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Abstract—After a piece of information is released in Online
Social Networks (OSNs), will it spread to the entire network
or reach only a small population of users? In a time window
of interest, how many users will forward or comment on this
information? Limited effort has been made at this point to
develop an effective model to address these issues, as the time-
sensitive nature of information spreading and the complexity of
network structure make it a very challenging task. In this paper,
we propose a continuous-time model for information diffusion
with time-varying diffusion (infection) rate to address these
issues, and provide an interface between our proposed model and
the well-studied SI model with constant diffusion rate. We prove
that there exists an elegant time-rescaling relationship between
these two cases, such that any available result on the standard
SI model can readily carry over to our time-varying case. We
then show how the shape of the time-dependent infection rate
will influence the temporal evolution of the size of infection and
the time until the information reaches a given node on a graph.
This also explains why some information stops spreading before
reaching the entire population. Simulation results on Digg graph
validate our findings.

I. INTRODUCTION

Recently, Online Social Networks (OSNs) such as Face-

book, Twitter, Digg and Microblog have exploded in popular-

ity and drawn much attention from the research community.

They offer a unique information sharing mechanism, which

allows users to forward information like news articles, public

opinions, videos, photos, etc. to their friends, and thus possibly

to a wider audience. The convenient interaction and personal-

ized feature of this mechanism makes the form of public in-

formation dissemination undergo a significant structural trans-

formation. Under such circumstances, understanding/modeling

the dynamics of information diffusion over OSNs has become

an important research problem. The applications of modeling

this process include locating the most influential users for com-

mercial purpose, finding the source of malicious information

and evaluating the social influence of some political and social

events, among others.

The research on information diffusion originates from the

study on the well-defined epidemic spreading or rumor spread-

ing [14]. However, many recent measurement studies have

revealed several unique characteristics of information diffusion

in OSNs. For example, in [15], Lerman and Ghosh discuss

the effect of topological structure on information spreading,
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and show that a specific message usually reaches less than

0.1% of the entire population in reality. In [13], the authors

quantitatively evaluate different kinds of information spreading

online by analyzing the ways hashtags spread, and find signif-

icant variations over different topics. [19] outlines a number

of empirical findings on competition among memes in Twitter,

and points out their massive heterogeneity in popularity and

persistence. These findings tell us that the pattern and dynamic

of information diffusion over OSNs, albeit bearing some sim-

ilarity with the epidemic spreading, are much more complex

and thus cannot be described under the same mechanism.

In terms of modeling information diffusion over OSNs, most

of the existing works have relied on Independent Information

Cascade [7] and Linear Threshold models [8]. Further studies

in [5], [9], [18] have also extended these models. However,

almost all of these assume time-invariant spreading speed and

mainly concern if the statistical properties obtained from the

model, with parameters appropriately adjusted, would match

the empirical observation. But in reality, information diffusion

on OSNs is usually affected by multiple factors and highly

time-sensitive [4], [17]. Taking these factors into consideration

for tractable analysis, however, is a nontrivial task. The state-

of-art literature, even for the time-homogeneous case, have

to rely on some approximations (e.g. mean-field approach) to

estimate its performance except for few special cases, or focus

on the final prevalence of epidemics [6], [12].

Related Work: Among the limited recent efforts, [16]

adopts the classical branching process to simplify the directed

Twitter graph and incorporates a killing process in the end so

as to explain the phenomenon that information over OSNs

only reaches a small population. While the model therein,

to some extent, is able to mimic the way information stops

spreading, this is mainly due to careful parameter tuning for

the exogenous random time at which the spreading stops,

independently of all other factors. Further, the assumption

of sudden termination of the information diffusion process

over all nodes is not consistent with the reality. [17] proposes

a Diffusive Logistic (DL) model to take into account both

temporal and spatial factors in the model of information

diffusion over OSNs. But again this model is mainly built

upon mean field type of approximation as in classical epidemic

modeling [14], and thus cannot capture the effect of general

network topology on the information diffusion process.

Our Contributions: In this paper, we take a step towards

establishing a new time-varying information diffusion model



to fill this gap. We explore the relationship between our

time-varying information diffusion model and the well-known

SI model with unit diffusion rate (“standard model”), and

theoretically show that there exists a simple time-rescaling

mapping between these two processes. This finding, to some

degree, helps separate the time-varying nature from the in-

fluence of complex network topology on the time-varying

process, and implies that any available result for the standard

process can be easily carried over to our time-varying case

with appropriate time transformation. We further discuss the

impact of the shape of infection rate βt on the evolution of

the size of infection and time till a given node gets infected.

