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Abstract—The class of isotropic random walk mobility models,
including Random Direction mobility model, Random Walk
mobility model and Brownian motion mobility model, has been
widely used in the study of Mobile Ad-Hoc Networks for mobility
modeling and control. In this paper, we show an important
property for contact time of isotropic random walk mobility
models. Specifically, we find that the mean contact time of two
mobile nodes following isotropic random walk mobility models is
invariant with respect to the step-length distribution under both
the simplest distance-based (Boolean) interference modeland the
more realistic SINR-based interference model. We also provide
results about the effect of system parameters on the contactand
inter-meeting time of mobile nodes and discuss their higher-order
statistics.

I. I NTRODUCTION

Mobility modeling and control are critical in the study
of Mobile Ad-Hoc Networks (MANETs).Mobility model-
ing studies how to generate mobility patterns to capture
key statistical characteristics of real life mobility behaviors.
Commonly used mobility models include Random Direction
mobility model (RDM) [15], [14], Random Waypoint mobility
model (RWP) [4], Random Walk mobility model (RWM) [7],
Brownian motion mobility model (BMM) [6], Reference Point
Group Mobility (RPGM) [12] and Manhattan (MH) [1]. In
contrast,mobility control is to design mobility pattern for
controllable mobile elements (e.g., data MULE [16] in wireless
sensor networks) so as to improve system performance, e.g.,
in terms of simple and scalable implementation, economical
power consumption, etc.

Contact time and inter-meeting time are two key metrics
in MANETs, as these two specify the link-level dynamics
that forms a basis for any network protocol above. In sparse
MANETs such as Delay Tolerant Networks, in order to trans-
mit data, a mobile nodeA has to wait until it meets other node
B (inter-meeting time), thenA can transmit data toB when
they are still in contact (contact time). NodeB will keep the
data if it is the intended receiver, or relay/forward it to others
upon encounter if not. Several properties of the inter-meeting
time (e.g., mean or tail behavior) have been widely studied.For
instance, theoretical analysis on mean inter-meeting time[10],
[17] are conducted to facilitate the performance analysis of
forwarding algorithms.

In contrast, current studies on the contact time are mostly
either case-by-case under a specific mobility model (e.g,
RWP) or under oversimplified assumptions (e.g., mobile nodes

always go straight (never turns around) once in contact). For
example, a mobile node (human being) in MANET does
not necessarily move straight just because it’s under contact
with other mobile nodes. In addition, all the current results
on both contact and inter-meeting time are based on a very
simple assumption that nodes are in contact if and only if
they are within certain distance (so-called Boolean model).
However, recent work [5] shows that even in a sparse network
interference from other nodes are not always negligible, not
to mention the case of moderate-to-dense networks. Thus, itis
also important to study the characteristics of contact and inter-
meeting time under a more realistic setting with interference
from other nodes taken into account (this is called physical
model or SINR model; see Section II-A for details).

In this paper, we consider a class of isotropic random walk
mobility models that includes RDM, RWM, and BMM, and
show that theaverage contact timeof mobile nodes under
this class of mobility models isinvariant with respect to
different choices of mobility models. Specifically, we show
that the average contact time is independent of the step-
length1 distribution of mobility models. Our invariance results
hold true for both Boolean model and SINR model. This
immediately implies that it really doesn’t matter to assume
whether a mobile node moves straight or random zigzag (like
Brownian motion) or whether the Boolean model or SINR-
based interference model is used, as long as the average
contact time is concerned. In addition, we investigate key
characteristics of inter-meeting time under Boolean and SINR-
based model and point out that the average inter-meeting time
does not enjoy the invariance property. We also study higher-
order behavior of both contact and inter-meeting time.

II. PRELIMINARIES

A. Models and Definitions

Boolean interference model, or distance model, is widely
used in the study of MANET. LetA(t), B(t) ∈ Ω be the
position of nodeA andB at timet, respectively, in a domain
Ω. Then, under the Boolean model, nodes A and B are in
contact at timet if and only if:

‖A(t) − B(t)‖ ≤ d, (1)

1Step-length is the distance that a mobile node travels before it changes its
direction.



where ‖ · ‖ is the Euclidian norm in 2-D andd is their
communication range.

