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Abstract—The class of isotropic random walk mobility models, always go straight (never turns around) once in contact). Fo
including Random Direction mobility model, Random Walk example, a mobile node (human being) in MANET does

mobility model and Brownian motion mobility model, has been ; : ; "

widely used in the study of Mobile Ad-Hoc Networks for mobility nqt necessarlly_move straight just_ because it's under conta
modeling and control. In this paper, we show an important with other mobile no<_jes. In ad_dmon, all the current result
property for contact time of isotropic random walk mobility ~On both contact and inter-meeting time are based on a very

models. Specifically, we find that the mean contact time of two simple assumption that nodes are in contact if and only if
mobile nodes following isotropic random walk mobility modds is  they are within certain distance (so-called Boolean model)
invariant with respect to the step-length distribution under both However, recent work [5] shows that even in a sparse network
the simplest distance-based (Boolean) interference modahd the . .
more realistic SINR-based interference model. We also prage 'nterfergnce from other nodes are not always nte'g'b!e’ no
results about the effect of system parameters on the contaeind {0 mention the case of moderate-to-dense networks. Thiss, it
inter-meeting time of mobile nodes and discuss their higheorder also important to study the characteristics of contact atet-
statistics. meeting time under a more realistic setting with interfesen
from other nodes taken into account (this is called physical
model or SINR model; see Section IlI-A for details).
In this paper, we consider a class of isotropic random walk
Mobility modeling and control are critical in the studymobility models that includes RDM, RWM, and BMM, and
of Mobile Ad-Hoc Networks (MANETS).Mobility model- show that theaverage contact timef mobile nodes under
ing studies how to generate mobility patterns to captuthis class of mobility models isnvariant with respect to
key statistical characteristics of real life mobility bet@s. different choices of mobility models. Specifically, we show
Commonly used mobility models include Random Directiothat the average contact time is independent of the step-
mobility model (RDM) [15], [14], Random Waypoint mobility length distribution of mobility models. Our invariance results
model (RWP) [4], Random Walk mobility model (RWM) [7], hold true for both Boolean model and SINR model. This
Brownian motion mobility model (BMM) [6], Reference Pointimmediately implies that it really doesn’t matter to assume
Group Mobility (RPGM) [12] and Manhattan (MH) [1]. In whether a mobile node moves straight or random zigzag (like
contrast, mobility control is to design mobility pattern for Brownian motion) or whether the Boolean model or SINR-
controllable mobile elements (e.g., data MULE [16] in wéss based interference model is used, as long as the average
sensor networks) so as to improve system performance, eggntact time is concerned. In addition, we investigate key
in terms of simple and scalable implementation, economiagfiaracteristics of inter-meeting time under Boolean amtRS|
power consumption, etc. based model and point out that the average inter-meetirgy tim
Contact time and inter-meeting time are two key metriatoes not enjoy the invariance property. We also study higher
in MANETS, as these two specify the link-level dynamicsrder behavior of both contact and inter-meeting time.
that forms a basis for any network protocol above. In sparse
MANETS such as Delay Tolerant Networks, in order to trans- I
mit data, a mobile nodd has to wait until it meets other node
B (inter-meeting timg then A can transmit data t& when A. Models and Definitions
they are still in contactdontact tim¢. Node B will keep the  Boolean interference model or distance model, is widely
data if it is the intended receiver, or relay/forward it thets ysed in the study of MANET. Letd(t), B(t) € Q be the
upon encounter if not. Several properties of the inter-mget position of node4 and B at time¢, respectively, in a domain

time (e.g., mean or tail behavior) have been widely studted. (). Then, under the Boolean model, nodes A and B are in
instance, theoretical analysis on mean inter-meeting il contact at time if and only if:

[17] are conducted to facilitate the performance analy$is o
forwarding algorithms. [A(t) = BQ)| < d, 1)
In contrast, current studies on the contact time are mostly

either case-by-case ] U”Q'?r a specifig mobility mO(_jEI (e.g Step-length is the distance that a mobile node travels eéf@hanges its
RWP) or under oversimplified assumptions (e.g., mobile sodéirection.

