and consists of at least one RTT. Let T1, T2, . . .
be a stationary sequence of intervals between two consecutive congestion events, and
τn =

∑n
i=1 Ti (n = 1, 2, . . .) the time instant at which the nth congestion occurs (the

nth congestion epoch). We denote by W (t) the window size at time t and define
Xn = W (τn), the window size at the nth congestion epoch. When congestion occurs
at τn, the window size first decreases by some amount, and then keeps increasing
according to some profile f until the next congestion epoch τn+1. Thus, we can write
Xn+1 = f(Tn, Xn), where the function f = f(t, x) is increasing in t and x and
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represents the profile for Xn.

For a given {Tn}, consider the following recursive equations for Xn, Yn with profiles
f, g respectively.

Xn+1 = f(Tn, Xn), and Yn+1 = g(Tn, Yn) (3)

Our goal is to compare the stochastic properties of Xn and Yn in (3). As Tn is sta-
tionary in n (its distribution does not depend on n), we use a random variable T to
denote a generic inter-loss interval. Similarly, we will use X and Y when Xn and Yn

are stationary (which is indeed the case as shown later). Then, for a given inter-loss
interval random variable T , we consider f and g satisfying the followings:

(C1): The functions f(t, w) and g(t, w) are of the following form (with a little abuse
of notation):

f(t, w)=f(t)+(1−β)w, g(t, w)=g(t)+(1−β)w (4)

where f(t) and g(t) are non-decreasing and continuous, f(0)=g(0)=0, and 0 < β < 1.

(C2): There exists the only one root t0 > 0 for the following:

h(t) :=
f(t)

g(t)
=

E{X}

E{Y }
. (5)

Without loss of generality, we assume h(t) > h(t0) for t < t0, and h(t) < h(t0) for
t > t0.

(C1) says that the window size is first reduced by βw at each congestion epoch
(MD-style), and then increases according to f(t) (or g(t)) as the inter-loss interval
t increases until the next congestion epoch. (C2) puts some condition on the shape
of two increasing profiles f and g of protocols under comparison in relation to the
ratio between their average window sizes or throughput. We note that (5) always has
at least one root. This follows from (i) E{X}/E{Y }= E{f(T )}/E{g(T )} as we will
show later, and (ii) b(t),f(t)E{g(T )}− g(t)E{f(T )}=0 must have at least one root
since E{b(T )} = 0. Since f(t)/g(t) is larger than a certain threshold for 0 < t < t0
and smaller than that threshold for t > t0 and since f and g are both non-decreasing,
intuitively, (C2) implies that f(t) tends to increase faster than g(t) initially but slower
afterwards. In other words, we say that f(t) is more concave than g(t).

In practice, the value of E{X}/E{Y } may be difficult to compute a priori as it’s a
function of f and g. Suppose we choose f and g such that h(t) is monotone (or, without
loss of generality, decreasing), then regardless of E{X}/E{Y }, we see that (C2) is
always satisfied since we already know that (5) has at least one root. In addition, if
we have some information about E{X}/E{Y } such as its range (e.g., from knowing
the distribution of T ), then even for non-monotone h(t), (C2) may be still satisfied.
For example, in Figure 1(b), (C2) is satisfied if E{X}/E{Y } lies in (1,∞).

7



0 2 4 6 8 10
0

0.5

1

1.5

2

t (sec)

h(
t)

=
f(

t)
/g

(t
)

0 200 400 600 800 1000
0

0.5

1

1.5

2

t (sec)

h(
t)

=
f(

t)
/g

(t
)

r
min

(a) monotone h(t) (b) non-monotone h(t)

Fig. 1. (a): Condition (C2) is always satisfied regardless of the value of E{X}/E{Y }. (b):
(C2) is satisfied if we know that E{X}/E{Y }∈(1,∞).

There exists a large set of profiles f, g for which the function h(t) = f(t)/g(t) is
monotone, e.g., the first two examples in the following. In the last example, h(t) is
not monotone, but (C2) may still be satisfied if some knowledge of E{X}/E{Y } is
available. (Here, f ′ means the derivative of f(t) (similarly for others) and a′

is (i =
1, 2, 3) are all positive constants.)

(i) f(t) and g(t) are strictly concave and convex, respectively. In this case, h′ =
(f ′g−fg′)/g2 < 0 because f(0)g′(0)−f ′(0)g(0) = 0 from (C1) and (f ′g−fg′)′ =
f ′′g − fg′′ < 0 from f ′′<0, g′′>0.

(ii) f(t) = a1t
p, g(t) = a2t

q where p 6= q. Obviously, h(t) = (a1/a2)t
p−q is monotone.

(iii) f(t) = a1

(

(t−a2)
3+a3

2

)

, g(t) = a3t
3, where ai’s are chosen such that E{X}/E{Y } >

a1/a3. This can be seen from h′ ≤ 0 when t ≤ 2a2, h′ > 0 when t > 2a2, and
h(0+) > a1/a3, h(a2) = a1/a3, limt→∞ h(t) = a1/a3. (h(t) is similar to the one
in Figure 1(b).)

In general, window growth functions can be divided into three classes according to
their shapes: (a) concave ([8,29]); (b) convex ([3,4,6]); (c) concave-convex ([5,11]).
We can then use condition (C2) to investigate how these shapes of window growth
functions affect the second and higher order behaviors of a protocol and its rate
fluctuation and to compare the stochastic properties of these classes.

To proceed, we impose the following assumption:

(A1): The inter-loss intervals Tn (n = 1, 2, . . .) are independent and identically dis-
tributed (i.i.d.).

