
On the Efficiency-Optimal Markov Chains for

Distributed Networking Applications

Chul-Ho Lee Do Young Eun

Abstract—The Metropolis-Hastings (MH) algorithm, in addi-
tion to its application for Markov Chain Monte Carlo sampling
or simulation, has been popularly used for constructing a random
walk that achieves a given, desired stationary distribution over
a graph. Applications include crawling-based sampling of large
graphs or online social networks, statistical estimation or infer-
ence from massive scale of networked data, efficient searching
algorithms in unstructured peer-to-peer networks, randomized
routing and movement strategies in wireless sensor networks, to
list a few. Despite its versatility, the MH algorithm often causes
self-transitions of its resulting random walk at some nodes, which
is not efficient in the sense of the Peskun ordering – a partial
order between off-diagonal elements of transition matrices of
two different Markov chains, and in turn results in deficient
performance in terms of asymptotic variance of time averages
and expected hitting times with slower speed of convergence. To
alleviate this problem, we present simple yet effective distributed
algorithms that are guaranteed to improve the MH algorithm
over time when running on a graph, and eventually reach
‘efficiency-optimality’, while ensuring the same desired stationary
distribution throughout.

I. INTRODUCTION

Motivation: The Metropolis-Hastings (MH) algorithm is the

most celebrated Markov Chain Monte Carlo (MCMC) method

for sampling from a given probability distribution and has

been the de facto technique for many networking applications

whenever a need arises to construct a Markovian random

walk on a graph achieving a desired stationary distribution.

For example, the MH algorithm has been used as a common

building block in the unbiased graph sampling [1]–[3] where

the target distribution is uniform over the graph, in the

information dissemination for the distributed implementation

of fountain codes (or network storage application) [4], [5], in

decentralized algorithms for solving a class of optimization

problems over sensor nodes [6], in peer-to-peer networking

applications such as randomized searching, non-uniform mem-

bership management, network topology construction [7], [8],

etc. While the widespread popularity of the MH algorithm

comes mainly from its lightweight, distributed operation, it

typically incurs self-transitions at some nodes, which in turn

prevents the ‘Metropolized’ random walk from exploring the

graph efficiently and quickly. It leads to poor graph sampling

accuracy and also gives rise to longer delay of the walk until

to reach destination(s) for generic networking applications.
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Related Work: There is a body of research works about

speeding up a random walk, or a Markov chain, on a graph

in terms of its mixing time, hitting time, and/or cover time.

First, speeding up a simple random walk has been done using

local neighborhood exploration [9] or using previous local

history to avoid backtracking [10] up to the self-avoiding

walk [11] as an extreme case, but its stationary distribution

π becomes unknown or out of control. There have also been

a few heuristic algorithms on how to construct a Markov

chain for graph sampling applications [12], [13], but with

no theoretical framework. More importantly, they are valid

only when the target stationary distribution π is uniform, thus

not applicable to other applications where non-uniform π is

desired for better performance [7], [8], [14], [15].

For an arbitrary target stationary distribution π, it is possible

to find the fastest mixing (reversible) Markov chain (FMMC)

on a graph [16], but only by ‘globally’ solving a semi-definite

programming (SDP) with a complete knowledge of the entire

graph, making it virtually impossible or computationally pro-

hibitive even for moderately-sized graphs. While a distributed

sub-gradient algorithm for such a SDP has been proposed

under a randomized gossip setting [17], it still requires to

compute eigenvalues and eigenvectors of the chains, which is a

highly non-trivial task. [18], [19] have shown that certain non-

reversible Markov chains or lifted Markov chains mix substan-

tially faster than their reversible counterparts, and this concept

has been applied to design average consensus algorithms [20],

[21]. However, it is still unknown how to construct such a non-

reversible chain or lifted chain in a distributed or decentralized

fashion for a general graph. The only exception, to the best of

our knowledge, is the work in [3] that shows how to convert

a given reversible chain with π into a non-reversible one with

the same π on a general graph for sampling applications.