Our simulation results demonstrate the time sensitive nature of

information diffusion over Digg graph by reproducing similar

information diffusion dynamics using appropriately rescaled

time-varying infection rate. We also observe that the shape

of βt for different stories are similar in nature, all displaying

piecewise power-law decaying patterns αt−γ with γ > 1 and

α > 0 for large t. With these modeling for βt, our theory well

matches with the trace in the sense that the information does

not go pandemic.

To the best of our knowledge, this is the first work to

establish a theoretical framework under which the impact

of the shape of infection rate on the information diffusion

dynamics is discussed. In addition, our finding on the time

transformation relationship from the standard case readily

provides a convenient shortcut to analyze the time-dependent

information diffusion dynamics by harnessing any available

results on the standard SI model on a general graph.

II. SYSTEM MODEL

Let G = (N , E) be a connected network with a set of finite

nodes N = {1, 2, . . . , n} and a set of links E . In this paper,

we assume that the evolution of the network structure is much

slower compared with the speed of information spreading, and

thus can be neglected. If node j lists node i as a friend, then

i’s interface allows node j to access the messages that node i
posts or forwards, as well as other activities associate with i,
but not vice versa. Then there is a directed link pointing from

i to j such that information can flow from i to j, denoted by

(i, j) ∈ E . Note that this friend relationship is asymmetric. We

assume that G has no self-loops and no multiple links between

any two nodes.

For a given topic or a piece of message/information in the

network, we say a node i is infected if i either initiates this

message or forwards this message from its infected neigh-

bors/friends; otherwise, it is considered as uninfected. We then

model the diffusion of this information over G using a process

S(t) = (S1(t), S2(t), · · · , Sn(t)) ∈ {0, 1}n, where Si(t) = 1
if i has been infected by time t and Si(t) = 0 otherwise [1],

[6]. Let |S(t)| =
∑

j∈N Sj(t) be the size of the infected node

set (or simply the number of infected nodes) at time t, and

S(0) be the initial set of source nodes. To keep the notation

simple, we will also use S(t) to represent the set of infected

notes at time t, i.e., {i ∈ N | Si(t) = 1}, whenever no confu-

sion arises. We allow that the diffusion starts from a single user

(|S(0)| = 1) or a connected initial component (|S(0)| > 1).

Clearly, all the infected nodes remain connected at any time

t > 0. Let N(S(t)) = {j ∈ N \S(t) | ∃(i, j) ∈ E , i ∈ S(t)}
be the set of ‘neighbors’ of the infected nodes at time t, and

∂(S(t), j) = {(i, j)∈E | i∈S(t), j ∈N(S(t))} be the set of

edges originating from S(t) to the neighboring node j.

If Si(t) = 1, then all nodes who list i as a friend are exposed

to her message, and are willing to forward the message with

time-varying rate βt ≥ 0 because of the influence of node

i. Here, βt captures people’s changing enthusiasm to forward

the message depending on how old the message is. For a fresh

news/message (small t), a user may be more willing to share

it with her friends (followers) on her personal page, while she

loses her interest in doing so for not-so-fresh message (e.g.,

smaller βt for large t). In this setting, at time t, a node j
will be infected with rate βt multiplied by the number of its

infected friends. That is,

lim
∆→0

1

∆
E{Sj(t+∆)−Sj(t) | S(t)} = βt|∂(S(t), j)| (1)

if j ∈ N(S(t)), and zero otherwise, where |∂(S(t), j)| is

the number of edges from the set S(t) to the neighboring

node j. This model can be considered as the well-known

Susceptible-Infected (SI) model on a graph, but with time-

dependent infection rate. Here, we use SI model instead of SIR

or SIS [3], [6] since our interest is on the temporal dynamics

of S(t) for a given message over time t. Thus, we do not take

into account message removal from user’s personal page or a

user being reinfected by the same message.