An i.i.d process of congestion epochs (not packet losses process) is commonly ob-
served in Internet measurement studies (e.g., [30], [25], [24], [31], and [32]) and thus,
commonly assumed in the stochastic analysis of TCP (e.g., [33] and [25]). For ex-
ample, large-scale Internet measurement studies in [30] show that the loss process is
very close to i.i.d. (using autocorrelation-based Box-Ljung test), and in fact is well
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modeled by a Poisson process. Recent experiment results confirm the finding by [30]
using TFRC over PlanetLab. Also, the i.i.d. inter-loss interval (i.e., loss event) allows
dependency among congestion events over different RTTs, i.e., packet losses. To see
this, suppose that congestion occurs with probability p in each RTT, independently
from other RTTs, then the distribution of the inter-loss interval Tn automatically
becomes P{Tn = k} = (1− p)k−1p (memoryless). Since we allow any arbitrary distri-
bution for Tn, a congestion event in the current RTT may depend on whether there
was a congestion event in the previous RTT.

Remark 1 Precisely, the loss event is function of window sizes of all flows, i.e.,
the inter-congestion intervals Tn are affected by Xn, Yn in reality. However, for a
single flow, the congestion event process in real networks with many flows is observed
to be very close to i.i.d. and the i.i.d. model gives approximately the same result as
the correlated model (e.g., [30], [25], [24], [31], and [32]). Our focus is to provide
guidelines on how to shape the window growth function of each flow through simple
and intuitive theoretical analysis. Hence, we assume Tn, the inter-congestion intervals
from one flow’s point of view are i.i.d. for analysis simplicity while also based on the
support of existing studies [30,25,24,31,32]. Our simulation and experiment results
then verify that the theoretical analysis based on this simplified model does provide
simple and intuitive guidance on the critical role of window growth function, as well
as how to suitably shaping it to improve system performance (e.g., rate variance) in
typical network scenarios.

When Tn’s are i.i.d., the sequence of window sizes at congestion epochs defined in (3)
now becomes a homogeneous Markov chain. Without loss of generality, we can assume
that Xn and Yn are both irreducible and aperiodic. For the positive recurrence, in
view of Pake’s Lemma [34], we have

lim
w→∞

E{X(n+1) | X(n) = w} − w= lim
w→∞

E{f(T )} − βw < 0.

and similarly for Yn. Thus, they are both positive-recurrent, and hence ergodic. Since
an ergodic chain always enters steady-state in which the distribution does not depend
on time, we will use X and Y to denote Xn and Yn, respectively, whenever there is
no ambiguity.

3.2 Convex Ordering for Congestion Control

In this section we show that there exists a convex ordering between two congestion
control protocols. Before presenting our main result, we need the following definition.

Definition 1 Let X and Y be random variables with finite means. Then we say that
X is less than Y in a convex order (written X ≤cx Y ), if E{φ(X)} ≤ E{φ(Y )} for
all convex functions φ for which the expectations exist. 2
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Similarly, we write X ≤icx Y if E{ϕ(X)} ≤ E{ϕ(Y )} for all increasing convex func-
tions ϕ.

In what follows, we prove that the rescaled window size X/E{X} for profile f is
always less than Y/E{Y } with profile g in convex ordering. Note that these rescaled
variables have the same mean, and the choice of ϕ(x) = x2 leads to Var{X/E{X}} ≤
Var{Y/E{Y }}, i.e., CoV (X) ≤ CoV (Y ) (by taking square root in both sides). This
kind of ordering holds true for any other convex function φ, so in general we can say
that the normalized steady-state window size for profile f is less variable than that for
g. In addition, it implies that the system with f is “more predictable” than with g in
the sense that the window size fluctuations (rate fluctuations) are more concentrated
around its mean, thus requiring a smaller buffer to absorb temporal fluctuations.
Our theorem below provides a theoretical support in that, for stationary loss-interval
processes, it would be better from the second and higher order behavior point of
view to increase the window size initially faster and then to slow down later on (i.e.,
more concave), rather than the other way around as typically used in many current
TCP protocols (e.g., [35,6,3,4]). Note that a stationary loss interval process does not
mean that all loss intervals are the same, and it means that their distributions do not
change over time.

We now present our main theorem.

Theorem 1 Consider two different profiles f and g satisfying (C1) and (C2). Then,
under Assumption (A1), we have X/E{X} ≤cx Y/E{Y }. 2

Proof: See Appendix.

Theorem 1 shows that convex ordering can compare the high order behavior of con-
gestion control protocols simply by comparing the shapes of their increasing profiles.

More important, our result also gives guidance for designing a more ‘predictable’
protocol with less fluctuations. Suppose there is an existing protocol with increasing
profile g(t). Then, by shaping it in a more concave way into f(t) such that (C2) is
satisfied, we can obtain a set of protocols whose normalized rate fluctuations are all
smaller than that of g. Among these set of protocols, we can then choose a protocol
satisfying the other required properties such as high throughput, etc. In summary,
our main theorem indicates that: (i) it is possible to design such a protocol by simply
reshaping the increasing profile of the original one; (ii) a concave profile will be an
essential part of a more predictable protocol given that the loss process in the Internet
is either stationary over a short time scale or a concatenation of stationary processes
with different distributions over a long time scale.
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3.3 Protocols with the Same Mean Behavior

In addition to (C1) and (C2), suppose that two protocols satisfy E{f(T )} = E{g(T )},
i.e., they have the same mean throughput. Then, it follows that

E{Xn+1 | Xn = w} = E{f(T )} + (1 − β)w

= E{g(T )} + (1 − β)w = E {Yn+1 | Yn = w} . (6)

for all w, i.e., it says, “For any given window size at the current congestion epoch, the
expected window size at the next congestion epoch is the same for both profiles.” In
other words, two protocols with profiles f and g are indistinguishable from an average
point of view: they have the same fluid recursion as in (2) and thus have the same
fixed point and Lyapunov stability property (i.e., convergence).

