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Abstract—Graph sampling techniques via random walk crawl-

ing have been popular for analyzing statistical characteristics of

large online social networks due to simple implementation and

provable guarantees on unbiased estimates. Despite the growing

popularity, the ‘cost’ of sampling and its true impact on the

accuracy of estimates still have not been carefully studied. In

addition, the random walk-based methods inherently suffer from

the sluggish nature of random walks and the ‘slow-mixing’

structure of social graphs, thereby leading to high correlation

in the samples obtained. With these in mind, in this paper, we

develop a mathematical framework such that the cost of sampling

is properly taken into account, which in turn re-defines a widely

used asymptotic variance into a cost-based asymptotic variance.

Our new metric enables us to compare a class of sampling policies

under the same cost constraint, integrating “random skipping”

(bypassing nodes without sampling) into the random walk-based

sampling. We obtain an optimal policy striking the right balance

between sampling quality (less correlation) and sampling quantity

(higher cost per sample), which greatly improves over the

usual skip-free crawling-based samplers. We further extend our

framework, enabling one to design more sophisticated sampling

strategies with an array of control knobs, which all produce

unbiased estimates under the same cost constraint.

I. INTRODUCTION

Recently, online social networks (OSNs) such as Facebook,

Twitter, and Digg, have triggered a tremendous amount of

attention in various disciplines because of their extensive

applications and massive useful data. A large number of

research studies have been conducted into this area, aim-

ing at exploring the underlying social structure and network

characteristics or improving on information retrieval tasks of

social data. However, the sheer size of such complex networks

often refrains researchers and developers from obtaining the

complete database to thoroughly study their properties [1],

forcing them to resort to graph sampling techniques in order

to obtain “sampled data” for the purpose of estimating the

characteristics of the networks in a compact manner [2], [3].

On the other hand, most of today’s OSNs usually provide

restrictive, local-neighborhood-only access interfaces, albeit

public, to researchers and developers [4], [5]. Even worse,

the size of such a network is changing dynamically and is

unknown to the public. Thus it is often infeasible to perform

an ideal user ID-based uniform sampling or its variants,

sampling users uniformly at random from the network, which

requires prior knowledge about the username configuration of
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the whole system [4]. Under these circumstances, “crawling”

the network has become the most realistic solution to collect

samples, which only requires exploring the network’s neigh-

borhood structure (e.g., [6], [4], [7], [8], [9] and references

therein). In particular, random walk-based crawling methods

have been more widely used than any other crawling ones,

as they can be easily implemented in a distributed manner,

while ensuring unbiased samples of graph properties with

proper post-processing if necessary. The basic idea here is to

launch a random walker (or multiple parallel walkers) moving

from a node to one of its direct neighbors to obtain a set

of samples. Metropolis-Hastings random walk (MHRW) and

simple random walk (SRW) with reweighting are the most

popular of this kind [10], [11].

A. Motivation

Although the graph sampling techniques greatly reduce the

workload of data analysis tasks to uncover network charac-

teristics, we still need to take into account cost or resource

consumption associated with the ‘sampling’ operation, which

constrains the total sample size and consequently the accuracy

of the estimates. The cost/resource restrictions can be in many

forms. One prime example for the cost is the time and/or

memory consumption associated with public API requests

or HTML screen-scraping for crawling [6]. When resorting

to public API requests, API rate limiting would also be an

important consideration [5], [12].∗ In addition, retrieving and

processing the information for each sample usually requires

a different amount of resources determined by factors such

as the sampling technique itself, crawler’s location and target

quantity to estimate. Other examples include the budgetary

cost in purchasing a dataset of users, and the number of servers

used as web-crawlers, to name a few.

Consider a typical scenario of crawling an OSN via Web

scraping. In order to transit a user by looking into his/her

friend list (or move to one of its neighbors), one needs to

download a Web page whose URL address is, for exam-

ple, “http://www.facebook.com/user-id/friends” to get all the

friends of the current ‘user-id’, regardless of whether any

sampling operation for that user is performed. However, if

we are interested in more than just a list of friends, e.g., the

user’s education background, affiliation, social activities, etc.,

we also need to download additional Web pages, e.g., the

Web page of “http://www.facebook.com/user-id/about”. This

is usually the case in sampling the current user, i.e., retrieving

the user’s information, and then moving to the next user to

∗For instance, Twitter allows only 15 API requests to retrieve IDs of a
user’s followers every 15 minutes [13].



continue crawling. Thus, sampling a user (e.g., downloading

both ‘friends’ and ‘about’ pages) clearly costs more than

simple traversal (e.g., downloading the ‘friends’ page only),

and the cost of sampling can also be different depending on

the kind of information extracted from the user’s Web pages

(and even from his/her friends’ Web pages).

1

2

3

4

5

6

7

Policy I: {Seth, Mike, John, Peter, Bob, Alice…}

Policy II: {Seth, Mike, John, Peter, Bob, Alice, 

Lily, David…}
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Fig. 1. Illustrating two different sampling policies when crawling a social
graph.

Figure 1 shows an illustrative example on how such a cost

difference could affect the sampling performance. Here, a

crawler (or random walker) collects a sequence of samples

along a path whose direction is depicted by red arrows, yet

under two different sampling policies – Policies I and II. For

illustration purposes, we only consider time as the sole factor

for the ‘cost’. The crawler at a user may opt out the sampling

operation; instead, it directly moves to one of its neighbors

without retrieving any information at that user. We assume

that such a transition-only operation just costs 1 unit of time as

there is no information retrieval required. In contrast, sampling

a user and then moving to one of its neighbors costs more than

1 unit of time. The exact cost for both sampling and moving

appears inside the parenthesis right next to the name of each

user in Figure 1.