Our construction above makes {S(t)}t≥0 ∈ Ω a time-

inhomogeneous continuous-time Markov Chain, where Ω =
{s1, s2, . . . , s|Ω|} ⊂ {0, 1}n consists of 2n possible states

recording whether or not each node is infected. We define

P(S(t′) = s′|S(t) = s) , ps,s′(t, t
′), ∀s, s′ ∈ Ω,

for t > t′, as the transition probability from state s to s′,
and P(t, t′) , [ps,s′(t, t

′)]s,s′∈Ω ∈ R
|Ω|×|Ω| as its transition

probability matrix. Let

Rs,s′(t) = lim
∆→0

1

∆
ps,s′(t, t+∆) (2)

be the time-dependent transition rate from state s to s′ at time

t > 0. Note that this transition is possible only when the

state s′ has one more infected node than s, i.e., s′ = s ∪ j
for some j ∈ N(S(t)), in which case Rs,s′(t) is given

by the expression in (1). We call all such possible next

states s′ as ‘follow-up’ states from s. Clearly, Rs,s′(t) = 0
if s′ is not one of the follow-up states from s. Then, the

infinitesimal generator matrix Q(t) = [Qs,s′(t)]s,s′∈Ω is given

by Qs,s′(t) = Rs,s′(t) for s 6= s′, with its diagonal entries

Qs,s(t) = −
∑

s′∈Ω,s′ 6=s Qs,s′(t). Let πs(t) , P{S(t) = s},

then the row vector π(t) , (πs1(t), πs2(t), · · · , πs|Ω|
(t))

records the probability distribution of all possible states at

time t. See Figure 1 for illustration.

Specifically, if βt = β is a constant, then our model

degenerates to the SI model with constant infection rate on
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Fig. 1. Information diffusion over G: red nodes are infected; green nodes are
in N(S(t)); gray nodes are outside of S(t)∪N(S(t)). Here, s′ is a possible
follow-up state from s, but s′ → s′′ is not a possible transition.

a finite graph [6], [12]. This time-homogeneous diffusion

process has been extensively studied in the literature. We call

the process with βt = 1 for all t as “standard process” in this

paper and reserve the notations S̃(t), P̃(t, t′), Q̃, and π̃(t)
to denote its corresponding infected set, transition probability

matrix, infinitesimal generator, and the probability distribution,

respectively.

III. DYNAMICS OF INFORMATION DIFFUSION

A. From standard SI model to time-varying information diffu-

sion over OSNs

In our continuous-time diffusion model proposed in Sec-

tion II, the infection rate βt captures the time-sensitive nature

of the information diffusion process over OSNs, which reflects

users′ time-dependent interest on a given message. Even for

the standard process with βt = 1, ∀t ≥ 0, the temporal s-

tochastic dynamics of the process S(t) is intricately dependent

on the local neighborhood structure of the currently infected

set at time t and on the whole graph structure in the end.

Characterizing the distribution of S(t) (or S̃(t) for βt = 1)

over time t on a general graph representing the OSN largely

remains elusive and clearly beyond the scope of this paper.∗

Instead, our focus is on the modeling of the time-varying

infection rate βt for information diffusion over OSNs, and

integrating it into a general interfacing framework in which

we can ‘import’ available results from the case with βt = 1 in

the standard literature and translate them into a more realistic

setting with time-varying infection rate on a general graph.

Our main result in this section is as follows.

Theorem 1: Let m(t) =
∫ t

0
βsds. Consider the standard

process S̃(t) with βt = 1 (i.e, m(t) = t) for all t. If

S(0) = S̃(0), then {S(t)}t≥0
d
= {S̃(m(t))}t≥0. In particular,

for any increasing sequence 0 < t1 < t2 < · · · < tr,

(S(t1),S(t2), . . . ,S(tr)) have the same joint distribution as
(

S̃(m(t1)), S̃(m(t2)), . . . , S̃(m(tr))
)

�

Proof. First, we observe that, from (1), for any t > 0 and

from any state s ∈ Ω to any other possible follow-up state

s′ ∈ Ω, the time-dependent transition rate in (2) becomes

Rs,s′(t) = βtR̃s,s′ , where R̃s,s′ is the transition rate for the

standard process with βt = 1. Since replacing βt with any

other function in (1) does not alter s′ being one of follow-

up states or not, it follows that Rs,s′(t) = βtR̃s,s′ for all

∗Note that the Markov chain S̃(t) is transient, starting from S̃(0) with
absorbing state in which every node is infected.