I. INTRODUCTION

. PRELIMINARIES




where || - || is the Euclidian norm in 2-D and is their Q\ SBe°can(.), then Toc now becomes the inter-meeting
communication range. time of nodesA and B under Boolean model, and similarly
SINR interference mode| or physical model [11], [8], for S.INR modeI.When Y‘OdB IS sta_t|c (i.e.B(t) = B(0) for
: . . Il ¢ just like access points or stationary sensors), the contact
is more realistic than Boolean model in the sense that the : L : . )
. , . and inter-meeting time become tkessionand inter-session
interference from other node§M;} (i = 1,2,---,N) is : .

. ) . time under the appropriate choice of Boolean or SINR models.
directly taken into account. As before, if we 181;(t) € Q i i )
denote the position of nod#/; at time ¢, then under SINR Throughout this paper, we do not consider nodes’ pause

model, nodeB can successfully receive data from nadeat time as our main focus Iie§ in theffect of mobility patterns
time ¢ if and only if on the contact-based metrics.
Pa||A(t) — B(t)||*
I;H (t) — B®)|| > o, @
No+ 32,0, PillMi(t) — B(t)[|* B. A Class of Isotropic Random Walk Mobility Models

wherea (usuallya € [—4.5, —2]) is the path loss coefficient,
Ny is the noise power level, ang, (usually~, € [0,20] dB)
is the minimum signal-to-interference noise ratio requifer

In the class ofisotropic random walk mobility models:
mobile node first selects a random step-lengtha speed

tul decodi h . olici from some well-defined distribution, and a directigrtaken
successful decoding at the receiver. For simplicity, weiees uniformly and randomly from[0, 27). Then, it moves ac-

that Py = P; = P for anyi. We define by SNR= P/Ny the ., 4ing "to the chosen velocity fof, with angle ¢, and

ratio between power of the user and that of the backgroufjd its completion of the step, the whole procedure repeats

noise. independently of all others. This set of models includes RDM

Contacf[-bas.ed mobility mgtrics are often used to stasific p\y\; ang BMM, by suitably choosing the distribution of step-
characterize different mobility patterns. We note thattaé length L (and that of speed if appropriate). To approximate

contact-based metrics can be defined in the following unifi%*/lM we take very small step-lengths over a small time
way: '

interval.
Definition 1: The general contact timi&;c of nodesA and  There are several reasons that this class of isotropic rando
B is given by walk mobility models is important and has thus received
A . ) much attention in the literature for the study of mobility
Teo _igg {t:A®) ¢ S(BO) modeling and control. First, they are easy to implement,
for a suitably chosen set of poins (to be specified below), Which makes them the first choice to providebanchmark
given thatA(0~) ¢ S(B(0~)) and A(0) € S(B(0)). o for performance analysis and quick performance evaluatfon
] ) forwarding/routing algorithms. Second, from recent tie¢ical
For the choice of5, we use the following: and extensive simulation results [14], [2], [9], [3], thifss
gBoolean(y) & 2 c | [|lz — Y| < d} of isotropic random walk mobility patterns hawaiform sta-
¢ - tionary distributionfor both node position and node direction
SSINR(y) 2 )y e Pllz—Y|* > o (angle). This not only simplifies study on contact me#jdsit
¢ No+P vazl | M;(t)=Y]|> — also leads to scalable implementation of data MULEs [16].

_ - C. Related work

[13] derives general results on the average session time
and apply them for the case of RWP mobility model. [17]
obtains the mean inter-meeting time for both RDM and RWP.
sf°°'ea" B() Specifically, their results show that the average intertinge

B B time for RDM is not affected by the step-length distribution

- While this holds under the network setting of their interesir
| detailed study shows that this is not always the cagéhile
our theoretical analysis is based on results in [13], ouugoc
(a) Boolean model (b) SINR model in this paper is on the invariance property for the contaneti

Fig. 1. Contact set§ (possibly time-varying) under different interferenceOlc Isotropic random walk mOblllty pat,tems (nOt necesyarll
models. Positions of nodes in (a) and (b) are the same. RWP) under bOth BOO|eaI"I and SINR |nterference mOde|S