Note that there exists a large set of profiles that satisfy (6). For instance, consider
f(t) = c1t

α1 and g(t) = c2t
α2 . Then, for a given exogenous loss process (i.e., given

T ), (C1), (C2) and E{f(T )} = E{g(T )} are satisfied if ci and αi are chosen in such a
way that c1E{T

α1} = c2E{T
α2}. Theorem 1 asserts that we can still define a convex

ordering between X and Y despite E{X} = E{Y }. This confirms the importance of
the stochastic approach toward any second and higher order behaviors of protocols.
It also shows that, although these two protocols share the same fluid model, their
high order stochastic properties can be widely different, as mentioned in Section 2.

3.4 Convex Ordering under Non-stationary Loss: A Closer Look at Single Loss In-
terval

As the loss interval process is more like stationary over a certain time period, we
already know from Theorem 1 that concave-like profiles work very well. When it dra-
matically changes so that its distribution may change, however, Theorem 1 may pro-
vide little information about how to ‘shape’ the profile toward the next unpredictable
target. Further, when the target process is non-stationary, the inter-loss intervals Tn

become also non-stationary, and it is impossible to show any stochastic ordering, in-
variant with respect to time, between two protocols. For this reason, we consider only
a single loss interval where the new target is arbitrary. 3

Specifically, let x1 denote the window size immediately after the current congestion
epoch, and x2 the window size just before the next congestion epoch. Assume that
x1 and x2 (x1 < x2) are arbitrary given (fixed). We do not consider the case of
consecutive reductions in window size (i.e., x1 > x2). Clearly, the amount of time to
hit the new target x2 from x1 depends on our choice of increasing profile f (and of

3 This should be distinguished from the stationary case, where the ‘actual’ value of the
next target is also unknown but its average remains the same.
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course on x1 and x2). Set x = (x1, x2) and let tf be the resulting inter-loss interval
for the profile f = fx. The superscript in fx represents the dependency of f upon
the given x = (x1, x2). As x is fixed (arbitrary) in this section, to make the notation
simple, we will use f instead of fx. Note that f is increasing, and we have f(0) = x1

and f(tf) = x2.

We now consider the window size sampled at any arbitrary random time over [0, tf ]. If
we define by Ut the uniform random variable distributed over [0, t], then the window
size at any arbitrary random time is given by Wf = f(Utf ). Note that different choices
of f give different distributions for f(Utf ). We consider two increasing profiles f and
g whose average throughput over their inter-loss intervals remain the same, i.e.,

E{Wf} = E{f(Utf )} = E{g(Utg)} = E{Wg}, (7)

where E{f(Utf )} =
∫ tf
0 f(s)ds/tf (similarly for E{g(Utg)}). The requirement of (7) is

necessary to avoid trivialities. For instance, for given x1 and x2, if we choose a profile
f with f(0) = x1 and f(t) = x2 for all t > 0 (i.e., it instantaneously jumps to x2

and stays there), it would be “optimal” giving the maximum throughput with the
smallest variation. But, such a choice is meaningless because of its dependency on the
value of x2. Instead, by enforcing constant E{Wf} for different choices of f , we can
find a better shape of profiles toward a fixed, yet randomly chosen x2 satisfying (7) .

We next show that for any given f(t), the distribution of f(Utf ) remains the same if
we rescale f(t) to f(at) for any arbitrary positive constant a.

Lemma 1 For any given increasing function f , we define a collection of profiles
Ωf = {f(at), a > 0}. Then, the distribution of Wf for f ∈ Ωf does not depend on a.
2

Proof: See Appendix.

Without loss of generality, we can assume tf = 1 for any given profile f by suitably
rescaling f(t) if necessary. In this case, P{Wf ≤ y} = f−1(y), i.e., the cumulative
distribution function of Wf is simply the inverse of the ‘rescaled’ increasing profile.
We then obtain the following:

Proposition 1 For any given x1 < x2 and two increasing profiles f and g such that
E{Wf} = E{Wg}, let f̃ = f(a1t) and g̃ = g(a2t) where a1 and a2 are chosen in such
a way that f̃(1) = g̃(1) = x2. If there exists t0 such that f̃(t) ≥ g̃(t) for t < t0 and
f̃(t) ≤ g̃(t) for t>t0, then Wf ≤cx Wg. 2

Proof: See Appendix.

Proposition 1 gives us a tool to compare any two different profiles f and g satisfying
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Fig. 3. The probability density functions of concave-convex, convex, concave profiles. Under
‘fair’ comparison with the same throughput, a concave-convex profile is least variable, as
its probability mass is more concentrated around the mean.

(7) . To get more intuition, consider the following three different sets of profiles:
concave-convex, convex, and concave profiles denoted by fvx, fx and fv, respectively.
As Figure 2 shows, after rescaling, all the profiles start and end at the same points.
Hence, we can assume that the inter-loss interval for (x1, x2) is always set to [0, 1]
after suitably rescaling each profile.