Policy I here means that the crawler always takes a sample

at each and every visited user, while Policy II refers to a

case where the crawler can proceed to the next user without

sampling (transition only) from time to time. As can be seen

from Figure 1, Policy I collects 6 samples from Seth, Mike,

John, Peter, Bob and Alice, with the total cost budget of 15

units of time. In contrast, Policy II leads to a collection of

only 4 samples from Seth, John, Bob and Lily under the

same total budget, since their corresponding costs are 3, 3, 2

and 3 units of time respectively, along with four intermediate

‘transition-only’ operations wasting 4 units of time. Observe

that Policy II ends up with fewer samples than Policy I, but

these four samples are less correlated than those six in Policy

I. In other words, Policies I and II exhibit a tradeoff between

‘superior’ yet fewer samples and ‘inferior’ yet more samples,

or, more generally, a tradeoff between sampling “quality” and

sampling “quantity”, which should be carefully dealt with

when resources are concerned.

Currently, almost all the existing sampling algorithms [4],

[14], [15], [8], however, assume that only some constant cost

is deducted for each sample. This kind of model apparently

does not fit all the situations of sampling problems. Under a

fixed cost constraint, although more sophisticated algorithms

usually result in a set of “superior” samples, the number of

total samples obtained could be less. It is thus not guaranteed

that these algorithms can serve as better sampling strategies. In

addition, most previous studies [4], [14], [15], [16], [17], [9]

aimed at comparing different algorithms assuming the same

number of samples acquired (or their asymptotic performance

in the limit) become inapplicable to the cases when cost

constraints come into play. This observation motivates us to

develop a general framework from which one can design

more effective sampling strategies, judiciously exploiting the

tradeoff between sample quality and sample quantity so as to

improve the sampling performance under a cost constraint.

B. Related Work

There have been few studies that attempt to take into

account the sampling cost when designing graph sampling

algorithms. For example, the authors in [18] have proposed an

algorithm that combines independent uniform node sampling

into random walk-based crawling, in order to improve the rate

of convergence to the stationary distribution. They assumed

unit cost for crawling and ran a sequence of simulations with

different restart cost settings, but this practical concern about

cost is considered only via numerical results without any

theoretical support. A hybrid sampling method in [14] incorpo-

rates random jump into crawling for the purpose of reducing

the asymptotic variance of any given estimator. Differently

from [18], the cost of a failed random jump is to repeat the

previously reported sample, but this setting does not extend

to any more general case. Among other current literature, [4],

[15], [16], [17], [9], [8] assume that only a unit cost is deducted

for each sample. Some other works targeting at comparing the

performance of different graph sampling algorithms, although

not mentioning the terminology of “cost”, assume that the walk

length (also called sample size or iterations) is fixed for a fair

comparison [19], [20], [21], [22], [23], [24]. This assumption

basically admits the existence of cost restrictions to collect

desired number of samples. However, they oversimplified the

problem and assumed that collecting the same number of

samples consumes the same amount of resources over different

sampling strategies under consideration.

C. Our Contributions

We first demonstrate that the so-called asymptotic variance,

widely used to evaluate and rank the performance of samplers

in the MCMC and graph sampling literature, is deficient when

the cost of sampling is taken into account. As an alternative

and corrective metric, we rigorously define a “cost-based”

asymptotic variance on which different sampling strategies can

be fairly compared under the same cost constraint. With this

metric in hand, we integrate “random skipping” (intentionally

bypassing nodes without sampling), having the benefit of less

correlations in the samples obtained yet with higher costs per

sample, into the off-the-shelf random walk-based sampling,

and then find an optimal policy striking the right balance

between sample quality and quantity. Our mathematical frame-

work is general enough, thus being applicable to any random

walk methods even requiring a reweighting procedure for



unbiased estimation. We extend this framework to further

challenge the cost limits by allowing a sampling decision

tailored to each location of the crawler, which in turn enables

one to design a wide collection of sophisticated, location-

dependent strategies, all producing unbiased estimates. The

simulation results based on several graph datasets justify our

theoretical findings, and show that by judiciously taking ad-

vantage of random skipping, we can reap a significant amount

of efficiency improvements under stringent cost constraints.

To the best of our knowledge, this is the first work to develop

a general, theoretical framework, enabling one to compare

different graph sampling strategies under the same sampling

budget and also providing diverse design choices for a new

sampling strategy.

II. PRELIMINARIES

In this section, we first provide a theoretical background

for random walk-based graph sampling to unbiasedly estimate

the statistics of a graph via random walk crawling. We then

present two representative sampling methods of its kind in the

literature.

A. Theoretical Background

We define an undirected graph G = (N , E) to model the

structure of an OSN, where N = {1, 2, . . . , n} is the set

of nodes (users) and E is the set of edges (users’ social

relationships). For node i, let N(i) = {j∈N : ∃(i, j)∈E} be

the set of its neighbors, and d(i) = |N(i)| its degree. The goal

of unbiased graph sampling here is to unbiasedly estimate the

statistics of the graph G, without obtaining complete graph

data. To be precise, for any given function f : N → R,

we are interested in estimating Eu(f) ,
∑

i∈N f(i)/n,

where u , [u(1), u(2), · · · , u(n)] = [1/n, 1/n, · · · , 1/n] is

a uniform distribution over N . To this end, there have been

several random walk-based sampling methods proposed in the

literature, which are almost all described by the theory of

Markov chains [25], [26].

