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Abstract— Motivated by the recent findings of super-diffusive
patterns in mobility traces, we investigate the impact of super-
diffusive behavior of mobile nodes on contact-based metrics
and performance metrics of routing protocols in delay tolerant
networks (DTNs). We show that diffusive properties make huge
impact on the performance of routing protocol – message delivery
ratio and delay of delivered messages, and existing models such
as random waypoint models or Brownian motion models lead to
overly optimistic or pessimistic results when diffusive properties
are not properly captured. In addition, we point out that existing
contact-based metrics are unable to differentiate betweenvarying
degrees of routing performance under different diffusive mobility
patterns, and then propose to use the number of new contacts
as a fare more effective metric, especially for scenarios inwhich
message routing/forwarding is built upon contacts among mobile
nodes. Our work in this paper suggests that the diffusive behavior
of mobile nodes should be taken into account, for the design and
the performance evaluation of network protocols in DTN.

I. I NTRODUCTION

Generating realistic movement patterns of mobile nodes by
sound mobility models is crucial in the performance evalu-
ation of routing protocol in delay-tolerant networks (DTNs).
Mobility models that cannot capture the key characteristics of
mobile nodes properly will lead to misleading decision and
design guidelines.

Recently, [7], [9] have found ‘super-diffusive’ [12] move-
ment patterns in numerous GPS traces as well as access points
(AP) based traces. Super-diffusive behavior implies that mobile
nodes tend to spread out quicker than typical random walks
categorized by normal diffusion [12]. In [7], [9], various mobile
nodes including humans, zebras and buses have been shown
to follow super-diffusive movement patterns. In particular, for
human traces, different movement patterns such as walking,
running, inline-skating and bicycling have been shown to
display different degrees of diffusive properties (different rate
of ‘spreading out’).

In the literature, performance evaluation of routing protocols
has been extensively studied in MANETs, with only a handful
of studies for DTNs. [1] investigates performance evaluation of
DTN by using random waypoint models (RWP), but diffusive
property and other key characteristics of real mobility patterns
are very different from those of RWP [7], [9]. On the other
hand, authors in [2], [4], [10] have proposed several metrics
for performance evaluation study in MANETs. Although these
work provide extensive results, they are mainly for MANET,
not for DTN. For example, route-related metrics [10] (route
change rate, route duration) and link-related metrics [4],[10]

(link duration and link change rate) are not adequate for delay-
tolerant networks, as the chance of establishing a link is rare
and it is very unlikely that an end-to-end path exists at any
time in DTNs.

In this paper, we examine how different diffusive proper-
ties of mobile nodes impact contact-based metrics and the
performance of routing protocols in DTNs. First, we propose
to consider a new contact-based metric, tailored to routing
performance study in DTN. We show that contact rate and
contact duration, recently proposed pairwise contact based
metrics in [6] for DTN, are unable to differentiate varying
degrees of routing performance in DTN. Instead, in this paper,
we point out that each contact between mobile nodes under
study does not necessarily contribute to successful message
delivery/transfer in DTNs. Motivated by this, we distinguish
betweenthe number of new contactsand the number of total
contacts, and find that the number of new contacts is far
more relevant metric in performance study of DTN routing
protocols. Our results show that the number of new contacts
is in direct relationships with performance metrics such as
message delivery ratio and delay of delivered messages.

Second, equipped with our newly proposed metric, we
study performance evaluation in DTN by using more realistic
movement patterns that correctly reflect diffusive properties of
mobile nodes. Specially, we use epidemic routing protocol [15]
for performance test inns-2, and employ a class of Lévy
walk models that are easy to generate, versatile, and known
to capture various diffusive properties as observed in real
traces [7], [9]. Intuitively, mobile nodes with more diffusive
property will cover larger area over the same time duration
when compared to less diffusive ones, which in turn affects
how many new nodes a given node will encounter over time,
i.e., the number of new contacts.

Our results in this paper show that diffusive properties make
a huge impact on performance of DTN routing protocols, and
existing mobility models are mostly either too optimistic or
too pessimistic, suggesting that we should be more careful in
capturing the correct diffusive behavior of mobile nodes for
the purpose of correct evaluation of routing protocols.

II. PRELIMINARIES

In this section, we present background on the mean square
displacement – a metric to capture the rate at which mobile
nodes spread out, super-diffusion, Lévy walk models, and
provide a brief summary of our previous works [7], [9], in
which we report super-diffusive behavior in real mobile traces.
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A. Mean Square Displacement (MSD)
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Fig. 1. MSD computation and sample trajectories of two nodeswith different
diffusive properties. Two nodes moving with the same speed (1.34 m/s) are
simulated over the same duration (10000 sec).