s 6= s′ ∈ Ω, and therefore

Q(t) = βtQ̃, ∀t ≥ 0. (3)

From Kolmogorov’s forward differential equation for time-

inhomogeneous Markov chain [10], for any t < t′, we have

d

dt′
P(t, t′) = P(t, t′)Q(t′) = βt′P(t, t′)Q̃, (4)

where the second equality is from (3). The only solution to

this differential equation is

P(t, t′)=exp

(

Q̃

∫ t′

t

βsds

)

=exp(Q̃(m(t′)−m(t))). (5)

(Note that if βt = 1, we would have P̃(t, t′) = eQ̃(t′−t) as

in [2].) In particular, (s, s′)-th entry in P(t, t′) is given by

ps,s′(t, t
′) =

∞
∑

k=0

1

k!

[

Q̃ (m(t′)−m(t))
]k

s,s′

= p̃s,s′(m(t),m(t′)), (6)

where the first equality follows from (5).

Now, for any arbitrarily given time sequence 0 = t0 < t1 <
t2 < · · · < tr, from (6) and S(0) = S̃(0), and by making use

of the Markov property, we have

P{S(t1) = s1,S(t2) = s2, · · · ,S(tr) = sr | S(0) = s0}

=

r
∏

k=1

psk−1,sk(tk−1, tk) =

r
∏

k=1

p̃sk−1,sk (m(tk−1),m(tk))

= P

{

S̃(m(t1)) = s1, · · · , S̃(m(tr)) = sr | S̃(0) = s0

}

.

Thus, the entire joint distribution of the process S(t) is the

same as that of S̃(m(t)). This completes the proof.

Theorem 1 says, if starting from the same initial set of

infected nodes, the whole process S(t) becomes indistinguish-

able in distribution from the standard process with its time-

axis ‘rescaled’ by m(t). This implies that the properties of the

standard SI model on a finite graph can be inherited by the

time-varying case through rescaling the time axis.

To further demonstrate the utility of this transformation, we

consider the sequence of newly infected nodes over time and

the time instants of such infection. Specifically, let

Tk , inf{t > 0 | |S(t)| − |S(0)| = k}, k = 0, 1, 2, . . . , (7)

be the time instants by which k additional nodes have been

infected on a given graph G and let Ik ∈ N be this k-th

(additionally) infected node. Let τj be the time at which node

j ∈ N becomes infected. Clearly, T0 = 0 and τj = 0 for

j ∈ S(0). We define T̃k, Ĩk, and τ̃j similarly for the standard

process S̃(t) starting from the same initially infected nodes

S(0) = S̃(0). Then, we have the following.

Proposition 1: If S(0) = S̃(0), then P{Tk > t} = P{T̃k >
m(t)} and P{τj>t}=P{τ̃j>m(t)} for any k≥1, j∈N . �

Proof. The first assertion follows directly from Theorem 1

and by noting that

P{Tk ≤ t} = P{|S(t)| − |S(0)| ≥ k}



= P{|S̃(m(t))| − |S̃(0)| ≥ k} = P{T̃k ≤ m(t)}.

Similarly, the second assertion follows by noting P{τj>t}=
P{j 6∈S(u), ∀u ∈ [0, t]} and by applying Theorem 1.

From Theorem 1, it is straightforward to note that the se-

quence of newly infected nodes over time in our time-varying

model (I1, I2, . . .) have the same joint distribution as that

of the standard process (Ĩ1, Ĩ2, . . .). Here, for a given set of

infected nodes S(t) at time t, the probability of a neighboring

node j ∈ N(S(t)) being the next infected node is proportional

to the number of edges emanating from S(t) to the node j,

i.e., it is given by |∂(S(t), j)|/
∑

l∈N(S(t)) |∂(S(t), l)|. This

suggests that the embedded Markov chain (observed at Tk)

evolves in the same way (in distribution) for both time-

varying βt and the standard process case, while the embedding

time sequences {Tk}, and {τj} are again ‘rescaled’ as in

Proposition 1.

B. Impact of the shape of βt on information diffusion

In this subsection, we show how the shape of the time-

varying infection rate βt (or equivalently m(t) =
∫ t

0
βsds) im-

pacts the temporal dynamics of the information diffusion, such

as the expected size of the epidemics over time (E{|S(t)|}).