Nonetheless, there is still a room for further improvement

within a class of reversible chains, which will be orthogonal

and complementary to the algorithm in [3].

Contributions: Thus motivated, this paper seeks to address

how to improve the Metropolized random walk, or construct

more ‘efficient’ random walk achieving the same π, in a

localized and distributed manner, while maintaining its re-

versibility. For this purpose, we adopt a notion of the Peskun

ordering [22] – a partial order between off-diagonal elements

of two different transition matrices, which enables to compare

the Metropolized random walk and other random walks, or to

rank the efficiency of such ‘competing’ (reversible) Markov

chains, in terms of asymptotic variance of time averages and



expected hitting times. Then, we propose simple yet effective

distributed algorithms that are guaranteed to keep improving

every step of the way in the sense of Peskun ordering,

eventually reaching the ‘Peskun-optimality’ or ‘efficiency-

optimality’, from which no further improvement can be made

within a class of reversible chains with the same π. We

also show such an improvement over the plain MH algorithm

remains intact even when the desired stationary distribution

changes from π to π
′ over time, typically is the case in

any dynamic environment. We provide numerical results using

various graph settings to demonstrate that our distributed

algorithms are indeed quick, leading to the optimal class

within a few steps. Our distributed algorithms outperform the

FMMC for a number of key performance metrics such as the

mean hitting time for delay and the asymptotic variance for

sampling accuracy, thus offering computationally viable tune-

up of a given reversible Markov chain on larger graphs for

which existing optimization-based approaches (e.g., FMMC

via SDP) often fail or become inapplicable.

II. PRELIMINARIES

We review the MH algorithm and its application in con-

structing a random walk on a graph to achieve a given, desired

stationary distribution. Consider an irreducible (discrete-time)

Markov chain {Xt ∈ S}t≥0 with a finite state space S and

its transition matrix P= {Pij}i,j∈S where Pij = P{Xt+1 =
j|Xt = i}. Let π={πi}i∈S be a probability distribution with

πi > 0 for all i. The MH algorithm [23], [24] was proposed

to obtain a transition matrix P with π as its unique stationary

distribution while satisfying the reversibility condition, i.e.,

πiPij = πjPji for all i, j ∈ S.

The MH algorithm is defined as follows. At the current

state i of Xt, the next state Xt+1 is proposed with proposal

probability qij – the state transition probability of an arbitrary

irreducible Markov chain on the same state space, where

qij > 0 if and only if qji > 0. We call Q = {qij}i,j∈S a

proposal matrix. The proposed state transition to Xt+1= j is

accepted with probability αij =min
{

1,
πjqji
πiqij

}

, and rejected

with probability 1−αij in which case Xt+1 = i. Thus, the

transition probability Pij is given by

Pij = qijαij = min {qij , qjiπj/πi} (i 6= j), (1)

with Pii = 1−
∑

j 6=i Pij , which ensures that P is reversible

with respect to π, and the uniqueness of π is granted due to

the finite state space and irreducibility.

Consider a connected, undirected, non-bipartite graph G=
(N , E) with a set of nodes N ={1, 2, . . . , n} and an edge set

E . The graph G is assumed to have no multiple edges and no

self-loops. Let N(i)={j∈N : (i, j)∈E} be a set of neighbors

of node i with degree di= |N(i)|. The maximum degree of the

graph is dmax=maxi∈N di. In constructing a random walk (or

a finite irreducible Markov chain) on G, each edge (i, j) ∈ E
is associated with some positive transition probability Pij>0
with which the random walk makes a transition from node i to

node j, and we allow the random walk to make a self-transition

on each node (although G has no self-loops). Clearly, Pij=0
if (i, j) 6∈ E and i 6= j.