From P{Wf ≤ y} = f̃−1(y), we can easily obtain the probability density function
(pdf) of window sizes by differentiating the inverse of the rescaled profiles in Fig-
ure 2(b). As shown in Figure 3, the concave-convex type profile makes the pdf more
concentrated around the mean than the others. This is expected as the concave-convex
profile spends more time in the middle between x1 and x2 while the pure concave or
convex makes the pdf lopsided.
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4 How to shape an increasing profile under changing environments

Theorem 1 implies that, when a stationary loss process {Tn} is given, it would be
better to increase the window size fast at the beginning and then slow down later on.
As the chain Xn is stationary with x∗ = E{Xn}, it is likely that the new “target”
should be somewhere around the maximum window size at the previous congestion
epoch. Thus, intuitively, to increase fast at first and then slow down around the
probable target x∗ seems to be a good strategy. (It is in fact closer to the “optimal”
in the sense that it is less variable than any others.) Internet measurement studies
(e.g., [30]) show some evidence that this stationary period is more than several minutes
or longer.

In reality, however, the current stationary process may change to another. As the
number of active flows sharing the link or the link status varies in the network, the
available bandwidth (i.e., target) for the flow of interest may change anytime by a
large amount to change its mean and distribution, i.e., Xn becomes non-stationary
over the timescale of the flow’s lifetime. When a large group of flows arrives (departs),
the available bandwidth drops (jumps) from one stationary process to another, stays
at the new process for a relatively short period over which the number of flows remains
about the same, and is “pushed” to another process with different mean later on.
Then, the question is, “how do we shape the increasing profile under this changing
network environments?”

We deal with this changing network environments by considering the following three
typical cases: (i) the available bandwidth drops from a higher level (mean) process to
a lower one; (ii) it jumps from a lower level process to a higher one; (iii) it is stationary
in between. Theorem 1 has already covered case (iii) and shows the importance of
concave-like profile to the predictability of the protocol. Results in Section III-D show
that, for cases (i) and (ii), a concave-convex profile or any other profile that spends
more time in between can be a good candidate. However, the following questions still
remain: first, the role of the convex part is not clear enough, except that it makes the
profile ‘flatter’ in the middle, thus giving smaller variations. Second, we do not know
where the transition from being concave to convex (or the inflection point) should
take place. In what follows, we will show that the convex part is responsible for fast
responsiveness to abrupt changes in the available bandwidth, and that the inflection
point should occur around the most likely ‘target’ – the maximum window size in the
previous congestion epoch.

For case (i), a fixed concave profile always aims at the same target x∗ regardless of the
actual available bandwidth at present. In Figure 4(a), when the average number of
flows competing over the bottleneck so abruptly increaes, many flows arrive at t0 and
subsequently the available bandwidth drops from somewhere around LH to a much
smaller value LL, profile 1 is still in its way aggressively increasing to x∗, resulting
in consecutive losses and reduction in throughput. To solve this problem, a memory
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Fig. 4. Comparison of concave profiles with or without memory and concave-convex with
memory. (a) and (b) shows the case when the available bandwidth drops and jumps up,
respectively. In (b), profile 1 and 2 overlap between t0 and t2.

of the previous target can be incorporated into the concave profile. This makes it
possible for a flow with a concave profile to discover such a change in the available
bandwidth and respond very quickly by adjusting its target (changing the curvature
of its concave profile). The improvement in throughput by introducing the memory
can be seen from the difference between profiles 1 and 2 in Figure 4(a). Note that
profile 2 can slow down its increasing rate (still being concave) after its first loss at
t1, leading to reduced packet losses and higher throughput.

On the other hand, as many flows depart to reduce the average number of competing
flows and the available bandwidth increases dramatically at t0 (case (ii)), Figure 4(b)
shows the difference in the window size evolution of a concave profile with and without
memory after their first loss at t2. Note that, at this time, unlike in Figure 4(a),
consecutive losses do not happen and hence, there will not be much difference in
throughput. In fact, as we show in Lemma 1, if profile 2 after t2 is just a time-
compressed version of profile 1, they possess the same long-term mean throughput
and variance. However, after t2, profile 2 can grab more bandwidth than profile 1 in a
shorter time as the figure shows, and thus it is better in terms of responsiveness and
can be used by short-lived flows to finish their transmission earlier. Similarly, profile
2 can be further improved as it still loses its chance to grab more bandwidth in time
when the change happens, i.e., profile 2 (and also profile 1) spends too much time in
between t0 and t2 to recognize the sudden increase in the available bandwidth. This
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is done by introducing a fast increasing curve (a convex-like curve) after the flow has
slowed down around the previous target for a while (see profile 3), which shows the
convex part, first proposed in Section III-D to provide smaller variations combined
with the concave part, is indeed a very good candidate for applications requiring fast
responsiveness.

5 Simulation

In this section, we verify our theoretical results via NS-2 simulation. Packet losses are
generated by using two methods: (i) some pre-defined loss models, and (ii) various
cross traffic. The first method enables us to precisely control properties of the loss
process and the second method allows us to test the protocols under more realistic
Internet-like scenarios. In this section we consider both stationary and non-stationary
loss processes.

5.1 Protocols to be Simulated

In order to numerically verify our analytic results, we consider several pseudo-protocols.
Within a loss interval, a pseudo-protocol sets its congestion window to f(t)+(1−β)w,
where t is the elapsed time since the last congestion epoch, w is the window size just
before the last congestion epoch, and β is a decrease factor. We fix β to various values,
but in this paper, we report the results from β = 0.3. The other values do not change
our conclusion. We choose the following five functions to represent the typical growth
functions of TCP variants : 1) Root function: f(t) = 300t0.5, 2) Concave-Convex
function: f(t) = 0.77((t − 8.87)3 + 8.873), 3) Linear function: f(t) = 100t, 4) Power
function: f(t) = 10t2, and 5) Exponential function: f(t) = 8t2e0.02t. The coefficients
of these functions are chosen such that they achieve similar average window sizes
around 1500–1900 packets. We chose these average window sizes because it is simpler
to find coefficients giving similar window sizes for all these functions.