Consider a discrete-time Markov chain (or a discrete-time

random walk) {Xt ∈ N , t = 0, 1, 2 . . .} on G with transition

probability matrix P , {P (i, j)}i,j∈N where P (i, j) =
P{Xt+1 = j|Xt = i} is a transition probability from node i
to j. We assume that the Markov chain {Xt} is irreducible

and aperiodic (and hence ergodic), having a unique stationary

distribution π , [π(1), π(2),· · · ,π(n)]. Then one can con-

struct an estimator based on {Xt}, which is given by

µ̂t(f) ,
1

t

t
∑

s=1

f(Xs). (1)

Since the chain is ergodic, the above estimator converges to

its statistical average, i.e.,

lim
t→∞

µ̂t(f) = Eπ(f) ,
∑

i∈N

f(i)π(i) a.s. (2)

for any function f with Eπ(|f |) < ∞ and any initial dis-

tribution. It follows that the estimator µ̂t(f) provides an

asymptotically unbiased approximation for Eu(f) if π=u.

While µ̂t(f) has been widely used to infer the statistics

of G, its estimate may fluctuate around its true value even in

the long run. It is always desirable to have smaller fluctuation

or higher accuracy of the estimate. In assessing the accuracy

of the estimator µ̂t(f), the so-called asymptotic variance has

been one of the most important and popular criterions in the

MCMC and graph sampling literature (e.g., [25], [27], [26],

[28], [14], [8]), and is defined by, for Eπ(f
2) < ∞,

υ(f,P,π) , lim
t→∞

t · Var(µ̂t(f))

=Varπ(f) + 2

∞
∑

k=1

Covπ [f(X0), f(Xk)] , (3)

where Varπ(f)=Eπ(f
2) − Eπ(f)

2 is the marginal variance

of a function f with respect to π, and Covπ [f(X0), f(Xk)]=
Eπ [(f(X0)−Eπ(f))(f(Xk)−Eπ(f))] is the lag k autoco-

variance of the stationary sequence {f(Xt)}. From the Central

Limit Theorem for a Markov chain [27], [26],
√
t[µ̂t(f) −

Eπ(f)] converges in distribution to a Gaussian random vari-

able with zero mean and variance υ(f,P,π).

B. Random Walk-based Sampling Methods

A most famous sampling method is the Metropolis-Hastings

random walk (MHRW) [25], [8], which is based on the

celebrated Metropolis-Hastings algorithm enabling one to

sample from a desired probability distribution. It is a two-

step procedure: a proposal for next candidate move and its

follow-up decision to accept or reject the proposal, leading to

the following transition probabilities:

P (i, j) =











min
{

1
d(i) ,

1
d(j)

}

if j ∈ N(i),

1−∑

k∈N(i) P (i, k) if i = j,

0 otherwise.

(4)

This chain is reversible with respect to π = u.† Thus the

samples obtained by the MHRW can be directly used ‘as is’,

and the resulting estimator in (1) is simply unbiased.

The other famous sampling method is to use the simple

random walk (SRW) with a post-hoc reweighting procedure. In

the SRW, the next node is chosen uniformly at random among

the neighbors of the current node. Assuming the current node

i, the probability of moving from i to j is

P (i, j) =

{

1/d(i) if j ∈ N(i),
0 otherwise.

This chain is also reversible but with stationary probabilities

π(i) = d(i)/(2|E|). The stationary distribution here is propor-

tional to the node degree, indicating that the estimator µ̂t(f)
in (1) is biased toward high-degree nodes. Thus a reweighting

procedure becomes necessary to correct the bias, and it is

essentially using the following estimator instead of the one

in (1):

µ̂t(fw)

µ̂t(w)
=

∑t
s=1 w(Xs)f(Xs)
∑t

s=1 w(Xs)
=

∑t
s=1 f(Xs)/d(Xs)
∑t

s=1 1/d(Xs)
, (5)

where fw , w ◦ f is the Hadamard product of w and f , with

fw(i) = w(i)f(i) and w(i) = 1/d(i) for i ∈ N . It is known

†A Markov chain is reversible if π(i)P (i, j) = π(j)P (j, i) for all i, j.



that µ̂t(fw)/µ̂t(w) → Eu(f) almost surely as t → ∞, i.e.,

the estimator in (5) is asymptotically unbiased [19], [11], [8].

III. SKIPPING VS. SAMPLING

We provide a mathematical model to incorporate “random

skipping” (or passing by the currently visited node without

sampling) into the random walk-based sampling, having the

benefit of less correlation in the samples obtained but paying

higher costs per sample. We then develop a unified framework

enabling us to compare such sampling policies with the same

cost constraint, from which we obtain an optimal sampling

policy. We also explain how these results can be carried over

to the case of requiring a post-hoc reweighting procedure as

is the one for SRW.

A. Mathematical Model

Consider a sampling agent that moves over G according to

the transition matrix P0 of a reversible Markov chain {Xs, s=
0, 1, . . .}, where Xs is the location of the agent at time s.

We consider a class of sampling policies P = P(p) ∈ P

that allow for skipping the currently visited node without

sampling or retrieving any information at the node, indexed

by a decision probability 0 < p ≤ 1. While traversing over G
according to P0, the agent samples the current node Xs = i
with probability p, and skips node i with probability 1 − p.

Note that we here focus on the ‘state-independent’ strategies

(with the same p) for ease of exposition. We will relax this

later in Section IV and allow the decision probability to be

state-dependent (location-dependent).

Now, we introduce the notion of ‘cost’ associated with

the currently visited node, which is different depending on

whether to skip or take a sample there. Let {cs, s=1, 2 . . .}
be a sequence of incurred costs, corresponding to {Xs}. At

each node i, we assume that the cost of ‘sampling’ is a(i),
while the cost of ‘skipping’ is b(i). We also assume that

0 < b(i) ≤ a(i) for all i, and every cost is bounded, i.e.,

a(i) ≤ c̄ for some finite constant c̄. To summarize, when the

sampling agent enters node i at time s (Xs = i), it performs

sampling there with probability p, incurring cost cs = a(i).
Otherwise, it simply passes by node i, with cs = b(i).