The movement of a mobile node can be characterized by
measuring how far they are away from its starting point after
time t. This diffusive property can be properly captured by the
mean square displacement (MSD) [3], [12]. MSD is defined
as follows. When we denoteZt ∈ R

2 as the position of the
mobile node at timet, the MSD becomesM(t) , E{‖Zt −
Z0‖

2} (i.e., the second moment of the displacement‖Zt −
Z0‖ between the current position at timet and the position at
time 0). For a class of isotropic random walks with finite step-
length variance (σ2

L < ∞), the MSD will grow linearly witht,
i.e,. M(t) ∼ t, provided that the speed of the mobile node is
O(1) (or constant). A classical example of this case is the 2-D
Brownian motion process whose variance grows linearly with
t. Figure 1(a) illustrates how MSD is measured. As a mobile
node starting from the origin follows the trajectories above,
we collect the displacement at each time instantti. Then, we
investigate how MSD grows with timet to find out the diffusive
property of mobile nodes.

B. Super-Diffusion

When the step-length has infinite variance (σ2

L = ∞), the
mobile node tends to quickly spread out since longer step-
lengths are generated more often. This behavior is calledsuper-
diffusion [8], [16], while for σ2

L < ∞ it is called normal
diffusion. To quantify the degree of diffusive properties of
mobile nodes, we investigate the slope (γ) of M(t) in a log-log
scale (i.e.,M(t) ∼ tγ). For a normal diffusive case,γ = 1,
while we haveγ > 1 for super-diffusive case. In particular,
‘ballistic’ movement corresponds toγ = 2. Figure 1(b) shows
typical sample trajectories of two nodes with different diffusive
properties (differentγ). While both nodes have the same speed
(1.34 m/s) and run over the same duration (10000 sec), the
super-diffusive node (γ = 1.5) spreads out from the origin
much further than the normal-diffusive node (γ = 1.0).

C. Super-diffusive Property in Real Traces

Super-diffusive property of mobile nodes has been observed
in numerous GPS traces as well as AP-sampled traces [7], [9].
Table I summarizes the super-diffusive properties, in terms of
the slope of MSDγ, observed in several mobility traces. For
more details, see [7], [9].

Node Movement MSD slope (γ) Diffusion
human walking 1.48 super-diffusive
human running 1.70 super-diffusive
human inline-skating 1.88 super-diffusive
zebra walking & running 1.95 super-diffusive
bus n/a 1.55 super-diffusive

TABLE I

DIFFUSIVE PROPERTY OF MOBILE NODES FROM REALGPSTRACES. IN

ALL CASES, MSD INCREASES FASTER THAN LINEAR(γ > 1).

D. Lévy Walk Models

A set of Lévy walk models can be used to generate various
degrees of diffusive properties. Unlike other mobility models
that would require subtle choice of several parameters to
control diffusive properties, Lévy walk can directly control the
degree of super-diffusive properties by adjusting the exponent
of step-lengthsµ (single parameter) [7], [9]. The Lévy walk
model is a class of random walk models whose step-length
distribution is heavy-tailed, i.e., the step-length density is
characterized by

fL(l) ∼ l−µ, 1 < µ < 3,

where µ > 1 is required for any valid probability density
function. In particular, there exists a clear-cut relationship
betweenµ and the MSD (M(t) ∼ tγ) slopeγ as follows [13].

M(t) = E{‖Zt − Z0‖
2} ∼











t if µ > 3,

t4−µ if 2 < µ ≤ 3,

t2 if 1 < µ ≤ 2,

This relationship implies we can generate mobility patterns
with varying degrees of diffusive behaviors, withγ ranging
from 1 to 2 by controlling the step-length exponentµ. Note
that σ2

L = ∞ for any µ < 3, while µ = 3.0 corresponds to
Brownian motion with finite step-length variance.

III. M ETRICS AND SIMULATION SETUP

In this section, we first explain the contact-based metrics and
other metrics used in the performance evaluation of routing
protocols. We also provide details on simulation setup.

A. Metrics

1) Contact-based metrics:In the performance evaluation of
DTN routing protocols, ‘contact’ is the most important factor
as nodes have an opportunity of sending and receiving packets
only when they are within the transmission range with other
nodes. We say that there is a ‘contact’ or they ‘meet’ when
the distance between two nodes is less than their common
transmission ranger. Among many contact-related metrics,
we first consider the number of contacts (over a given time
duration) and contact duration as used in [6]. We distinguish
between the number of new contacts and total contacts among
nodes. Specifically, we also observe how the number of new
contacts increases as time goes on. Below are the three metrics
under our consideration.
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• The total number of new contacts: Whenever a pair of

nodes meet for the first time, this metric is incremented by
one. Future contacts after the first meeting between this
pair of nodes are not counted. We consider this metric as
new contacts are more likely to contribute to successful
message delivery than the repeated contacts to the same
nodes.