5.2 Case 1: Packet Loss Generated by Loss Models

We first generate packet losses according to a pre-defined loss model in order to
measure the impact of different loss distributions on the window size fluctuations.
Existing Internet measurement studies show that in the timescale of a few tens of
minutes, most of the CoVs of inter-loss intervals are close to 1 (i.e., Poisson) [30,32]
while some could be as high as 2.5 [32]. So we consider the CoV of inter-loss intervals
from 1 to 2. We tried both Coxian and Lognormal distributions of loss epochs. Both
results show similar results, so we report only Lognormal results.
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Fig. 6. The CoVs of window sizes of the five pseudo-protocols when competing with two
types of background traffic. This simulation result closely follows our analytic result.

Figure 5 confirms that the five protocols have approximately the same ordering as
predicted by our analytical result: Root ≤cx Linear ≤cx Power ≤cx Exponential, and
Root ≤cx Concave-Convex ≤cx Exponential. Also the ordering among the protocols
is not changed even with more variations of inter-loss intervals. This results confirm
our analytical results.

5.3 Case 2: Packet Losses Generated by Background Traffic

We now consider a packet loss process induced by cross traffic. We simulate a dumbbell
network, where the bandwidth and one-way delay of the bottleneck link are set to
250Mbps and 50ms, respectively. The bottleneck router implements a DropTail queue
discipline and the router buffer size is set to the bandwidth-delay product. To generate
different background traffic patterns, we consider two types of background traffic
with a different mix of web traffic, medium-size and long-lived TCP traffic: 1) five
long-lived forward TCP flows, two forward web sessions, and some backward traffic;
2) 300 forward web sessions, and some backward traffic. In both cases, the total
amount of forward background traffic is chosen to consume about 20% of the total
link bandwidth.
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We measure the CoV of congestion windows of all five pseudo protocols as shown in
Figure 6. We see that all the simulation results are consistent with our theoretical
result. One interesting finding is that the CoV of Power is almost comparable to that
of Exponential. Otherwise it should have a smaller CoV than Exponential. These two
functions are very close to each other until Exponential exceeds Power. So the packet
losses induced by cross traffic leave these two functions operate in an area where the
convexity of their growth functions are similar.

5.4 Case 3: A Single Loss Interval

In the previous two subsections, we examined Theorem 1 that assumes stationary
losses. We now consider Proposition 1 that considers non-stationary losses. Specifi-
cally, we consider a single loss interval where the increment from the initial window
size x1 to the target window size x2 (i.e. x2 − x1) is arbitrary.

We still simulate the five types of growth functions described in Section 5-A, but we
slightly change their coefficients so that they have approximately the same average
window size for a given pair of x1 and x2. Figure 7 shows the CoV of window size
of each of the five growth functions for two set of simulation runs with two different
pairs of x1 and x2. Figure 7 confirms that the five growth functions have the same
ordering as predicted by Proposition 1: Concave-Convex has the least CoV among all
functions, and in particular, Concave-Convex ≤cx Root.

6 Experimental Evaluation

In this section, we verify the relationship between the window growth function and
the second-order behavior of existing multiplicative-decrease high-speed TCP proto-
cols in realistic scenarios using a Linux/FreeBsd based dummynet testbed [36]. All
protocols are implemented in Linux kernel 2.6.13. We claim that the profiles of their
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window growth functions strongly influence their second-order behaviors and CoVs.
We also confirm that protocols with smaller CoVs achieve higher link utilization in
the network.

6.1 Experimental Setup

We use a dumbbell topology of dummynet routers where each end-point consists of a
set of Dell Linux servers dedicated to high-speed TCP variant flows and background
traffic. Background traffic is generated by using a modification of a web-traffic gen-
erator, called Surge [37] and Iperf. The RTT of each background flow is set based on
an exponential distribution [38]. The maximum bandwidth of the bottleneck router
is set to 400 Mbps. The same amount of background traffic is pushed into forward
and backward directions of the dumbbell. Our dummnet router emulates a drop-tail
router at the bottleneck.

We test the following MD-style protocols: HSTCP [3], HTCP [6] 4 , STCP [4], CU-
BIC [11] and BIC [5]. All are implemented in Linux 2.6.13. Other protocols are not
tested because their implementations in the same platform are not available and using
the same OS platform is important to reduce OS-dependent issues. These protocols
employ different window growth functions with varying convexity. HSTCP (Linear),
HTCP (Power), and STCP (Exponential) use convex functions and CUBIC and BIC
use concave-convex functions. Depending on the operating range of windows, proto-
cols have different degrees of convexity. CUBIC is much more concave than BIC in
our operating range and its behavior is close to a concave protocol. The experimental
parameters we control are RTT (40ms to 320ms), buffer sizes (1MB to 8MB), and
the degree of congestion in the bottleneck link. The running time of each experiment
is from 10 to 20 minutes. We repeat each run at least five times and report only
average data from these runs. For each run, we reboot the entire network testbed to
remove any system-related dependencies and artifacts. Totally, we have accumulated
more than 1500 experimental runs which constitute more than 500 hours worth of
experimental data.