Let {Gt, t = 1, 2, . . .} be an i.i.d. sequence of random

variables indicating the length of intervals between two con-

secutive samples obtained. Clearly, P{Gt = l} = (1−p)l−1p.

We then define a sequence of sampled nodes {Zt, t=0, 1, . . .},

where Zt = XLt
indicates the location at which the ‘sampling’

operation is performed, with Lt = G1+G2+. . .+Gt. Assume

Z0 = X0. Note that the sampling accuracy under a given

policy P(p) is decided by its corresponding {Zt}. Letting Ct

be the cost to obtain the t-th sample given by

Ct =

Lt
∑

s=Lt−1+1

cs,

{Ct, t=1, 2, . . .} then becomes the sequence of costs associ-

ated with {Zt}. For instance, consider Policy II in Figure 1.

We see that {X1, X2, X3, . . .} = {Seth, Mike, John, . . .},

with associated costs {c1, c2, c3, . . .} = {3, 1, 3, . . .}.

Contrastingly, {Z1, Z2, Z3, . . .} = {Seth, John, Bob, . . .},

and their associated costs become {C1, C2, C3, . . .} =
{3, 4, 3, . . .}. For instance, C2 = c2 + c3 = 4 is the sum of

costs for passing by Mike (1 unit of time) and sampling John

(3 unites of time).

Let 1=λ1,0>λ2,0≥· · ·≥λn,0>−1 be the n eigenvalues of

the reversible chain {Xs} with transition matrix P0, and vi,0

(i = 1, 2, . . .) be the corresponding eigenvectors. Let π be

the stationary distribution of {Xs}. Unless otherwise stated

we consider π = u as is the case for MHRW (but this is

not the only Markov chain leading to the uniform stationary

distribution u). We then have the following. Due to space

constraint, we refer to our technical report [29] for all the

proofs in this paper.

Lemma 1: {Zt} is a reversible Markov chain with transition

matrix P(p) given by

P(p) =

∞
∑

l=1

P
l
0p(1− p)l−1, (6)

and the same stationary distribution π(p) = π. The corre-

sponding eigenvalues and eigenvectors are

λi(p) =
pλi,0

1− (1 − p)λi,0
, and vi(p) = vi,0, (7)

respectively. �

Note that as a special case, if p = 1, then Zt = Xt for all

t ≥ 0, with P(1) = P0.

B. Asymptotic Variance Under Cost Constraint

Let M be the total cost budget allowed for the sampling

purpose. Define

T = T (M) = max{u : C1 + C2 + · · ·+ Cu ≤ M} (8)

to be the stopping time to spend all M , i.e., the number of

samples collected when the sampling process is terminated.

We require that under any feasible policy of consideration,

T → ∞ almost surely as M → ∞. This rules out trivial

policies in which, for instance, a sampling agent always makes

a transition to next node without sampling at all, which still

consumes costs, until it reaches the total cost budget. We next

develop a new cost-oriented performance metric, which is a

refined version of the asymptotic variance in (3), for a fair

comparison of sampling policies.

Since Lemma 1 guarantees that all possible policies P(p) ∈
P under consideration possess the same stationary distribution

π regardless of p > 0, the new estimator

µ̂T (f) =
1

T

T
∑

t=1

f(Zt) → Eπ(f) a.s., (9)

also converges to the same target quantity as that of the

estimator based on {Xs}. (See (1) and (2).) Thus, it would

be tempting to consider the asymptotic variance of this new

estimator as was used in other existing studies (e.g., [28], [14],

[8]), to evaluate and compare the performance of different

sampling policies and also to find the optimal policy. When

sampling cost constraints come into play, however, the tradeoff



between sample “quality” and “quantity” makes this problem

more subtle.

Intuitively, when the ‘skip’ rate approaches 1 (i.e., p → 0),

the samples obtained behave more like those from the ideal

(uniform) random, independent samples directly drawn from

N [4], thereby leading to smaller asymptotic variance than

that from any random walk-based sampling method producing

correlated samples. Under a given cost constraint, however,

such a policy would spend almost all the budget M on making

transitions only, with very few samples actually collected in

the end. This clearly demonstrates that one cannot simply use

the asymptotic variance ‘as is’ to rank the sampling policies

under the same ground. Instead, one would have to consider

the variance of the estimator with a different number of

samples obtained under a given cost budget. Therefore, we

renormalize the asymptotic variance in a way that any two

competing sampling policies are to be compared under the

same but large amount of ‘cost’, not the number of samples

obtained as would be the case in the literature.

We notice that from (3), we have Var(µ̂T (f)) → 0, as M →
∞. Thus, in order to compare the resulting estimators under

different policies but under the same total cost constraint, we

consider the variance of
√
M(µ̂T (f) − Eπ(f)) instead and

obtain the following:

Theorem 1: Under the aforementioned setting with policy

P(p), suppose M/T (M) converges, as M → ∞, in prob-

ability, to a constant c(p) – the long-term average cost to

obtain one sample. Then
√
M (µ̂T (f)− Eπ(f)) converges in

distribution to a Gaussian random variable with mean 0 and

variance equal to c(p) · υ(f,P(p),π). �

An immediate observation is that if Ct = 1 for all t, then

T = M (constant), and thus Theorem 1 reduces to the usual

Central Limit Theorem for a Markov chain as mentioned at

the end of Section II-A. For the rest of the paper, we call the

new asymptotic variance as “cost-based asymptotic variance”

given by

Ψ(p) , c(p) · υ(f,P(p),π). (10)

C. Variance Analysis and Optimal Policy

Since the cost-based asymptotic variance is now the product

of c(p) and υ(f,P(p),π), one may expect that it captures the

tradeoff between variance and cost per sample. In other words,

when intentionally skipping nodes more often (or decreasing

the value of p), it is expected to have less correlation (or

equivalently, smaller asymptotic variance as seen from (3)) yet

with higher cost per sample. In what follows, we show that this

is indeed the case by obtaining its closed-form expression. We

also find the optimal solution p∗ (or the optimal policy P(p∗))
to minimize Ψ(p) in (10).