• The total number of contacts: Whenever any pair of
nodes meet, this metric is incremented by one.

• The total contact duration: This metric sums all the
contact durations among nodes. For example, if node A
is in contact with node B for10 minutes and with node C
for 20, the total contact duration is30 minutes regardless
of the case that node A is in contact with node B and C
at the same time.

2) Metrics for the performance of routing protocol:We
consider the epidemic routing protocol [15] in our study. While
there are a number of other routing protocols developed for
DTNs [5], most of them are variants of the epidemic routing
protocol with several tuning knobs for performance tradeoff.
Epidemic routing uses a store-carry-forward strategy in sending
and receiving a packet. When two nodes come into contact,
each node copies a message to other (‘infect’) if the other
node doesn’t have it already. After exchange of message, each
node will get all the messages it has not received so far [15].

We use the following key metrics to assess the performance
of epidemic routing protocol [1].

• Message delivery ratio: This metric indicates the per-
centage of packets that are delivered to the destination
after they are sent from the source.

• Delay of delivered messages:This metric shows the time
taken from the source to destination after packet is sent.
We only take into account packets that are successfully
delivered to their destination, as we cannot calculate the
delay of undelivered messages.

B. Simulation setup

Our ns-2 simulation setup is as follows.50 mobile nodes
move around according to a given mobility model of our choice
with constant speed (1.34 m/s) in an area (1500m×1500m).
We assume that nodes continuously move around and do not
pause, as our main focus lies in the impact of mobility pattern
(super-diffusive) on routing protocol performance. 45 (out of
50) nodes are selected as message source/destination nodes,
and each of45 nodes sends out one message (packet) to44
other nodes, i.e., a total of45 × 44 = 1980 messages are
sent out for delivery during the simulation. We set the total
simulation time to4000 seconds and the maximum buffer size
of each node to 500 messages. The maximum number of hops
a message can travel is set to 5 hops. We gradually increase
the ‘density’ of node coverage by changing their transmission
ranger from 25m to 200m. For the underlying mobility model,
as mentioned before, we use a set of Lévy walk models with
different µ for the step-length distribution to reflect different
degrees of diffusive behaviors. We also use RWP as a reference
model and for comparison purpose. All simulation results are
shown by averaging over10 independent trials.

IV. N UMERICAL RESULTS

A. Impact of Different Diffusive Behavior

In this section, we investigate the impact of diffusive prop-
erties of mobile nodes on the contact-based metrics among
nodes as proposed in Section III-A. All the mobile nodes under
consideration are assumed to follow the same mobility model
of our choice. We will consider heterogeneous mix of mobility
models for nodes later in this paper.
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(d) The total contact duration

Fig. 2. Impact of diffusive properties on several contact-based metrics: (a)
total number of new contacts among all nodes after simulation time t = 4000
seconds; (b) total number of new contacts during time interval t; (c) total
number of contacts (including those among the same pair of nodes) after
t = 4000 seconds; (d) total contact duration aftert = 4000 seconds. Metrics
that do not capture new contacts ((c) and (d)) perform the same regardless
of the different diffusive behaviors, while metrics based on ‘new contact’ are
sensitive to varying degree (µ) of diffusive behaviors. Whenµ is small, nodes
tend to spread out further from the starting points, thus creating larger number
of new contacts with other nodes.

1) Contact-based Metrics:Figure 2 shows how different
diffusive properties make an impact on contact-based metrics.
Note that the number of total contacts in (c) and the total
contact duration in (d) are almost the same for all class of
Lévy walk models with different diffusive behaviors underour
consideration (γ ranges from 2 to 1, asµ increases from 1.5
to 3.0), except RWP model for the same transmission range
r. However, the number of new contacts in Figure 2(a) shows
the considerable differences with different diffusive properties.
This means that the number of new contacts is more relevant
metric to capture the varying degree of diffusive behaviors. In
addition, Figure 2(a) also reveals that (i) when mobile nodes
diffuse faster (smallerµ, or equivalently, largerγ), they are
more successful in encountering new nodes, and (ii) for mobile
nodes with largerµ (diffuse slower), most of their contacts
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are with the same nodes nearby (since the total number of
contacts are the same from (c)). Figure 2(b) further supports
this observation; mobile nodes with faster diffusive property
keep reaching out and meet more new nodes as time goes on.
The number of new contacts for faster-diffusive nodes increases
sharply, while nodes with slower-diffusive behavior (e.g., µ =
3.0) rarely meet new nodes during the simulation time (t =
4000 seconds).
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(b) Delay of Delivered Messages

Fig. 3. Impact of diffusive properties on the performance ofepidemic routing.
As the nodes tend to diffuse faster (smallerµ), the message delivery ratio
becomes larger and the delay for the successfully deliveredmessage becomes
also smaller in general.