One popular version of the MH algorithm (e.g., [4], [5],

[16]) for constructing a random walk on G with a desired π

is to use the following proposal probabilities: qmax
ij =1/dmax

if (i, j)∈E and qmax
ij =0 if (i, j) 6∈ E and i 6= j, with qmax

ii =
1−di/dmax. Then, the transition probabilities of a random

walk on G by the MH algorithm are given by

Pmh-max
ij =

{

1
dmax

min
{

1,
πj

πi

}

if (i, j) ∈ E ,

0 if (i, j) 6∈ E , i 6= j,
(2)

with Pmh-max
ii =1−

∑

j 6=i P
mh-max
ij . Another popular version of

the MH algorithm (e.g., [1]–[3], [5]) is to use the transition

probabilities of a simple random walk as the proposal proba-

bilities, i.e., qsrw
ij = 1/di if (i, j) ∈ E and qsrw

ij = 0, otherwise.

The resulting transition probabilities on G become

Pmh-srw

ij =

{

min
{

1
di
, 1
dj

πj

πi

}

if (i, j) ∈ E ,

0 if (i, j) 6∈ E , i 6= j,
(3)

with Pmh-srw
ii = 1−

∑

j 6=i P
mh-srw
ij . From (2)–(3), we know

that Pmh-max = {Pmh-max
ij } and Pmh-srw = {Pmh-srw

ij } are both

reversible with respect to π, while Pmh-max
ij ≤Pmh-srw

ij for all

i, j (i 6=j) and thus Pmh-max
ii ≥Pmh-srw

ii for all i.
The Metropolized random walk with Pmh-max is, intuitively,

less efficient than the one with Pmh-srw due to larger self-

transitions, as shall be made more precise shortly. One natural

question is then whether it is possible to find (or construct)

another transition matrix that is ‘even better’ than Pmh-srw

while achieving the same π. More generally, is it possible

to construct more efficient random walks on graph than

the one induced by the MH algorithm with any arbitrary

proposal matrix (including {qmax
ij } and {qsrw

ij })? We address

this question throughout the rest of the paper, and focus on

the improvement within a class of reversible Markov chains

to the maximum extent possible.

III. COMPARING REVERSIBLE CHAINS: AN EFFICIENCY

PERSPECTIVE

For a given graph G, there are potentially many different

irreducible, reversible Markov chains preserving the same

stationary distribution π, e.g., those with Pmh-srw and Pmh-max.

It is thus necessary to identify how to compare these ‘compet-

ing’ Markov chains, or rather, which one is ‘better’ or more

efficient than the others. The rate of convergence of the chain

to stationarity, or mixing time, has been a common criterion

for measuring such speed of convergence. Let P t(i, j) be its

t-step transition probability from state i to state j (i, j ∈ S),

and let 1=λ1>λ2≥· · ·≥λn≥−1 be the eigenvalues of P.

If we define the total variation distance ||P t(i, ·) − π||TV =
maxA⊆S |P t(i, A)− πA|, and the mixing time as

tmix(ε) = min{t ≥ 1 : max
i∈S

||P t(i, ·)− π||TV ≤ ε},

then tmix(ε) ≤ log(1/(επmin))/(1− λ(P)) [25], where

λ(P) = max{λ2, |λn|} (4)



is the second largest eigenvalue modulus (SLEM) of P [16],

[25]. That is, the mixing time is mainly determined by the

SLEM, and the smaller SLEM leads to the faster (smaller)

mixing time.

In this paper, however, we look at the comparison of

reversible Markov chains from a different, but important

perspective. This is done based on a partial order called

the Peskun ordering [22] between off-diagonal elements of

transition matrices of two different Markov chains and its

relationship to ordering reversible chains with the same π in

terms of asymptotic variance and expected hitting times.