SINR interference model, or physical model [11], [8],
is more realistic than Boolean model in the sense that the
interference from other nodes{Mi} (i = 1, 2, · · · , N) is
directly taken into account. As before, if we letMi(t) ∈ Ω
denote the position of nodeMi at time t, then under SINR
model, nodeB can successfully receive data from nodeA at
time t if and only if

PA‖A(t) − B(t)‖α

N0 +
∑N

i=1 Pi‖Mi(t) − B(t)‖α
≥ γ0, (2)

whereα (usuallyα ∈ [−4.5,−2]) is the path loss coefficient,
N0 is the noise power level, andγ0 (usuallyγ0 ∈ [0, 20] dB)
is the minimum signal-to-interference noise ratio required for
successful decoding at the receiver. For simplicity, we assume
that PA = Pi = P for any i. We define by SNR= P/N0 the
ratio between power of the user and that of the background
noise.

Contact-based mobility metrics are often used to statistically
characterize different mobility patterns. We note that allthe
contact-based metrics can be defined in the following unified
way:

Definition 1: The general contact timeTGC of nodesA and
B is given by

TGC , inf
t>0

{t : A(t) 6∈ S(B(t))},

for a suitably chosen set of pointsS (to be specified below),
given thatA(0−) 6∈ S(B(0−)) andA(0) ∈ S(B(0)). �

For the choice ofS, we use the following:

SBoolean
c (Y ) , {x ∈ Ω | ‖x − Y ‖ ≤ d}

SSINR
c (Y ) ,

{

x ∈ Ω

∣

∣

∣

∣

P‖x−Y ‖α

N0+P
∑N

i=1 ‖Mi(t)−Y ‖α
≥ γ0

}
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(a) Boolean model (b) SINR model

Fig. 1. Contact setsS (possibly time-varying) under different interference
models. Positions of nodes in (a) and (b) are the same.

Figure 1 shows examples ofSBoolean
c (·) andSSINR

c (·) for a
nodeB. Then, whenS = SBoolean

c , TGC in Definition 1 gives
thecontact timeof nodesA andB under Boolean model, and
whenS(·) = SSINR

c (·), it becomes contact time under SINR
interference model. In particular, ifS(·) = S̄Boolean

c (·) =

Ω \ SBoolean
c (·), then TGC now becomes the inter-meeting

time of nodesA and B under Boolean model, and similarly
for SINR model. When nodeB is static (i.e.,B(t) = B(0) for
all t just like access points or stationary sensors), the contact
and inter-meeting time become thesessionand inter-session
time under the appropriate choice of Boolean or SINR models.

Throughout this paper, we do not consider nodes’ pause
time as our main focus lies in theeffect of mobility patterns
on the contact-based metrics.

B. A Class of Isotropic Random Walk Mobility Models

In the class ofisotropic random walk mobility models, a
mobile node first selects a random step-lengthL, a speed
from some well-defined distribution, and a directionφ taken
uniformly and randomly from[0, 2π). Then, it moves ac-
cording to the chosen velocity forL with angle φ, and
upon its completion of the step, the whole procedure repeats
independently of all others. This set of models includes RDM,
RWM and BMM, by suitably choosing the distribution of step-
length L (and that of speed if appropriate). To approximate
BMM, we take very small step-lengths over a small time
interval.

There are several reasons that this class of isotropic random
walk mobility models is important and has thus received
much attention in the literature for the study of mobility
modeling and control. First, they are easy to implement,
which makes them the first choice to provide abenchmark
for performance analysis and quick performance evaluationof
forwarding/routing algorithms. Second, from recent theoretical
and extensive simulation results [14], [2], [9], [3], this class
of isotropic random walk mobility patterns haveuniform sta-
tionary distributionfor both node position and node direction
(angle). This not only simplifies study on contact metrics2, but
also leads to scalable implementation of data MULEs [16].