Let A , Eπ(a) =
∑

i∈N a(i)π(i) be the average cost of the

sampling operation with respect to the stationary distribution

π, and similarly B , Eπ(b) for the case of the transition-

only operation. Clearly, A ≥ B since a(i) ≥ b(i) from our

assumption. We then have the following:

Theorem 2: Under a policy P(p), the cost-based asymptotic

variance Ψ(p) = c(p) · υ(f,P(p),π) is given by

c(p) = B(1− p)/p+A, and (11)

υ(f,P(p),π) = γ + αp, (12)

where γ = Varπ(f) and α = υ(f,P0,π)−Varπ(f). �

The explicit expressions in Theorem 2 allow us to better

explain why the original asymptotic variance might not work

under a cost constraint. Note that α and γ depend only on

the sampling function f and the graph structure, but are not

functions of p. Thus υ(f,P(p),π) in (12) is increasing in

p ∈ (0, 1]. When p → 0, namely, almost always performing

transitions over G without sampling will result in the smallest

asymptotic variance. This would make sense for the usual

asymptotic variance as in (3), since the ‘transition-only’ oper-

ations will break the correlation between consecutive samples,

leading to the ideal (uniform) random sampling in the limit,

assuming there are still a large number of samples obtained.

However, under a fixed cost constraint, this will incur a very

high cost to obtain one sample on average as c(p) in (11)

grows indefinitely, thus offsetting smaller υ(f,P(p),π).
Proposition 1: Ψ(p) is convex in p ∈ (0, 1]. When A = B,

its optimal solution becomes p∗ = 1. If A > B, we have

p∗ =

{

1 if α/γ ≤ β,
√

βγ/α if α/γ > β,

where β = B
A−B

. �

Proposition 1 presents the optimal solution p∗ in a closed

form. First, if obtaining f(i) at node i does not require any

additional cost (e.g., f(i) = d(i), the degree of node i), we

have A = B for which the optimal strategy is to sample

all the time (p∗ = 1). This is consistent with our intuition

in that there is no point of skipping any node if the costs

of sampling and skipping are the same. When the cost of

sampling is higher than that of passing by, as illustrated with

Figure 1, the optimal sampling strategy will depend on the

subtle interplay between the amount of additional cost for

the sampling operation encoded into the parameter β, and

the graph topological properties and the sampling function f
captured by the parameter α/γ. From the proof of Theorem

2, we observe that α and γ involves the entire spectrum of the

chain P0. The following result provides a sufficient condition

if the second largest eigenvalue λ2,0 of P0 is available.

Corollary 1: Let A = (1 + δ)B for some δ > 0. If λ2,0 ≤
1/(1 + 2δ), then p∗ = 1. �

For a given chain P0 (e.g., the MHRW on G), the second

largest eigenvalue λ2,0 is highly related to the so-called mixing

time of the chain Xs (or the speed of convergence of the

distribution of Xs to its stationary one π), and there are

a number of techniques available to estimate or bound this

quantity. Corollary 1 suggests that if the additional cost for

sampling over skipping is not too large (i.e., δ is small) and

the chain is not so slow mixing (i.e., λ2,0 is bounded away

from 1 by more than 2δ/(1 + 2δ), then sampling all the time



with p∗ = 1 is optimal. This implies that in this case there is

no benefit of intentionally skipping nodes (with cost b(i)) in

order to reduce the correlation among samples, as the chain

P0 is not so slow anyway (λ2,0 is not too close to one) and the

additional cost for sampling is not too much. Otherwise, again,

it reduces down to a subtle interplay between the property of

the crawler chain α/γ and the quantity β depending on the

average costs, which would be the typical case as social graphs

generally do not possess the fast mixing property [30].

D. Non-Uniform Stationary Distribution

All the discussions so far directly apply for unbiased graph

sampling, with π = u. For example, the estimator µ̂T (f)
in (9) is asymptotically unbiased according to Theorem 1.

However, when the crawler chain {Xs} has a non-uniform

stationary distribution (e.g., SRW), a reweighting procedure is

required to correct a bias in the samples obtained, as outlined

in Section II-B. We below show all the preceding arguments

still remain intact even with the reweighing procedure. To this

end, we assume that a sampling agent traverses over G in a

SRW fashion. That is, P0 is the transition matrix of the SRW,

with stationary probabilities π(i) = d(i)/(2|E|).
We first define a new estimator as

µ̂T (fw)

µ̂T (w)
=

1
T

∑T

t=1 fw(Zt)
1
T

∑T
t=1 w(Zt)

, (13)

which is in the same form as (5) except that here T is a random

variable (stopping time) as in (8), indicating the number of

samples obtained until all the budget M is spent. Recall that

fw = w◦f , with w(i) = 1/d(i) as defined in Section II-B. Let

us briefly explain how we get the estimator. Once the sampling

agent obtains a new sample f(i) of node i, we simply re-

weight (multiply) this value with 1/d(i). At the same time,

we add the term 1/d(i) to the denominator in (13). We can

then show that this new estimator under a policy P(p) is still

an unbiased estimator, i.e.,

µ̂T (fw) /µ̂T (w) → Eu(f) almost surely, as M → ∞, (14)

for any p ∈ (0, 1]. This result holds by following the similar

lines in Section II-B, noting that T → ∞ almost surely as

M → ∞ and the stationary distribution of {Zt} is the same

as that of {Xs} for any p ∈ (0, 1] from Theorem 1.