6.2 Impact of RTTs

In this experiment, we fix the number of high-speed flows to four and the buffer size
to 1 Mbytes. In each experiment, all the high-speed flows have the same RTT and we
vary RTT from 40ms to 320ms for different experiments. Figure 8 shows the CoV of
transmission rates of various protocols measured at the bottleneck link for different
RTT settings. Clearly, as RTT increases, the transmission rates of protocols become
more variable. With 320ms RTT, protocols show the largest variance. This is because

4 We applied the latest bug patch from the HTCP author.
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Fig. 8. Impact of RTT on CoV. The buffer size is fixed to 1MB and the number of high-speed
flows is four. The CoV of window sizes increases as RTT increases, and under 320ms where
they show the worst case performance, we can clearly see that concave-convex protocols
have lower variation.

as RTT increases, the bandwidth-delay product and congestion window sizes increase.
With larger window sizes and small router buffers (1MB), we have more variations in
transmission rates. With 320ms RTT, we observe a clear separation between convex
protocols and concave-convex protocols. The convex ordering among the protocols is
still observed except for HTCP. We can explain it as follows. HTCP adapts its window
size by using its quadratic growth function as well as its estimation of buffer size. The
quadratic growth function dominates the window size for large buffers. However, when
the buffer size is small, we find that HTCP increases and drops its window size very
steeply even more than STCP which employs an exponential growth function. We
also find that CUBIC performs slightly worse than BIC. Our analysis in Section III-
D can be applied to explain this behavior where concave-convex protocols are shown
to have smaller variance than pure concave protocols under abrupt target changes.
Since CUBIC uses a more concave growth function than BIC (i.e., it stays longer at
the flat region than BIC), this argument makes sense.

6.3 Impact of Buffer Sizes

In this experimental scenario, we fix the number of high-speed flows to four and their
RTTs to 320ms. Figure 9 (a) shows the average CoV of per-flow rates as we vary
the router buffer size. As the router buffer size increases, the CoV for all protocols
decreases because the buffer can provide ‘cushion’ for high rate variation. BIC and
CUBIC show the least difference while HTCP gets improved the most. As we observed
in the RTT experiment, the performance of HTCP is strongly tied to the router buffer
size. When the buffer size increases, we observe that the window growth tends to follow
a quadratic function. With large buffers (from 4MB to 8MB), the convex ordering
among protocols exactly follows our analytical result. Also, we find clear separation
between convex protocols and concave-convex protocols, independently of buffer sizes.
From Figure 9 (b), we can also see that high rate-variation (higher CoV) degrades the
network utilization. The concave-convex protocols which show smaller CoVs achieve
higher link utilization. Considering that the regular TCP flows comprise stochastically
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Fig. 9. Impact of buffer size on (a) CoV and (b) link utilization, respectively. As the buffer
size increases, the protocols become ‘less variable’ and obtain higher link utilization. A clear
separation between convex protocols and concave-convex protocols is visible, independently
of buffer sizes.

similar background traffic, the difference in the link utilization implies the difference
in the drop probability, i.e., the high-speed flows with smaller CoV induces lower drop
probability in the network and hence higher link utilization.

6.4 Impact of increased variance in cross-traffic

We increase the CoV of available bandwidth by introducing cross traffic with higher
variance in rates while keeping the amount of bandwidth used by the traffic the same
as the earlier RTT experiment. The CDF of the cross-traffic is shown in Figure 10
(CoV=0.15). In this experiment, we run the same experiment as in Figure 8 for com-
parison. Figure 11 compares the CoV of transmission rates of the two experiments
with 320 ms RTT. With the moderately varying traffic (CoV=0.05), protocols main-
tains their relative convex-ordering except for HTCP. As we explained in RTT and
Buffer size experiments, the buffer size (1MB) is too small for HTCP to employ its
quadratic growth function.

With the extremely varying traffic (CoV=0.15), we find that all protocols have larger
CoVs. However STCP shows impressive improvement in the stability, while the other
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Fig. 10. Cumulative rate distributions of two types of cross traffic: one with extremely vary-
ing and the other moderately varying. They consume about 70Mbps when they run with-
out any other flows, representing congestion-free network conditions. The CoVs of available
bandwidth are 0.15 and 0.05, respectively.

protocols still maintain their relative ordering. The performance deterioration in
HSTCP and CUBIC is due to their slow responses to the varying traffic (HSTCP is
slightly convex and CUBIC is more concave). As they slowly react to widely-varying
levels of available bandwidth, they tend to make wrong decisions in adjusting their
rates (when they have to increase, they reduce, and when they have to reduce, they
increase). However, STCP and BIC still maintain adaptiveness to the changing rates
of cross traffic. HTCP, on the other hand, does not show good performance even
though its growth function has high convexity, which is supposed to lead to quick
responsiveness to the noisy environment and better throughput in consequence. This
implies that HTCP’s rate fluctuations stem not only from the convexity of its growth
function but also from other sources such as its decrease policies: it reduces its window
size by a factor of the minimum RTT over the maximum RTT. When these measures
of RTT are not accurate, it tends to make a high rate reduction followed by steep
increase in the window size – thus high variance.