C. Related work

[13] derives general results on the average session time
and apply them for the case of RWP mobility model. [17]
obtains the mean inter-meeting time for both RDM and RWP.
Specifically, their results show that the average inter-meeting
time for RDM is not affected by the step-length distribution.
While this holds under the network setting of their interest, our
detailed study shows that this is not always the case.3 While
our theoretical analysis is based on results in [13], our focus
in this paper is on the invariance property for the contact time
of isotropic random walk mobility patterns (not necessarily
RWP) under both Boolean and SINR interference models.

2As will be shown later, our invariance result for contact time under Boolean
model is direct application of this property.

3As will be shown in Section III, the difference in the averageinter-meeting
time caused by different step-length distributions of isotropic random walk
mobility models, can be up to30% ∼ 40% in sparse networks.



III. I NVARIANCE PROPERTYUNDER BOOLEAN

INTERFERENCEMODEL

A. Contact Metrics under Boolean Model

In this section we consider several contact-based metrics,
namely, session time, inter-session time, contact time, and
inter-meeting time, all under Boolean interference model.We
first present numerical simulation results on these metric.Later
in Section III-B we provide theoretical support on our findings
in this section. Our simulation setup is as follows:

• Simulation domainΩ: 400m× 400m square
• Mobility models: Since the effect of speed on contact

metric is quite straightforward, we here set the speed
to be 1m/s all the time. In this case,time has the
same value aslength in all mobility models. Table I
summarizes mobility models under our consideration.
Note that step-length distribution for the three models
are widely different with different means.

Mobility models Step length dist. (m) Speedv (m/s)
BMM Fixed: 8 Fixed: 1
RWM Exponential with mean 40 Fixed: 1
RDM Uniform over [0, 40] Fixed: 1

TABLE I
MOBILITY MODELS

• Communication range:d = {5, 10, 15, 20, 25, 30}m.
• Boundary behavior: reflecting.
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Fig. 2. Average session time under Boolean model is invariant with respect
to different random walk mobility patterns.
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(a) contact time (Boolean) (b) Inter-meeting time (Boolean)

Fig. 3. Average contact and inter-meeting time under Boolean model: (a)
The average contact time is invariant and linearly increases with transmission
ranged. (b) The average inter-meeting time are different for threemobility
models for smaller transmission range (sparse network), but this difference
diminishes as the network becomes denser.

Figure 2 shows that the session time (or session length since
v = 1m/s) under Boolean model is invariant with respect to

different random walk mobility patterns, i.e., invariant with
respect to step-length distribution, and so is the contact time
as shown in Figure 3(a).

Figure 3(b) shows that the inter-meeting time is not always
invariant, and different mobility patterns lead to different mean
inter-meeting time, especially insparse networkswhere the
communication range is small compared to the simulation area
(e.g.,d = 5, 10). For example, whend = 5, the mean inter-
meeting time of RWM is at least30% longer than that of
BMM. However, when the network is denser (e.g.,d ≥ 15),
the inter-meeting time is almost invariant, and the productof
inter-meeting time and the radius (transmission range) seems
to be constant (we will discuss this later in Section III-B.).

B. Theoretical Support on the Invariance Property

1) Session Time:The following result in [13] gives the
mean session timeTS in a closed areaH with boundary∂H :

Proposition 1: [13] Let v be the node speed,θ(d~r) be the
direction of tangent to the differential line segment at point ~r
in Ω, andh(~r, φ) be the normalized specific flux at point~r in
directionφ. Then, the average session time is given by

TS =
E[1/v]

∫

H

∫ 2π

0
h(~r, φ)dφdH

∫

∂H

∫ π

0
sin φ · h(~r, θ(d~r) + φ)dφdr

. (3)

To explainh(~r, φ) more clearly, we re-interpret its definition
in [13] as following: there exists constantC, which does not
change with respect to either~r or φ, such thatC · h(~r, φ) is
the expected rate of crossings over the differential line segment
at point~r perpendicular toφ per unit length of the segment
and per unit angle. In other words,h(~r, φ) is the normalized
stationary probability density function of both node position
and node direction.