Figure 1 shows examples §f°°'can(.) andSSTVE(.) for a
nodeB. Then, whenS = SBo¢ean T in Definition 1 gives  2As will be shown later, our invariance result for contacteiomder Boolean
the contact timeof nodesA and 5 under Boolean model, and mc3)dAes|\/I;IIdtl)l:(;thi\F/)vlzlIicnatSI?er::ti?)fnﬂ:IIIS t%rgz?f:e):ence in the averagier-meeting

_ QSINR(\ i : , .
whenS(-) =5; (1), it bet_:omes _ContaCt time under SINRye caused by different step-length distributions of rispic random walk
interference model. In particular, i§(-) = SBo°an(.) =  mobility models, can be up t80% ~ 40% in sparse networks.



[1l. I NVARIANCE PROPERTYUNDER BOOLEAN different random walk mobility patterns, i.e., invariantthv
INTERFERENCEMODEL respect to step-length distribution, and so is the contawt t

A. Contact Metrics under Boolean Model as shown in Figure 3(a). . o

In this section we consider several contact-based metrics':Igure 3(b) shows that the inter-meeting time is not always
namelv. session time. inter-session time. contact timel Mvariant, and different mobility patterns lead to diffetenean
int Y i It' ' ”’ Id B II 'It ’f IWd' a\ﬂter-meeting time, especially igparse networksvhere the
Inter-meeting ime, all under boolean Iterierence Mowe. - ., 1 | nication range is small compared to the simulatioa are
first present numerical simulation results on these mdtster

. . : : - . (e.g.,d = 5,10). For example, wher = 5, the mean inter-
n Sgctlon I.”'B we prqwdet.heoretlcallsupport on our fingsn meeting time of RWM is at leas30% longer than that of
in this section. Our simulation setup is as follows:

) i . BMM. However, when the network is denser (e.@.> 15),
« Simulation domf.;urQ. 400m > 400m square the inter-meeting time is almost invariant, and the prodict
« Mobility models: Since the effect of speed on contagher.meeting time and the radius (transmission rangensee

metric is quite straightforward, we here set the spegg pe constant (we will discuss this later in Section I11-B.)
to be 1m/s all the time. In this casetime has the

same value asength in all mobility models. Table | B. Theoretical Support on the Invariance Property
summarizes mobility models under our consideration. 1) Session TimeThe following result in [13] gives the

Note that step-length distribution for the three mOdeﬁean session tim@&s in a closed aredl with boundaryd H:

are widely different with different means.
Proposition 1: [13] Let v be the node speed(dr) be the

Mobility models Step length dist. (m) | Speedv (m/s) direction of tangent to the differential line segment atnpai
BMM Fixed: 8 Fixed: 1 ; = ; i =T
RWM Exponential with mean 40 Fixed: 1 In. 2, ?‘”dh(r’ ¢) be the normalized _SpeC_IfIC ﬂ.ux ‘?‘t poiritn
RDM Uniform over [0, 40] Fed 1 direction¢. Then, the average session time is given by
TABLE | 27 | o
MOBILITY MODELS Tg = E[1/v] fH 0 h(T, )d¢dH ) (3)
Tsin ¢ - h(7, 0(dF) + ¢)dddr
« Communication rangei = {5, 10, 15, 20, 25, 30} m. faH fo ¢ h(F, 0(dr) + $)d¢
« Boundary behavior: reflecting. To explainh(7, ¢) more clearly, we re-interpret its definition
in [13] as following: there exists consta@t, which does not
60 change with respect to eitheéror ¢, such thatC - h(7, ¢) is
5 5 [m] B R the e>_<pei:ted rate Qf crossings over_the differential lirggrsent
£ . 6RDM (o) at pointr p_erpendlcular tap per umtﬁlenglth of the seg.ment
= @ and per unit angle. In other wordh(7, ¢) is the normalized
g 8 stationary probability density function of both node piosit
2 20 and node direction.
g ®
=10 @ For isotropic random walk mobility models, we can derive

o

o 15 30 3 30 3 the average session time/length from Proposition 1 as shown
Radius (m) below.