6.5 Impact of Congestion

So far we have tested under the environments where high-speed flows dominate the
bottleneck traffic. To see how the ordering would change under more congested envi-
ronments where regular TCP (SACK) flows dominate, we add a dozen of long-lived
TCP flows that start at random time with random RTTs drawn from an exponential
distribution. We run the same experiment as in Figure 8 except that this time we
have only two flows of high-speed protocols and the router buffer size is increased to
2MB. Figure 12 shows the average CoV of transmission rates and link utilization. In
this experiment, we also observe that the same ordering exists between convex proto-
cols and concave-convex protocols (convex protocols having larger rate variations and
lower utilization than concave-convex protocols). We also find that the performance of
STCP has worsen significantly under 320ms RTT. As STCP is being very aggressive
(exponential), even under high congestion, the STCP flow tends to have relatively
large window sizes, thus leading to higher variations and the degraded performance.
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Fig. 11. The effect of variance in cross-traffic. The same experiment setup as Figure 8 except
with larger variance in the available bandwidth. We find that as the variance of available
bandwidth gets larger, the CoV of transmission rates also increase. With the moderately
varying traffic (CoV=0.05), the convex-ordering among protocols are maintained. However,
with the extremely varying traffic (CoV=0.15), CUBIC and HSTCP show larger CoVs than
STCP, otherwise they show smaller CoVs in their ordering. The performance deterioration
in HSTCP and CUBIC is due to their slow responses to the widely-varying traffic. (Note
that STCP is very adaptive to the changing rates of cross traffic.)

7 Conclusion

In this paper, we have examined the high-order behaviors of MD-style protocols via
the shape of window growth functions using a powerful stochastic tool called convex
ordering. It shows that a protocol employing a window growth function that starts off
with a concave growth function and then later switches to a convex growth function
around the maximum window size of the last congestion epoch, tends to give the
smallest rate variation. BIC and CUBIC are the congestion control protocols that
have this property. Our work is significant because it provides a way to compare
stochastically any high-order properties of MD-style protocols. The comparison is
general enough so that it can be applied to any MD-protocols that might have the
same or different first-order behaviors (e.g., different average throughput). In this
paper, our focus is on the per-flow dynamics as it directly affects each user’s perceived
performance and possibly the degree of stability, but a more in-depth study would
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Fig. 12. We add more TCP traffic so that the dominating traffic is not from high-speed
flows. Link utilization improves as cross traffic fills in any “gap” left by high-speed flow
fluctuations. Even in this environment, we find that protocols with convex profiles have
more rate variation and significantly lower link utilization.

involve the dynamics of aggregate flows and their impact on the general health of the
networks. Another possible extension would be to consider other types of congestion
controls such as non-MD style or delay-based congestion controls. Further, AQM
schemes such as random early detection can affect the characteristics of congestion
epoches. Therefore, modification on analysis and algorithm design may be required.
We leave these studies as future work.

Appendix

Proof of Theorem 1:

Since both Xn and Yn are ergodic, we know that in steady-state, their distributions
do not change in time. Note that, from (3), we have

E{Xn+1}=E{E{Xn+1 |Xn}}=E{f(T )}+(1−β)E{Xn},

which yields E{Xn}=E{f(T )}/β since E{Xn+1}=E{Xn} from the ergodicity of Xn.
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Similarly, E{Yn}=E{g(T )}/β.

Define

F (t, w)=F (t)+(1−β)w, G(t, w)=G(t)+(1−β)w (8)

where

F (t) = f(t)E{g(T )}, G(t) = g(t)E{f(T )}. (9)

Then F (t, w), G(t, w) also satisfy (C1). Consider the following recursive algorithms
similar to (3) for X ′

n and Y ′
n with profile F and G defined in (8).

X ′
n+1 = F (Tn, X ′

n), and Y ′
n+1 = G(Tn, Y ′

n). (10)

Then we get rescaled version of Xn, Yn which satisfy

X ′
n = XnE{g(T )}, and Y ′

n = YnE{f(T )}. (11)

Observe that for any positive number a, X ≤cx Y is equivalent to aX ≤cx aY .
This follows by noting that, if f(x) is concave, then f(ax) is also concave for any
a > 0. Let a := βE{X}E{Y }. Then, instead of showing X/E{X} ≤cx Y/E{Y }, we

can equivalently show βE{X}E{Y }
(

X/E{X}
)

≤cx βE{X}E{Y }
(

Y/E{Y }
)

, i.e.,

X ′ ≤cx Y ′ equivalently.

Similarly as for Xn and Yn, note that X ′
n and Y ′

n defined in (10) are both ergodic. We
will use X ′ and Y ′ to denote X ′

n and Y ′
n, respectively, whenever there is no ambiguity.

In order to show X ′ ≤cx Y ′, it suffices to show that E{X ′} = E{Y ′} and X ′ ≤icx

Y ′ (see [39]). Since X ′
n, Y ′

n are both ergodic, in steady-state, their distributions do
not change in time. Hence, similarly as before, we have E{X ′

n} = E{F (T )}/β and
E{Y ′

n}=E{G(T )}/β. Thus, E{X ′
n} = E{Y ′

n} for all n since E{F (T )} = E{G(T )} =
E{f(T )}E{g(T )} from (9).

The following result will be used in our proof.

Theorem 5.2.11. in [39]: Two homogeneous Markov chains {Xn} and {Yn} with the
transition kernels Qx and Qy satisfy Xn ≤F Yn, if X0 ≤F Y0 and if a transition kernel
Q with ≤F−monotone transition operator exists such that

Qx(i, .) ≤F Q(i, .) ≤F Qy(i, .), for all i ∈ Ω, (12)

where Ω is a general partially-ordered state-space and the transition kernel Qx is
defined by Qx(i, A) = P{Xn+1 ∈ A | Xn = i} for any A ∈ F . 2

Denote by π(h|w), the integrated survival function,
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πx(h|w)= E

{

[X ′
n+1 − h]+ | X ′

n = w
}

= ET

{

[F (T ) + (1 − β)w − h]+
}

, (13)

where [x]+ = max{x, 0}, ET means that the expectation is taken over the distribution
of T . Similarly we define πy(h|w) for Y ′

n. Then, we have from [39],

(1) Monotonicity for transition kernel Q with ≤icx holds if for all h, the integrated
survival function π(h|w) is increasing and convex in w.