For isotropic random walk mobility models, we can derive
the average session time/length from Proposition 1 as shown
below.

Proposition 2: The average session time for the class of
isotropic random walk mobility models under Boolean inter-
ference model, is given by

TS = E[1/v]
πd

2
, (4)

wherev is the node speed andd is the communication range.

Proof: For isotropic random walk mobility models,
h(~r, φ) = ρ0, whereρ0 is a constant, i.e., stationary pdf does
not depend on~r (position) orφ (direction). Hence, from (3),
the average session time becomes

TS = E[1/v]
2πρ0A

2ρ0L
= E[1/v]

πA

L
, (5)

whereA andL are the area and perimeter of the closed area
H , respectively. When the communication range isd, under
Boolean model,H is a circle with radiusd. In this case, we
haveA = πd2, L = 2πd. Thus, from (5), we are done.

We observe that the average session time predicted in (5)
closely matches with the numerical results in Figure 2.



2) Contact Time:We now consider contact time between
a pair of mobile nodes. To proceed, we pose the following
assumption:

Assumption 1:Given two nodesA and B, each of which
follows isotropic random walk mobility models, define the
difference walkerC with its position at timet given by
C(t) := A(t) − B(t). Then the contact time of nodesA and
B is assumed to be equal to the session time of nodeC with
respect to a circleH with radiusd. �

Remark 1: In an unbounded domain (e.g.,Ω = R
2), it is

obvious that the contact time of nodesA and B is exactly
the session time of their difference walkerC. However, in a
bounded area, when nodeA or B is very close to the boundary,
e.g., whenA is on the boundary, then its contact region is no
larger than a half circle. Intuitively, when the domain sizeis
quite large compared to the contact region, the event thatA
or B is very close to the boundary will be a rare event, and
Assumption 1 may be well satisfied in this case. �

We now have the following theorem on the contact time:

Theorem 1:Under Assumption 1, the average contact time
of two independent nodesA, B following any isotropic
random walk mobility models is invariant with respect to the
step-length distribution of the chosen mobility models. �

Proof: It is easy to see that for the difference random
walker C of nodesA and B, the stationary distribution of
node direction is still uniform in [0, 2π). However, its sta-
tionary distribution of nodeposition is not uniform anymore.
Suppose that in the steady-state,A(t) andB(t) are uniformly
distributed on[−a, a] × [−a, a] (a > 0), then the stationary
pdf of C(t) is given by

fc(x, y) =

{

( 1
2a

− |x|)( 1
2a

− |y|), for |x|, |y| ∈ [0, 2a]

0, otherwise.

Since the stationary distribution of node direction is uniform,
h(~r, φ) is invariant with respect toφ, i.e., h(~r, φ) = h(~r).
Then, from Proposition 2, the average session time forC
becomes

E[1/vR] · 2π
∫

H
h(~r)dH

2
∫

∂H
h(~r)dr

, (6)

wherevR is the speed ofC, i.e., the relative speed ofA and
B. Note that no matter what the step-length distribution is,
the stationary distribution ofA, B, as well as that ofC, does
not change, henceh(~r) remains the same. In other words,
h(~r) is invariant with respect to the step-length distribution.
Thus, the average session time forC is also invariant with
respect to step-length distribution. In view of Assumption1,
this completes the proof.

In fact, the relative speed (vR) of A and B is not fixed
at 1m/s any more. This is why the average contact time in
Figure 3(a) is smaller than the average session time in Figure 2.

3) Inter-meeting Time:As long as the inter-meeting time
of two nodesA andB can be well approximated by the inter-
session time of their difference walkerC with respect to a
circle H with radius d, the inter-meeting (or inter-session,

when one node is static) time can be derived similarly as in
Theorem 1, since Proposition 1 does not require any specific
form of the shape of bounded areaH under study. This leads to
the estimates of the mean inter-session time asE[1/v]A−πd

2

2d
.