2) Performance of Epidemic Routing Protocol:Figure 3(a)
shows the average message delivery ratio of a class of Lévy
walk models with differentµ and RWP model. As can be seen
clearly, varying degrees of diffusive behavior (parameterized by
µ) result in widely different network performance. In particular,
we see that faster diffusive behavior of mobile nodes (smaller
µ) gives higher delivery ratio under the same transmission
range. This is largely due to the increase in the number of
new contacts with other mobile nodes for smaller values ofµ,
as nodes tend to reach out more aggressively. Note that the
ordering of message delivery ratio in Figure 3(a) is exactly
the same as that of the number of new contacts shown in
Figure 2(a).

Figure 3(b) shows the delay of successfully delivered mes-
sages under different diffusive mobility patterns. For smaller
transmission ranges (say,r = 25 ∼ 50), we have ‘noisy’
measurement values as the number of successfully delivered
message is small in this range (see Figure 3(a)). For larger
transmission range with reasonable message delivery ratio, we
again note that similar ordering relationship with respectto the
degree of diffusive behavior (µ) holds in general.

In addition to the impact of diffusive behavior on routing
performance, we point out again that Figures 2 and 3 together
indicate the importance of the metric ‘the number of new
contacts’ especially for DTN routing protocols. Note that,in
order to make a successful message delivery upon encounter,
the other node upon encounter should be either (i) a new node
or (ii) one of the previously-encountered nodes but now with
different set of messages in its buffer. Our simulation results
in Figures 2 and 3 show that the case (i) plays an important
role and the number of new contacts is very effective metric in
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(d) The total contact duration

Fig. 4. Impact of diffusive properties on contact-based metrics under a
heterogenous mix of mobility models. Mobile nodes following Lévy walk
model with µ = 1.5 and that withµ = 2.5 coexist. We vary the fraction
of nodes following Lévy walk model withµ = 1.5 from 0 to 50, while
keeping the total number of nodes the same (50 total). For example, legend
“µ(1.5), µ(2.5)(40,10)” means that there are 40 nodes following Lévy walk
with µ = 1.5 and 10 nodes withµ = 2.5.
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Fig. 5. Impact of diffusive properties on the performance ofepidemic routing
under a heterogenous mix of mobility models.

measuring routing protocol performance.∗ We expect that our
metric based on new contacts is more relevant for other types
of DTN routing protocols such as spray and wait [14], where
message delivery/transfer among nodes are based on contact
events.

∗This is analogous to epidemic process of diseases in which ittakes very
long to recover once gets infected (takes long to meet other nodes to get/dump
new messages). Thus, most successful message transfer (infection) would take
place when they meet for the first time.
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B. Scenarios with Heterogenous Mobility Models

In this section, we consider a scenario in which different
mobile nodes may follow different mobility patterns (with
different diffusive behaviors). This type of scenario may find
some application where mobility pattern of some fraction
of mobile nodes are controllable (e.g., data MULE [11]).
Specifically, in such a situation, one first needs to specify
what type of mobility models the data MULEs should follow
for optimal performance, in the presence of other ‘usual’
(uncontrollable) mobile nodes that are already following certain
mobility patterns.

In our scenario, we have total50 mobile nodes with two
different mobility models. One group of nodes follow Lévy
walk mobility model with µ = 1.5, while the rest of them
follow that with µ = 2.5. We gradually change the fraction
of the first group of nodes from 0 to 50, to see the effect
of different mix of mobility patterns on contact-based metrics
as well as the two performance metrics for epidemic routing
protocol.

Figures 4 and 5 show how contact-based metrics and the
performance of epidemic routing are affected when we change
the fraction of mobile nodes of two different models. When
we increase the fraction of higher diffusive nodes (more nodes
follow Lévy walk model withµ = 1.5), the overall diffusive
nature as a whole from total of 50 nodes becomes stronger, and
as Figures 4(a) and (b) show, this leads to larger number of new
contacts and the faster increase of the number of new contacts
with time t. In the epidemic routing performance evaluation,
this tendency still holds. When there are more nodes with
higher diffusive properties, message delivery ratio increases
while the delay of delivered messages decreases.