In particular, we investigate under what condition on the

shape of βt the information stops diffusing without going

pandemic, and study the relationship between specific forms

of the decreasing infection rate βt and time till infection (τj)

of a node j in a general graph. We then discuss the versatility

of our framework and compare with other existing literature.

We assume S(0) = S̃(0) throughout this section to avoid

unnecessary repetition.

First, from Theorem 1, the expected size of all the infected

nodes at time t can be written as

E {|S(t)|} = E

{
∣

∣

∣
S̃ (m(t))

∣

∣

∣

}

. (8)

This relationship proves to be very useful later on when we

empirically measure βt from a real data set showing how many

nodes are infected over time. (That is, we have E{|S(t)|} from

real trace.) Once we identify the source node (or source set),

we can run the standard SI process on the same graph starting

from the same source(s) to obtain E{S̃(u)}. We then only have

to find out the corresponding time index t such that E{S(t)} =
E{S̃(u)} to get u = m(t) (or t = m−1(u)) to recover the

time-varying infection rate βt.

Now, observe that

|S(t)| =
∑

j∈N

1{τj≤t} = n−
∑

j∈N

1{τj>t}.

By taking expectation and setting t → ∞, the expected final

size of the epidemic becomes

E{|S(∞)|} = n−
∑

j∈N

P{τj > ∞}

= n−
∑

j∈N

P{τ̃j > m(∞)} = E{|S̃(m(∞))|}. (9)

This tells us that, if the infection rate βt decays slowly such

that m(∞) =
∫∞

0
βsds = ∞, then eventually every node

will get infected, i.e., the infection goes pandemic. On the

other hand, if βt decays quickly enough so that m(∞) =
∫∞

0
βsds = M < ∞, then the final size of the infection is

less than n, i.e., E{|S(∞)|} < n, since P{τ̃j > M} > 0.†

In this case, the final size of the infection under time-varying

βt would correspond to the expected size of the infection of

the standard SI process stopped at M . In words, if the public

interest on a specific topic/message is fading fast enough, the

message will stop spreading over the network before it is

adopted by all users. This scenario supports the phenomenon

that the spreading of a specific topic usually reaches only a

small population in reality, instead of going pandemic [15].

We now turn our attention to characterizing τj , the time till

node j 6∈ S(0) gets infected, depending on whether or not βt

is integrable. To proceed, let |∂(S)| = |∂(S,N \ S)| be the

number of edges originating from S to its outside. Our results

are then summarized as follows.

Proposition 2: Fix any arbitrary node j ∈ N \ S(0). If

m(∞) < ∞, then E{τj} = ∞. If βt ∼ αt−γ for 0 < γ < 1
and α > 0, then E{τj} < ∞. If βt ∼ α/t, then E{τj} < ∞
for α > 1, while E{τj} = ∞ for 0 < α ≤ 1/|∂(S(0))|. �

Proof. Let h be the length of the shortest path from the

source(s) S(0) to the node j. Our key observation here is to

note that τj can be upper-bounded by considering the infection

spreading from S(0) to node j only along this shortest path

of length h, and lower bounded by T1 – the time until one

of the neighbors in N(S(0)) first gets infected. Consider the

standard process with βt = 1 infection rate. Let Nλ(0, t) be

the Poisson process with constant rate λ and Y λ(k) be its

k-th arrival time instant, i.e., Y λ(k)
d
=
∑k

i=1 X
λ
i where Xλ

i ,

i = 1, 2, . . . are i.i.d. exponential random variables with rate

λ. Then, the preceding arguments yield, for any u ≥ 0,

P{T̃1 ≥ u} ≤ P{τ̃j > u} ≤ P{Y 1(h) ≥ u}. (10)

From Proposition 1, we have

E{τj} =

∫ ∞

0

P{τj > t}dt =

∫ ∞

0

P{τ̃j > m(t)}dt, (11)

and from (10) we can write
∫ ∞

0

P{T̃1≥m(t)}dt≤E{τj}≤

∫ ∞

0

P{Y 1(h)≥m(t)}dt. (12)

Under the standard process, τ̃j for j ∈ N(S(0)) are indepen-

dent and exponentially distributed with rate |∂(S(0), j)|. Thus,

T̃1 = minj∈N(S(0)){τ̃j} is also exponentially distributed with

rate
∑

j∈N(S(0)) |∂(S(0), j)| = |∂(S(0))|. From (11) and (12)

and by noting P{Y λ(h) ≥ u} = P{Nλ(0, u) ≤ h}, we get

∫ ∞

0

e−|∂(S(0))|m(t)dt ≤ E{τj} ≤
h
∑

i=0

1

i!