Note that [17] derives the mean inter-session time asA2dE[v] ,

which is very close toE[1/v]A−πd
2

2d
.

However, Figure 3(b) shows the clear difference in the mean
inter-meeting time when the communication ranged (e.g.,d =
5, 10) is very small compared to the simulation area (square
with width 400), i.e., the inter-meeting time of two nodesA
andB cannot be well approximated by the inter-session time
of their difference walkerC, at least for sparse networks.4.

C. Effective Contact and Inter-meeting Time - Beyond the
First-order Behavior

In Sections III-A and III-B, the first-order behavior of the
contact and inter-meeting time is discussed. However, higher-
order behavior of contact and inter-meeting time may also be
critical. For example, consider the following two distributions
of inter-meeting timeTI (unit in seconds): (i)TI is uniformly
distributed in (1, 10000); (ii)TI is either 1 or 10000 with
equal probability. Obviously,TI has the same mean in both
cases. However, for effective communication, we would prefer
TI in the first case to that in the second case, since if two
nodes meet again 1 second after they just depart from each
other, most likely they do not have any new information to
exchange. Similarly, too short contact time essentially leads
to ‘ineffective meeting’.

For each contact/inter-meeting sample we have collected
(we collect 7500 samples for each point in Figures 3(a)
and (b)), we use the following rules to decide whether it is
‘effective’ or not: (i) Effective contact time samples should
be at least 3 seconds long5 or larger than1/10 of the mean
contact time. (ii) Similarly, effective inter-meeting time sample
should be at least 2 minutes (120 seconds). This threshold
is also very small compared to the mean inter-meeting time
shown in Figure 3(b).

Under these two rules, we find that the percentage of ‘in-
effective’ contact samples is always less than3%. So, even if
we plot the mean contact time using only ‘effective’ samples,
the invariance results still hold. However, the percentageof
‘ineffective’ inter-meeting meeting samples is rather high, e.g.,
more than40% of the inter-meeting time samples collected for
BMM is smaller than 120 seconds.

Figure 4(a) shows the average effective inter-meeting time.
Now, BMM has the largest mean effective inter-meeting time
among these models, which is in stark contrast to Figure 3(b),
where the mean inter-meeting time for BMM is the smallest.
This is because BMM produces too many ineffective (too
small) inter-meeting time samples, which contributes to the
smallest mean inter-meeting time in Figure 3(b). To see this

4Another example where the inter-meeting time of nodesA andB cannot
be well approximated by the inter-session time ofC, is the case in Section IV
where the contact between two nodes is not uniquely determined by their
distance.

5Note that in our simulation setting, the contact time is verysmall, which
is why the threshold is also chosen to be small.
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(a) Effective inter-meeting time (b) Inter-meeting time CCDF

Fig. 4. This figure use the same data set as Figure 3(b). (a): Average
‘effective’ inter-meeting time, i.e., the mean of all inter-meeting time samples
no less than 120 seconds. (b) CCDF of all inter-meeting time samples: BMM
model produces much larger percentage of ‘ineffective’ inter-meeting time
than other two models.

more clearly, we plot the Complementary Cumulative Dis-
tribution Function (CCDF) of all inter-meeting time samples
(including both effective and ineffective ones) in Figure 4(b).
We can see clearly that BMM produces much larger percentage
of ineffective inter-meeting time samples than RWM and RDM
do. Intuitively, this is because BMM generates many short
steps in its mobility pattern. Thus, when a pair of nodes meet
and depart under BMM, they tend to ‘hang around’ nearby
and meet again shortly.