As before, for all the possible estimators in (13) indexed

(implicitly) by p ∈ (0, 1] being unbiased, we can again turn

to their ‘cost-based’ asymptotic variances to compare their

sampling accuracy.

Theorem 3: As the total cost M→∞, under a policy P(p),√
M [µ̂T (fw)/µ̂T (w)− Eu(f)] converges in distribution to a

Gaussian random variable with zero mean and variance c(p) ·
v(H,P(p),π), where the function H : N → R is given by

H(i) = d̄ [fw(i)− Eu(f)w(i)] , i ∈ N , (15)

and d̄ = 2|E|/n is the average degree. �

Corollary 2: The cost-based asymptotic variance (or the

objective function to minimize) becomes

Ψ̃(p) =

(

B
(1− p)

p
+A

)

(γ̃ + α̃p) ,

where γ̃ = Varπ(H) and α̃ = υ(H,P0,π)−Varπ(H). �

Theorem 3 and Corollary 2 tell us that after the reweighting

procedure, our cost-based asymptotic variance Ψ̃(p) is still

given by the product of the expected cost per sample and

the original asymptotic variance, but now with the sampling

function f replaced by H in (15). Thus, all the properties

associated with Ψ(p), including the convexity and condition

for the optimal policy p∗, carry over in the same way to Ψ̃(p).

IV. STATE-DEPENDENT SAMPLING

Up till now, we have focused on the state-independent

sampling policies (the probability of sampling node i is p,

regardless of the current location i of a sampling crawler).

Recall that by construction, the sampling cost a(i) is a function

of node i, capturing the situation that some node incurs a

higher cost for sampling. For example, if the sampling function

f requires an exploration of all the neighbors of node i, the

cost of sampling node i would be proportional to its degree

d(i). In this case, one may want to deliberately use different

probabilities of sampling node i such that nodes with high

sampling costs are sampled with small probabilities. Such a

state-dependent strategy can be brought in to further challenge

the cost limits, to squeeze more samples out of a given budget

and reduce the estimation error, as long as we can remove any

resulting bias by a proper reweighting procedure.

As before, assume that a crawler moves over G according

to the transition matrix P0 of a reversible chain {Xs} with

stationary distribution π = [π(1), . . . , π(n)]. Note that the

stationary distribution π does not need to be just a unform

u but can be arbitrary. When residing in node i, the crawler

performs ‘sampling’ with probability p(i) ∈ (0, 1], which is

now state-dependent (location-dependent). Again, the sam-

pling operation with probability p(i) will cost a(i), while

simply passing by node i with probability 1 − p(i) will cost

b(i). The crawler continues this process until all the budget

M is spent. We consider a set of state-dependent sampling

policies P(p), parameterized by p=[p(1), p(2), · · · p(n)]. We

then have the following:

Theorem 4: The sequence of sampled nodes {Zt} under

a policy P(p) is a reversible Markov chain with stationary

probabilities π′(i) ∝ π(i)p(i), i∈N . �

Theorem 4 asserts that under the state-dependent policy

P(p), the stationary probabilities of the resulting chain {Zt}
are given by

π′(i) =
π(i)p(i)

∑

j∈N π(j)p(j)
=

π(i)p(i)

Eπ(p)
,

which are not uniform unless p(i) ∝ 1/π(i), i∈N . Due to a

bias originating from the non-uniform stationary distribution,

we cannot simply use the samples obtained ‘as is’, so we

employ the usual reweighting procedure to remove the bias,

along with its mathematical properties, as was used for the

SRW. (See Section II-B and also Section III-D.)

Specifically, we set the weight function w(i) ∝ 1/(π(i)p(i))
so that µ̂T (fw) /µ̂T (w) converges to Eu(f) almost surely.

For example, if the crawler chain {Xs} is the SRW, we set



w(i) = 1/(d(i)p(i)). For the MHRW with π = u, it becomes

w(i) = 1/p(i). In addition, by following the similar lines as

in the proof of Theorem 3, we can show that µ̂T (fw) /µ̂T (w)
converges in distribution to a Gaussian random variable with

zero mean and variance given by

Ψ′(p) = c(p) · v(H′,P(p),π′),

where c(p) is the long-term average cost to obtain one sample,

and v(H′,P(p),π′) is the usual asymptotic variance of {Zt}
with H′(i)= [fw(i)− Eu(f)w(i)] /Eπ

′(w), i∈N . Note that

the complicated form of the transition probabilities of {Zt}
(see the proof of Theorem 4) prohibits any usable closed-

form expression of the cost-based asymptotic variance Ψ′(p).
Nonetheless, the importance of our extension here is to enable

one to design more sophisticated state-dependent sampling

strategies, equipped with a full array of n tunable knobs p(i),
all producing unbiased estimates with proper reweighting as

outlined above.

V. NUMERICAL RESULTS

A. Simulation Setting

Datasets: We conduct experiments over four real world dataset

from Youtube, Slashdot, Wikipedia Talk [31] and Digg‡ [32].

We summarize the characteristics of each dataset in Table I.

To ensure the connectivity of each graph, we use its largest

connected component.

TABLE I
STATISTICS OF THE DATASET

❍
❍
❍
❍

Youtube Slashdot Wiki Talk Digg

# of users 1,134,890 77,360 2,394,385 270,535

# of edges 2,987,625 905,468 5,021,410 1,731,658

Performance Metrics and Estimation Error: We validate our

framework over various network settings under the following

two sampling functions (network properties to estimate):

• Membership probability P{i∈D} for a set of nodes D sat-

isfying a certain pre-defined condition, e.g., membership. In

words, we want to estimate the probability that a randomly

chosen node belongs to the set D.