o

Fig. 2. Average session time under Boolean model is invaraih respect Proposition 2: The average session time for the class of
to different random walk mobility patterns. isotropic random walk mobility models under Boolean inter-
ference model, is given by

wd
50 — £ 12000 o Ty = I[ﬂ[l/v]77 (4)
< RWM R 2 10000, ¥ %RWM . . L
5 6RDM ® = o) rom| wherew is the node speed antlis the communication range.
= £ %0 g . . .
g ® 8 o000 Proof: For isotropic random walk mobility models,
820 ® 5 2000 é h(7, ¢) = po, Wherepg is a constant, i.e., stationary pdf does
8 ® = & not depend orF (position) or¢ (direction). Hence, from (3),
= ® & 2000 & () ® . .
e the average session time becomes
0 0
R R T P T Py O 7o — B[ /o) 24 _ g A, -
(a) contact time (Boolean) (b) Inter-meeting time (Boolean 2poL L

Fig. 3. Average contact and inter-meeting time under Bovolemdel: (a) where A an_dL are the area and pe”_meFer of the ‘?'Osed area
The average contact time is invariant and linearly increasi¢h transmission H, respectively. When the communication rangeljsunder
ranged. (b) The average inter-meeting time are different for thmebility Boolean model H is a circle with radiusi. In this case, we

models for smaller transmission range (sparse network)this difference ) -
diminishes as the network becomes denser. have A = 7d*, L = 2md. Thus, from (5), we are done. m

We observe that the average session time predicted in (5)

Figure 2 shows that the session time (or session length S"&‘F@sely matches with the numerical results in Figure 2.
v = 1m/s) under Boolean model is invariant with respect to



2) Contact Time:We now consider contact time betweenvhen one node is static) time can be derived similarly as in
a pair of mobile nodes. To proceed, we pose the followinbheorem 1, since Proposition 1 does not require any specific
assumption: form of the shape of bounded arBaunder study. This leads to

Assumption 1:Given two nodesA and B, each of which the estimates of the mean inter-session tim&fagv] 4524,
follows isotropic random walk mobility models, define thé\ote that [17] derives the mean inter-session time;gs,
difference walkerC' with its position at timet given by which is very close t(ﬂ[l/v]A—di2_

C(t) := A(t) — B(t). Then the contact time of nodes and However, Figure 3(b) shows the clear difference in the mean
B is assumed to be equal to the session time of r@deith inter-meeting time when the communication radge.g.,d =
respect to a circlgd with radiusd. O 5,10) is very small compared to the simulation area (square

Remark 1:In an unbounded domain (e.g2, = R2), it is With width 400), i.e., the inter-meeting time of two nodes
obvious that the contact time of nodelsand B is exactly andB cannot be well approximated by the inter-session time
the session time of their difference walk€r However, in a ©f their difference walkeC, at least for sparse networks.
bounded area, when nodeor B is very close to the boundary, ) ) )

e.g., whenA is on the boundary, then its contact region is nf- Effective Contact and Inter-meeting Time - Beyond the
larger than a half circle. Intuitively, when the domain sige First-order Behavior
quite large compared to the contact region, the event that In Sections IllI-A and IlI-B, the first-order behavior of the
or B is very close to the boundary will be a rare event, angbntact and inter-meeting time is discussed. However,drigh
Assumption 1 may be well satisfied in this case. O order behavior of contact and inter-meeting time may also be
We now have the following theorem on the contact time: critical. For example, consider the following two distrilans
of inter-meeting timel’; (unit in seconds): (iY; is uniformly

Theorem 1:Under Assumption 1, the average contact timgjstributed in (1, 10000); (i)T; is either 1 or 10000 with
of two independent nodes!, B following any isotropic equal probability. Obviously]; has the same mean in both
random walk mobility models is invariant with respect to thgases. However, for effective communication, we would grref
step-length distribution of the chosen mobility models. [0 7, in the first case to that in the second case, since if two

Proof: It is easy to see that for the difference randomodes meet again 1 second after they just depart from each
walker C' of nodesA and B, the stationary distribution of other, most likely they do not have any new information to
node direction is still uniform in [0,27). However, its sta- exchange. Similarly, too short contact time essentialpdte
tionary distribution of nodegpositionis not uniform anymore. to ‘ineffective meeting’.