IV. I NVARIANCE PROPERTY UNDERSINR INTERFERENCE

MODEL

As Figure 1 shows, the contact region of a nodeB at
any time t under SINR model is affected by not only the
parameters related to SINR criterion (e.g.,α, SNR, γ0), but
also the existence and locations of other mobile nodes in the
same system. SINR model considers more realistic situations
than Boolean model, but at the same time poses challenge to
our analysis due to many interferences from other nodes and
more complicated geometric structure of the contact set. Thus,
the question is: “Does the invariance property we have under
Boolean model still hold under SINR model?” In this section,
we numerically study the contact and inter-meeting time under
SINR interference model. Our simulation set-up is as follows.

• Simulation area, mobility models, boundary behavior are
the same as in Section III.

• Unless otherwise specified (e.g., in Figures 6, 7 where
we study the effect of differentα, γ0 and the number
of nodes), we setα = −4, γ0 = 5 (≈ 7dB) and the
number of nodes= 10.

• SNR ∈ {0, 5, 10, 15, 20} dB, here SNR = P/N0 is
the value measured at distanced0 = 15(m). Note that
d0 may vary according to the system requirement on
the quality of communication channel, e.g. when higher
quality communication is required (e.g., lower bit error
rate), largerd0 can be used.

Figure 5 shows the average contact and inter-meeting time
under SINR model. Similar to Figure 3, the average contact
time is still invariant with respect to different isotropicrandom
walk mobility models with different step-length distributions,
while the average inter-meeting time is not.
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(a) contact time (SINR) (b) Inter-meeting time (SINR)

Fig. 5. Average contact and inter-meeting time under SINR model. Similar
invariance property as that under Boolean model (Figure 3) is observed: (a)
The mean contact time is invariant with respect to mobility patterns; (b) The
mean inter-meeting time is not invariant.

−5 0 5 10 15 20 25
5

10

15

20

25

30

35

40

SNR (dB)
M

ea
n 

co
nt

ac
t l

en
gt

h

 

 

α=−2
α=−4

−5 0 5 10 15 20 25

10

20

30

40

50

SNR (dB)

M
ea

n 
co

nt
ac

t l
en

gt
h

 

 

γ
0
=0 dB

γ
0
=5 dB

γ
0
=10 dB

(a) contact time vs.α (b) contact time vs.γ0

Fig. 6. The effect of path loss exponentα (a) and the SINR thresholdγ0

(b) on the mean contact time under SINR interference model.

Figure 6 shows the effect of different values of the path loss
exponentα (in (a)) and the SINR thresholdγ0 (in (b)). As
|α| increases, the mean contact time also increases, as larger
|α| means smaller interference from other nodes. In addition,
larger γ0 leads to smaller mean contact time, as largerγ0

effectively decreases the size of the contact region.
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20 users
30 users

(a) contact time (20 users) (b) contact time vs. # of nodes

Fig. 7. The effect of the number of nodes on the mean contact and inter-
meeting time under SINR model: (a) The invariance property for the average
contact time still holds when the number of nodes is increased to 20 (compared
to Figure 5(a) with 10 nodes). (b) We use RWM for the mobility model and
change the number of nodes in the system.

Figure 7(a) shows that the mean contact time is still in-
variant with respect to mobility patterns when the number of
users in the system is increased from 10 to 20. (Of course
the contact time is smaller due to the interference from more
nodes.) In Figure 7(b), we use RWM for all nodes and vary
the number of nodes from 10 to 30. Clearly, the larger the
number of nodes, the more interference on any of the nodes.
Thus, the mean contact time decreases with the increase in the



number of nodes.

V. CONCLUSION

In this paper, we show the invariance property for the av-
erage contact time of isotropic random walk mobility models.
We find that the mean contact time is invariant with respect
to different isotropic random walk mobility models under
both Boolean and SINR interference models. In addition, we
study the higher-order behavior (more than just the mean)
of both contact and inter-meeting time. To the best of our
knowledge, this is the first work reporting such a clean-cut
invariance property for a large class of mobility models under
both Boolean and SINR interference models. We expect that
our invariance results can help simplify a number of system
optimization and protocol design in the area of wireless sensor
networks and MANETs.
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