(2) Qx ≤icx Qy holds if for all w, h, corresponding integrated survival functions
satisfy πx(h|w) ≤ πy(h|w).

We set Q(i, ·) = Qy(i, ·) in (12). Then, in light of the above, it is sufficient to prove
that

πy(h|w) is increasing and convex in w, and (14)

πx(h|w) ≤ πy(h|w), for all h, w. (15)

First, we will show (14). Observe that

πy(h|w) = ET

{

[G(T ) + (1 − β)w − h]+
}

.

Since (1−β)w is increasing in w and [x]+ is also an increasing function of x, πy(h|w) is
increasing in w. For the convexity in w, using the linearity of (1−β)w and [x+y]+ ≤
[x]+ + [y]+ for all x, y ∈ R, we have

[

G(T ) + (1−β)
w1 + w2

2
− h

]+

≤

[

G(T )+(1−β)w1−h

2

]+

+

[

G(T )+(1−β)w2−h

2

]+

.

Thus, by taking expectation and using [ax]+ = a[x]+ for any a > 0, we get

πy

(

h

∣

∣

∣

∣

w1 + w2

2

)

≤
1

2
πy(h|w1) +

1

2
πy(h|w2),

i.e., πy(h|w) is a convex function of w.

Next, we will prove (15). From (C2), there exists t0 > 0 such that F (t) ≥ G(t) for
all t ≤ t0 and F (t) ≤ G(t) for all t ≥ t0 where t0 is the intersection of F (t) and G(t).
Define r0 = F (t0) + (1− β)w = G(t0) + (1− β)w. We will consider the following two
cases: (i) h ≥ r0, and (ii) h < r0.

Case (i): First, when h ≥ r0, since F is increasing in t,

F (t) + (1−β)w − h < F (t0) + (1−β)w − h = r0 − h ≤ 0
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for all t < t0. Hence,
[F (t) + (1 − β)w − h]+ 1{t<t0} = 0, (16)

and similarly,
[G(t) + (1 − β)w − h]+ 1{t<t0} = 0. (17)

For all t ≥ t0, from the above analysis, we have

F (t) + (1 − β)w − h ≤ G(t) + (1 − β)w − h.

Since [x]+ is increasing in x, we get

[F (t)+(1−β)w−h]+ 1{t≥t0}

≤ [G(t)+(1−β)w−h]+ 1{t≥t0}. (18)

Combining (16)–(18) gives

[F (t) + (1 − β)w − h]+ ≤ [G(t) + (1 − β)w − h]+ ,

when h ≥ r0. By replacing t with T and taking expectation, we have

πx(h|w) ≤ πy(h|w), when h ≥ r0.

Case (ii): We consider the case of h < r0. Define x− = max {−x, 0}. Then, from
[x]+ = x + [x]−, we get

πx(h|w)= ET

{

[F (T ) + (1 − β)w − h]+
}

= ET {F (T ) + (1 − β)w − h}

+ET

{

[F (T ) + (1 − β)w − h]−
}

,

and similarly for πy(h|w) with F replaced by G.

Because E{F (T )} = E{G(T )} = E{f(T )}E{g(T )}, we have

ET {F (T )+(1−β)w−h} = ET {G(T )+(1−β)w−h} .

Hence, we only need to show

ET

{

[F (T )+(1−β)w−h]−
}

≤ ET

{

[G(T )+(1−β)w−h]−
}

(19)

when h < r0.

Note that if h < (1−β)w or t > t0, both F (t)+ (1−β)w−h and G(t)+ (1−β)w−h
are no less than 0, thus

[

F (t) + (1 − β)w − h
]−

1{h<(1−β)w}∪{t>t0} = 0, (20)
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and similarly,
[

G(t) + (1 − β)w − h
]−

1{h<(1−β)w}∪{t>t0} = 0. (21)

From the definition of t0, when h ≥ (1 − β)w and t < t0,

F (t) + (1 − β)w − h ≥ G(t) + (1 − β)w − h.

Since [x]− is decreasing in x, we have

[

F (t) + (1 − β)w − h
]−

1{h≥(1−β)w}∩{t≤t0}

≤
[

G(t) + (1 − β)w − h
]−

1{h≥(1−β)w}∩{t≤t0}.
(22)

From (20), (21), and (22), we have

[F (t) + (1 − β)w − h]− ≤ [G(t) + (1 − β)w − h]−

when h < r0. By substituting T for t and taking expectation, (19) follows. Therefore,
for all h, w, we have πx(h|w) ≤ πy(h|w). This completes the proof of Theorem 1.

Proof of Lemma 1:

Consider an increasing profile f(t) and let g(t) = f(at) for some arbitrary positive
constant a. For any y ∈ [x1, x2], note that g−1(y) = f−1(y)/a and tg = tf/a. Thus,

P

{

f(Utf ) ≤ y
}

= P

{

Utf ≤ f−1(y)
}

=
f−1(y)

tf
=

g−1(y)

tg
= P

{

g(Utg) ≤ y
}

,

and the result follows.

Proof of Proposition 1:

It is a direct application of the following.

Definition 1.5.16 in [39]: Let X and Y be random variables with distribution functions
FX and FY . Then X is said to be less dangerous than Y (written X ≤D Y ), if there
is some t0 ∈ R such that FX(t) ≤ FY (t) for all t < t0 and FX(t) ≥ FY (t) for all t ≥ t0.

Since the distribution function of Wf is the inverse function of f̃ , we have Wf ≤D Wg,
which implies Wf ≤icx Wg [39]. Hence, the result follows from E{Wf} = E{Wg}.
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