Suppose that in the steady-statéf) and B(t) are uniformly For each contact/inter-meeting sample we have collected
distributed on[—a, a] x [—a,a] (a > 0), then the stationary (we collect 7500 samples for each point in Figures 3(a)

pdf of C(t) is given by and (b)), we use the following rules to decide whether it is
. L ‘effective’ or not: (i) Effective contact time samples shau
fola,y) = {(% — [z} (55 — lyl), for |17|7_|?/| € [0,24] be at least 3 seconds Iohgr larger thanl /10 of the mean
0, otherwise contact time. (ii) Similarly, effective inter-meeting tevsample

should be at least 2 minutes (120 seconds). This threshold
is also very small compared to the mean inter-meeting time
shown in Figure 3(b).
Under these two rules, we find that the percentage of ‘in-
E[1/vg] - 27 [ h(F)dH effective’ contact samples is always less tt3ah. Sp, even if
9 5 (6) we plot the mean contact time using only ‘effective’ samples
faH h(7)dr the | . :
e invariance results still hold. However, the percentafje
whereur, is the speed o€, i.e., the relative speed of and ‘ineffective’ inter-meeting meeting samples is ratherthig.g.,
B. Note that no matter what the step-length distribution isnore thant0% of the inter-meeting time samples collected for
the stationary distribution afi, B, as well as that of”, does BMM is smaller than 120 seconds.
not change, hencé() remains the same. In other words, Figure 4(a) shows the average effective inter-meeting.time
h(r) is invariant with respect to the step-length distributiorNow, BMM has the largest mean effective inter-meeting time
Thus, the average session time fOris alsoinvariant with among these models, which is in stark contrast to Figure, 3(b)
respect to step-length distribution. In view of Assumptibn where the mean inter-meeting time for BMM is the smallest.
this completes the proof. B This is because BMM produces too many ineffective (too

In fact, the relative speedsf) of A and B is not fixed small) inter-meeting time samples, which contributes te th

at m/s any more. This is why the average contact time iﬁmallest mean inter-meeting time in Figure 3(b). To see this
Figure 3(a) is smaller than the average session time in Eigur

Since the stationary distribution of node direction is amif,
h(7, ¢) is invariant with respect tep, i.e., h(7, ¢) = h(7).
Then, from Proposition 2, the average session time dor
becomes

4Another example where the inter-meeting time of nodeand B cannot
3) Inter-meeting Time:As long as the inter-meeting timebe well approximated by the inter-session timectfis the case in Section IV

of two nodesA and B can be well approximated by the inter_where the contact between two nodes is not uniquely detednby their
distance.

s_essmn “m_e of the” d|ffere_nce Walké_‘ with r_espeCt to_a SNote that in our simulation setting, the contact time is vemyall, which
circle H with radius d, the inter-meeting (or inter-sessionjs why the threshold is also chosen to be small.
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Fig. 4. This figure use the same data set as Figure 3(b). (rage

‘effective’ inter-meeting time, i.e., the mean of all int@eeting time samples
no less than 120 seconds. (b) CCDF of all inter-meeting tiampdes: BMM

model produces much larger percentage of ‘ineffectiveérimheeting time
than other two models.

- 50
more clearly, we plot the Complementary Cumulative Di ‘ézz 0 S ii{gjs - -
tribution Function (CCDF) of all inter-meeting time sample £ __ o O 2% Ovetoce *
(including both effective and ineffective ones) in Figur@) %20 8 = %30 O % o
We can see clearly that BMM produces much larger percent < o) £ 20 - i g o
of ineffective inter-meeting time samples thanRWM andRD £,| O O s 5 O
do. Intuitively, this is because BMM generates many shi EO] 0 -

steps in its mobility pattern. Thus, when a pair of nodes m

and depart under BMM, they tend to ‘hang around’ nearby(a) contact time vsa

and meet again shortly.