V. SUMMARY AND CONCLUSION

In this paper, we have investigated the impact of differ-
ent degrees of super-diffusive behavior of mobile nodes that
were previously found in real mobility traces on the routing
protocol performance in DTN. Our findings in this paper
can be summarized as follows: (i) Super-diffusive property
in mobility patterns makes significant impact on epidemic
routing protocol performance. In particular, we have found
that routing performance generally improves as the degree of
diffusive behaviors increases. (ii) In order to correctly capture
the dependency on the diffusive behaviors, we propose to use
the number of new contacts as a key metric that is in direct
ordering relationship with message delivery ratio and delay.
Our study also indicates that the traditional contact based
metrics that do not distinguish old and new contacts are unable
to predict performance difference induced by different diffusive
mobility patterns. The main intuition behind our findings isour
observation that more diffusive mobility patterns tend to pro-
mote new contacts among nodes. Our finding in this paper also
suggest that the diffusive behavior of mobile nodes should be
correctly taken into account for the design and the performance
evaluation of routing protocols, since otherwise the design
guidelines from traditional mobility models (Brownian motion
or RWP) could be either overly pessimistic or optimistic.

REFERENCES

[1] M. Abdulla and R. Simon, “The impact of moblity model on delay
tolerant networking performance analysis,” inProc. of the 40th Annual
Simulation Symposium(ANSS), 2007.

[2] F. Bai, N. Sadagopan, and A. Helmy, “Important: A framework to
systematically analyze the impact of mobility on performance of routing
protocols for adhoc networks,” inProceedings of IEEE INFOCOM, San
Francisco, CA, April 2003.

[3] H. Berg, Random Walks in Biology. Princeton University Press, 1983.
[4] J. Boleng, W. Navidi, and T. Camp, “Metics to enable adaptive protocols

for mobile ad hoc networks,” inIn Proc. of the 1st German Workshop
Conference on Wireless Networks(ICWN), 2002, pp. 293–298.

[5] S. Jain, K. Fall, and R. Patra, “Routing in a delay tolerant network,” in
Proceedings of ACM SIGCOMM, Portland, OR, 2004.

[6] A. Khelil, P. Maron, and K. Rothermel, “Contact-based mobility metrics
for delay-tolerent ad hoc networking,” inInternational Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems, 2005, pp. 435–444.

[7] S. Kim, C. Lee, and D. Y. Eun, “Super-diffusive behavior of mobile
nodes from gps traces,” inACM Mobicom Poster, 2007, available at
“http://www4.ncsu.edu/∼skim8/trace/Mobicom07-poster-Kim.pdf”.

[8] J. Klafter and I. M. Sokolov, “Anomalous diffusion spreads its wings,”
Physica A, vol. 117, no. 1, pp. 179–188, 1983.

[9] C. Lee, S. Kim, and D. Y. Eun, “Super diffusive behavior ofmobile
nodes from mobility traces,”NCSU Technical Report, 2007, available at
“http://www4.ncsu.edu/∼skim8/trace/techrep07-superdiffusive.pdf”.

[10] N. Sadagopan, F. Bai, B. Krishnamachari, and A. Helmy, “PATHS:
analysis of PATH duration statistics and their impact on reactive MANET
routing protocols,” inMobiHoc, Annapolis, MD, June 2003, pp. 245–256.

[11] R. C. Shah, S. Roy, S. Jain, and W. Brunette, “Data MULEs:Modeling
a three-tier architecture for sparse sensor networks,” inIEEE workshop
on Sensor Network Protocols and Applications (SNPA).

[12] M. Shlesinger and G. Zaslavsky,Levy Flights and Related Topics in
Physics. Springer, 1994.

[13] M. F. Shlesinger, “Supra-diffusion,”Lecture Notes in Physics, Springer,
vol. 621/2003, pp. 139–147, 2004.

[14] T. Spyropoulos, K. Psounis, and C. Raghavendra, “Sprayand wait: an
efficient routing scheme for intermittently connected mobile networks,”
in ACM Sigcomm workshop, 2005.

[15] A. Vahdat and D. Becker, “Epidemic Routing for Partially-Connected
Ad Hoc Networks,” Duke University Technical Report CS-200006, Tech.
Rep., April 2000.

[16] E. Weeks, T. Solomon, and H. Swinney, “Observation of anomalous
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