∫ ∞

0

e−m(t)(m(t))idt.

(13)

†Even for a node j right next to the source, the density of τj has exponential
tail, giving rise to non-zero probability of τj > M for any finite M . See also
the proof of Proposition 2.



Now, if m(∞) < ∞ (and note that m(t) =
∫ t

0
βsds is

monotonically non-decreasing in t), the integrand in the lower

bound in (13) is bounded away from zero, thus E{τj} = ∞.

When m(∞) = ∞, we can rewrite the term in the upper

bound in (13) as

∫ ∞

0

e−m(t)(m(t))idt =

∫ ∞

0

e−xxi

βm−1(x)
dx, (14)

by change of variable with x = m(t).

When βt ∼ αt−γ with 0 < γ < 1, α > 0 for large t, we

have m(t) ∼ α
1−γ t

1−γ and βm−1(x) ∼ α
1

1−γ [(1 − γ)x]−
γ

1−γ .

Thus, the integrand in (14) for large x is always in the form

of e−xxi+γ/(1−γ) and the integral is finite. Similarly, if βt ∼
α/t for large t, then m(t) ∼ α log t and βm−1(x) ∼ αe−x/α.

Thus, the integrand in (14) for large x now is in the form of

xi exp(x( 1
α − 1)). Clearly, if α > 1, this integral converges,

so we have E{τj} < ∞. The integrand in the lower bound in

(13) is in the form of t−|∂(S(0))|α, and the integral diverges

when |∂(S(0))|α≤1, yielding E{τj}=∞. This completes the

proof.

Proposition 2 asserts that when βt is integrable, the diffusion

stops as it takes infinite amount of time to reach any node j
on average, and it goes pandemic when βt decays slowly as

αt−γ with 0 < γ < 1 and α > 0 (thus m(∞) = ∞), as

every node will get infected within a finite amount of time on

average. The situation is more subtle, however, when βt decays

as α/t for α ≤ 1/|∂(S(0)|. We still have m(∞) = ∞, thus

every node will get infected eventually, i.e., |S(∞)| = n as

expected from Theorem 1. But, this happens with E{τj} = ∞,

or more precisely, E{T1} = ∞ as T1 is heavy-tailed with

P{T1 > t} ∼ t−|∂(S(0))|α. A closer look into the proof of

Proposition 2 reveals that the same argument goes through for

any ‘inter-infection’ time, i.e., Ti+1 − Ti is heavy-tailed with

infinite mean, as long as the total number of edges out of the

currently infected set of nodes (|∂(S(t))|) remains bounded.

This suggests that the shape of βt largely governs whether

or not the infection goes pandemic and the time till infection

being heavy-tailed, whereas the exact distribution of τj and

Tk will clearly depend on the graph structure and the resulting

evolution of S(t) and N(S(t)) over time.

The paper [16] also focused on the behavior that the infec-

tion usually reaches a limited number of nodes without going

pandemic. They assumed βt is constant for all generations

on a tree graph, and then applied Galton-Watson branching

process with modification that the infection might be “killed”

at some random hop. We maintain that our framework is

far more general and versatile, as our model not only works

on any general graph, but also captures any possible time-

dependent (thus hop-dependent) infection rate, not necessarily

being constant and then turned off to zero.

IV. SIMULATION RESULTS

In this section, we present numerical results to demonstrate

that our continuous-time model with time-varying infection

rate can well capture the dynamics of the information diffusion

process in reality. Our experiments are performed over the

Digg dataset [11]. Digg is a news aggregator website with

an editorially driven front page. There are two mechanisms

that the information spreads over the underlying Digg graph –

through the connected friendship links, or through unconnect-

ed users’ access to an outer source (like front page or other

websites).

The dataset collected by K. Lerman [11] contains trace

about 3553 popular stories promoted to Digg’s front page over

one month in 2009. For each story, they collected its related

information including user IDs who voted for the story and the

time stamp of each vote. In addition, they also collected the

corresponding friendship graph composed of 270,535 distinct

users. The first user who initiates a post is considered to be the

source of this story. Since we are mainly concerned about the

influence of friendship on information diffusion process, in our

pre-processing procedure, we extract a “connected subgraph”

originating from the source, by tracking only the votes from

those who follow the ones that have voted earlier for this story.