IV. INVARIANCE PROPERTY UNDERSINR INTERFERENCE
MODEL

As Figure 1 shows, the contact region of a noBeat
any timet under SINR model is affected by not only th
parameters related to SINR criterion (e@,, SN R, o), but
also the existence and locations of other mobile nodes in

(a) contact time (SINR)

N
=}

5

Fig. 6.

5 10 15
SNR (dB)

20

25

(b) Inter-meeting time (SINR)

Fig. 5. Average contact and inter-meeting time under SINRIehdSimilar
invariance property as that under Boolean model (Figures 3)bserved: (a)
The mean contact time is invariant with respect to mobiligjterns; (b) The
mean inter-meeting time is not invariant.

-5

5 10 15
SNR (dB)

(b) contact time vsyg

(b) on the mean contact time under SINR interference model.

25

The effect of path loss exponent(a) and the SINR thresholdy

Figure 6 shows the effect of different values of the path loss
exponenta (in (a)) and the SINR thresholg, (in (b)). As

same system. SINR model considers more realistic sithtiortf
. e

than Boolean model, but at the same time poses challenge’to
our analysis due to many interferences from other nodes ~~~
more complicated geometric structure of the contact setsTF *
the question is: “Does the invariance property we have un §2
Boolean model still hold under SINR model?” In this sectio 3 ,
we numerically study the contact and inter-meeting timeaunc %
SINR interference model. Our simulation set-up is as foflow ¢ *
« Simulation area, mobility models, boundary behavior a S5
the same as in Section IlI. 19

O sum

RWM
RDM

@

@
®

®

&

-5

« Unless otherwise specified (e.g., in Figures 6, 7 whe. _
we study the effect of different, vo and the number
of nodes), we setv = —4, 9 = 5 (= 7dB) and the
number of nodes- 10.

« SNR € {0,5,10,15,20} dB, here SNR= P/N, is
the value measured at distanég = 15(m). Note that
dy may vary according to the system requirement on

5 10 15
SNR (dB)

20

25

(a) contact time (20 users)
Fig. 7.

N
=}

ectively decreases the size of the contact region.

ﬁa| increases, the mean contact time also increases, as larger
t}% means smaller interference from other nodes. In addition,
arger 7o leads to smaller mean contact time, as larggr

w
@

w
=}

Mean contact length
N N
o (5

-
3

] 10 users

20 users
30 users

56

$5

&

10,
-5

5 10 15
SNR (dB)

25

(b) contact time vs. # of nodes

The effect of the number of nodes on the mean contattiraer-

meeting time under SINR model: (a) The invariance propestytlie average
contact time still holds when the number of nodes is incréas&0 (compared
to Figure 5(a) with 10 nodes). (b) We use RWM for the mobilitpdel and
change the number of nodes in the system.

the quality of communication channel, e.g. when higher Figure 7(a) shows that the mean contact time is still in-
quality communication is required (e.g., lower bit errogariant with respect to mobility patterns when the number of

rate), largerd, can be used. users in the system is increased from 10 to 20. (Of course
Figure 5 shows the average contact and inter-meeting tite contact time is smaller due to the interference from more
under SINR model. Similar to Figure 3, the average contastdes.) In Figure 7(b), we use RWM for all nodes and vary
time is still invariant with respect to different isotropgndom the number of nodes from 10 to 30. Clearly, the larger the
walk mobility models with different step-length distrillmns, number of nodes, the more interference on any of the nodes.
while the average inter-meeting time is not. Thus, the mean contact time decreases with the increase in th



number of nodes.

In this paper, we show the invariance property for the av-

V. CONCLUSION

erage contact time of isotropic random walk mobility models

We find that the mean contact time is invariant with respect

to different isotropic random walk mobility models under

both Boolean and SINR interference models. In addition, we
study the higher-order behavior (more than just the mean)
of both contact and inter-meeting time. To the best of our
knowledge, this is the first work reporting such a clean-cut

invariance property for a large class of mobility models emd

both Boolean and SINR interference models. We expect that
our invariance results can help simplify a number of system

optimization and protocol design in the area of wirelesseen
networks and MANETS.
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