• Average clustering coefficient Φ ,
∑

i∈N ωi/|N |, where

ωi = △(i)/
(

d(i)
2

)

for node i with degree d(i) ≥ 2, and

ωi = 0 if otherwise. Here, △(i) = |{(j, k) ∈ E : (i, j) ∈
E and (i, k)∈E}| is the number of total connections among

the neighbors of i, and
(

d(i)
2

)

= d(i)(d(i)− 1)/2 is the

maximum possible connections among all neighbors of i.

For the case of estimating the membership probability P{i∈
D}, we randomly choose a subset D with size |D| = 0.3|N |
a priori. We use a set of different constant values for the cost

of sampling, namely, a(i) = 1, 2, 10, 50, 100 for all i. The

sampling function f here becomes f(i) = 1{i∈D}, i∈N . On

the other hand, for the case of estimating the average clustering

coefficient Φ, we set f(i) = ωi as in [4], [23], and set the

‘sampling’ cost to be a(i) = d(i), i ∈ N , which reflects that

‡In this work, we use an undirected version of this graph.

the cost of sampling is equivalent to that of exploring all the

neighbors of each node, proportional to its degree (location-

dependent sampling cost). For both cases, the cost of skipping

a node without sampling (transition only) is assumed to be 1,

i.e., b(i) = 1 for all i.
In order to see if the cost-based asymptotic variance can

help finding the optimal sampling probability p∗, we compare

it with the mean squared error (MSE) of an estimator, given

by MSE(x̂) = E[(x̂−x)2], where x̂ represents the estimated

value and x is its ground truth. Here we use MSE instead

of the normalized root mean square error (NRMSE) [22],

[8], [28] to measure the estimation accuracy, to be consistent

with our choice of the cost-based asymptotic variance Ψ(p).
Observe that NRMSE, which is defined as NRMSE(x̂) =
√

E[(x̂− x)2]/x, is nothing but the square root of MSE

normalized by a constant term, and thus MSE can capture a

relative change of the estimation error computed by NRMSE.

For the random walk-based crawlers, we use both MHRW

and SRW with reweighting in our simulations. In each case,

the initial position of each random walker is drawn from

its stationary distribution. Each data point reported here is

obtained by averaging over 104 independent simulations.

Estimating The Cost-based Asymptotic Variance: To obtain

the cost-based asymptotic variance Ψ(p) in terms of the

sampling probability p, we first need to estimate all the

involving terms such as A, B, α, γ as shown in Theorem

2 (or α̃, γ̃ in Theorem 3). Estimating A and B (the expected

costs with respect to π) is relatively a trivial task if we run

the chain over G and collect a sequence of sample values for

the cost. Their sample mean would serve the purpose. γ is

nothing but the variance of function f with respect to the

stationary distribution π, and thus can be approximated by

observed sample variance. In addition, note that υ(f,P0,π)
in γ is the asymptotic variance of the estimator when sampling

operation is always performed (p = 1), and thus α can also

be well estimated.

Estimating γ̃ and α̃ would be more subtle, but the fun-

damental mechanism remains the same. Again, the training

period would be based on a crawler under policy P(1). A

sequence of training samples can serve the purpose to estimate

Eu(f) by appropriately re-weighting each sample and taking

their sample mean, as illustrated in Section III-D. Then,

estimating the sample variance with respect to the function H
and the asymptotic variance υ(H,P0,π) would help finding

γ̃ and α̃ in a similar way.

B. Simulation Results

Due to space constraint, we here mainly present our simu-

lation results for Youtube graph. We observe similar trends for

other graphs, which are reported in our technical report [29].

State-Independent Sampling: In Figure 2(a), we compare the

MSE of the estimator µ̂T (f) in (9) with our cost-based asymp-

totic variance Ψ(p) in Theorem 2 when the underlying chains

are MHRW and the function of interest is f(i) = 1{i∈D}.

The total budget is M = 106. We first run crawlers over

the graph in order to estimate υ(f,P0,u), Varu(f) and A,
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Fig. 2. Ψ(p) vs. MSE when estimating P{i∈D}.

10
−3

10
−2

10
−1

10
0

0

200

p

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

 

 

10
−3

10
−2

10
−1

10
0
0

1

2

x 10
−4

M
S

E

Ψ(p)

MSE (M=10
6
)

0 0.5 1
0

100

200

300

p*=0.0165

(a) MHRW (log-linear)

10
−3

10
−2

10
−1

10
0

0

10

20

p

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n

 

 

10
−3

10
−2

10
−1

10
0
0

2

4
x 10

−4

M
S

E

Ψ(p)

MSE(M=10
6
)

0 0.5 1
0

5

10

15

p*=0.197

(b) SRW (log-linear)

Fig. 3. Ψ(p) vs. MSE when estimating Φ.

and hence Ψ(p) as discussed above. We set the sampling cost

a(i) = 1, 2, 10, 50, 100 for all i (hence A = 1, 2, 10, 50, 100),

and apparently B = 1 since the cost for each transition is

1. We observe that our cost-based objective function (inset

figures) closely captures the trend of MSE for the estimators,

and the optimal solution p∗ that minimizes Ψ(p) matches well

with the theory given in Proposition 1. When A = 1, MSE

is always monotone decreasing, since the crawler will spend

1 unit of cost anyway to transit the nodes, thus skipping

a node without collecting any sample will not bring any

benefit. In order to evaluate the improvement of the optimal

strategy P(p∗), we mainly use the percentage of decrease

in the MSE of the estimator compared with that of P(1),
i.e., [MSE(P(1))−MSE(P(p∗))]/MSE(P(1)). In case of the

optimal policy with p∗ = 0.034, 0.011, 0.0049, 0.0035 for

A=2, 10, 50, 100, respectively, we observe the MSE of the

estimator in (9) decreases 46.6%, 87.9%, 97% and 98.2%
compared with MHRW (p = 1), respectively, which clearly

shows significant improvement.