This way, we can eliminate other factors such as outer source

problem, etc.
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Fig. 2. Measurement and simulation results of story 696.

Due to page limit, we here include only the results of story

696 initiated by source node 129511 as an example. We have

observed similar trends for all other stories. Figure 2(a) records

the evolution of the number of infected nodes from the trace,

where the time axis is in the unit of second. Since our goal is

to construct a tractable model that can faithfully reproduce this

process, here we consider the plot in Figure 2(a) as E{|S(t)|}.

Figure 2(b) shows E{|S̃(u)|} of the standard SI process with

unit infection rate from the same source node, where each



data point in this plot is the average over 1000 simulations.

As explained in Section III-B and from (8), we can then

derive m(t) by simply letting E{|S(t)|} = E{|S̃(u)|} and

finding the corresponding time index pairs u = m(t), which

is shown in Figure 2(c). To be more specific, in Figure 2(a),

we record the time sequence {tk} when k nodes get infected

for all k, while in Figure 2(b), we record the corresponding

times {uk}. Then plotting (tk, uk) in Figure 2(c) will serve

the purpose. Once we have extracted m(t) (or equivalently

βt) for a given story, we then simulate our time-dependent

information diffusion process starting from the same source

on the same graph. Figures 2(d) and (e) show the resulting

E{|S(t)|} and P{Tk+1 − Tk > t} (CCDF of the sojourn

time between two consecutive retweets) over t, respectively,

on a log-log scale where each data point is average over 1000

independent simulation runs and also over all k (for plot (d)).

In Figure 2(f), we compare the probability that users get

infected at each hop away from the source. Here we also

compare our algorithm with the Galton-Watson branching

model with random “killing” in [16]. Note that the model in

[16] doesn’t serve the purpose to depict how the infection set

evolves with time, but instead, tries to capture how infection

spreads along each hop, and at which hop the information

stops spreading. We can see from Figure 2(f) that our model

captures the behavior that the nodes closer to the source have

much higher probability to be infected than those far away,

while the [16] assumes the same infection probabilities for all

generations/hops until randomly killed (turned off to zero).
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Fig. 3. Aggregation of βt and m(t) over 30 most popular stories.

We next repeat our simulations for 30 most popular stories

(Each story has more than 400 voters who get to know it

through friendship links.), estimate the time-varying infection

rate βt and m(t) as above, and plot their aggregate data on

a log-log scale in Figure 3. We observe that βt decays as

approximately a piecewise power-law function of time t. The

turning point appears in the time interval [8, 20] hours after

the information is first released. This observation precludes

the feasibility of describing information diffusion process over

OSNs with constant diffusion (infection) rate. Specifically,

βt ∼ αt−γ where the slope is measured to be γ ≈ 0.82 with

α ≈ 0.0011 for the first 10 hours or so, while γ ≈ 1.77
and α ≈ 25.1288 is a good fit after 10 hours. Since γ > 1
for large t, it is clearly integrable and m(∞) is finite, as

also shown in Figure 3(b). This clearly explains why the

information reaches only a limited number of users in view

of Proposition 2. Piecewise power-law shape of the infection

rate βt also suggests that most information tend to spread

relatively fast within the first day (or daytime) after it is

released, but people will soon lose their interests in following

the information afterward, leading to faster decaying infection

rate and ultimately stopping the information diffusion.

V. CONCLUSION

In this paper, we proposed a simple yet versatile diffusion

model on a general OSN graph with time-dependent infection

rate βt. We have shown in theory and practice that the shape

of βt is the key factor in determining when and whether a

message will reach a set of prescribed nodes. Our general

framework and versatile time-rescaling relationship will allow

us to reuse any result from well-studied SI model on a graph

with constant infection rate, onto more realistic OSN setting

in which users quickly lose their interests in spreading the

information over time. One possible future work is to further

investigate other factors in information diffusion, including

spatially heterogeneous infection rate over different users (in

addition to temporally decaying infection rate) and quantify-

ing/predicting the size of infection and time till infection in

terms of local network structure around the sources.
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