In Figure 2(b), we also compare the modified version of

the cost-based asymptotic variance Ψ(p) under SRW with

reweighting (defined in Corollary 2) with the MSE of esti-

mator µ̂T (fw) /µ̂T (w) as defined in (13), when estimating

f(i) = 1{i∈D} with M = 106. The estimation error decreases

by 18.4%, 33.7% and 37.7% compared with MHRW with the

corresponding optimal p∗ = 0.35, 0.15 and 0.1049 for A =

10, 50, 100. For A = 1, 2, the optimal solution is p∗ = 1,

as expected from Proposition 1. Another observation is that

with the increase of A, the optimal solution p∗ is inclined

to shift toward zero. One intuitive explanation is that when

average cost is large, it would be more beneficial to spend

some budget on breaking the ties between samples, because

the cost spent on transitions, compared with collecting sample,

is relatively minor.

1000 1500 2000 2500 3000 3500
0

10

20

30

40

# of samples

F
re

q
u
e
n
c
y

 

 

p=0.0197

p=1

10
0

10
5

10
−5

10
0

Fig. 4. # of samples with M = 106

10
−10

10
−5

10
0

Youtube

Slashdot

Wiki

Digg

MSE (log−scale)

 

 

γ=0(SRW)

γ=0.5

γ=1

γ=2

γ=3

γ=4

Optimal p*

Fig. 5. State-dependent sampling (p(i)=d−r).

In Figure 3, we repeat the same simulations for state-

independent sampling with both MHRW and SRW with

reweighting implemented, but change the sampling function

of interest to estimate the average clustering coefficient Φ.

Again, we observe that, if properly re-scaled, Ψ(p) is almost

identical to the MSE of the estimator. We also calculate

the optimal probability p∗ that minimizes Ψ(p) according

to Proposition 1. For MHRW (Figure 3(a)) and SRW with

reweighting (Figure 3(b)), the optimal solutions p∗ are 0.0165

and 0.0197 and the optimal policies with these sampling rates

result in approximately 70% and 68% reductions in the MSE

compared with the case that sampling is always performed

(p = 1), respectively. Note here the change is quite sharp

when p is close to 0, so we plot the figure with x-axis in

log-scale. In order to check the convexity property that we

find in Proposition 1, we also plot Ψ(p) with x-axis in linear

scale in the inset figure of Figure 3, which clearly justifies our

theoretical findings.

For a better understanding on how the number of samples

collected after all M budget is spent (i.e., T =T (M)) varies

with probability p, we present its empirical distribution over

104 runs in Figure 4. When p= 0.0197, the mean value for

the size of sample is approximately 1900, while it increases to

about 2100 when p=1. This again corroborates our motivation

that the comparison between different sampling algorithms

assuming same number of samples collected is usually unfair.

We repeat the same simulation over other graphs under

both MHRW and SRW with reweighting. We observe similar

trends and also good match between our cost-based asymptotic

variance and the MSE of the estimators under a given budget.

We refer to our technical report [29] for more details.

State-Dependent Sampling: In Figure 5, we investigate how

the state-dependent sampling can help in further improving



the performance of the sampler when the quantity to estimate

is the average clustering coefficient Φ. Here we use SRW

as the underlying chain P0 and heuristically set the proba-

bility for sampling each node i to be p(i) = d(i)−r, where

r = 0, 0.5, 1, 2, 3, 4. Correspondingly, the weight function

w(i) = 1/(d(i)p(i)) = d(i)r−1, as mentioned in Section IV.

Note that when r = 0, the sampling strategy degenerates to

the usual SRW with reweighting. We observe that the sampler

achieves the minimum estimation error at about r = 1 for these

four graphs, with 99.3%, 98.1%, 99.8% and 99.2% reductions

in MSE compared with SRW with reweighting for Youtube,

Slashdot, Wiki talk and Digg graphs, respectively. We observe

that the improvement is significant when estimating Φ. This

is reasonable, since SRW inclines to sample nodes with large

degree more often, while at the same time sampling the

large-degree nodes costs more. Recall that the sampling cost

here is a(i) = d(i). Thus, intuitively, the stack of these two

factors greatly magnifies the average cost per sample. In other

words, intentionally skipping those large-degree nodes with

higher probability of 1 − p(i) = 1 − 1/d(i) while at the

same time removing the bias by a reweighting procedure will

bring significant benefit. We also compare the MSE of the

estimators when r = 1 with the optimal solution for the state-

independent sampling, and observe 98.3%, 93.2%, 99.7% and

98.2% decreases in MSE for the four graphs, respectively.

We here note that, although sampling large-degree nodes less

often may bring significant improvement in the estimation

accuracy for unbiased sampling, the crawler might miss some

opportunity of sampling ‘important’ nodes with large degrees.

While their target goals are originally different, we expect that

our general framework for cost-effective unbiased sampling

strategies can also be integrated into such application scenarios

where different nodes have different levels of importance.

VI. CONCLUSION

We have provided a general, mathematical framework with

a new “cost-based asymptotic variance” to compare different

graph sampling strategies under the same cost constraint. After

integrating “random skipping”, which generates superior yet

more expensive samples, into the popular random walk-based

sampling, we were able to find an optimal sampling policy

striking the right balance between sample quality and quantity,

which in turn greatly improves over the original skip-free

random walk sampling. We have further demonstrated that

our framework is applicable to any random walk methods

having a reweighting procedure for unbiased estimation, and

also extended to state-dependent sampling policies, which still

have room for improvement. We expect that our work provides

a first step toward the correct understanding of graph sampling

under practical cost-oriented scenarios, and also shed light on

the design of more effective sampling strategies under cost

constraints.
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