Definition 1 (Peskun ordering): [22] For two finite irre-

ducible Markov chains on S with transition matrices P and

P̃, it is said that P̃ dominates P off the diagonal, written as

P � P̃, if Pij ≤ P̃ij for all i, j ∈ S (i 6= j). 2

We also define P ≺ P̃, if Pvw < P̃vw for at least one

(v, w) ∈ E while Pij ≤ P̃ij for all other i, j (i 6= j). Note that

the Peskun ordering P � P̃ is a partial order (it is reflexive,

anti-symmetric, and transitive) while P ≺ P̃ is a strict partial

order (it is irreflexive and transitive).

Let {Xt}t≥0 and {X̃t}t≥0 be irreducible, reversible Markov

chains on a finite state space S with transition matrices P

and P̃ having the same π, respectively. For a function f :
S→R, define an estimator µ̂t=

∑t

s=1 f(Xs)/t for Eπ(f)=
∑

i∈S f(i)πi. It is well known that limt→∞ µ̂t = Eπ(f) for

any function f with Eπ(|f |)<∞ (see, e.g., [25], [26]). The

asymptotic variance of the estimate µ̂t is defined as

σ2(P, f) = lim
t→∞

t ·Var (µ̂t)

= lim
t→∞

1

t
E

{

[

t
∑

s=1

(f(Xs)− Eπ(f))
]2
}

which is independent of the distribution of the initial state

X0 [22]. We similarly define σ2(P̃, f) for the estimate µ̂t

obtained based on {X̃t} with P̃. The asymptotic variance

decides approximately how many samples are required to

achieve a certain accuracy of the estimate µ̂t,
∗ and the overall

correlation structure of the sequence f(Xs). For this reason,

it has played an important role in ordering the efficiency

among competing Markov chains with the same π for MCMC

samplers [22], [27], and also can serve as a performance metric

to evaluate the sampling accuracy of Markov chain samplers

(or random walk-based estimators) for unbiased graph sam-

pling [1]–[3], and the queueing performance under distributed

wireless scheduling applications [28]. It is often said that {X̃t}
is at least as efficient as {Xt} if σ2(P, f) ≥ σ2(P̃, f) for any

f with Varπ(f) < ∞ [27]. Then, the Peskun ordering between

P and P̃ implies the efficiency ordering† as follows:

Lemma 1: [22] If P � P̃, then σ2(P, f) ≥ σ2(P̃, f) for

any f with Varπ(f) < ∞. 2

∗This is formally captured by the Central Limit Theorem for a finite,
irreducible Markov chain under Varπ(f)<∞, saying that

√
t(µ̂t−Eπ(f))

converges to a Gaussian random variable with zero mean and variance
σ2(P, f) as t→∞ [26].

†The efficiency ordering does not imply the mixing time ordering in
general, although they are related with each other [27].

While the Peskun ordering was originally introduced along

with its implication for the asymptotic variance (efficiency or-

dering), we below show that the Peskun ordering also enables

to compare reversible chains with the same π for the expected

hitting time. We define the hitting time of a subset A ⊆ S for

the Markov chain {Xt} as TA = min{t ≥ 0 : Xt ∈ A}, and

then define two different expected hitting times as follows. For

any i ∈ S and A ⊆ S,

Ei{Tπ} =
∑

j∈S

E{Tj |X0= i}πj, and (5)

Eπ{TA} =
∑

i∈S

E{TA|X0= i}πi. (6)

It is known that the quantity Ei{Tπ}, which is also called the

Kemeny’s constant, does not depend on i [29], [30]. It thus

follows that Ei{Tπ} =
∑

i πiEi{Tπ}. Since the Kemeny’s

constant is the expected time to reach a random destination,

it is closely related to the random search time via random

walk search methods, including the one based on the MH

algorithm in peer-to-peer networks [7]. In addition, it is often

necessary to measure the delay taken for the walk (with a

desired stationary distribution) until to reach a subset of nodes

in various network applications [8], [31], [32]. Thus, the above

expected hitting times can serve as important performance

metrics. As in (5)–(6), we similarly define the hitting time

of A ⊆ S for {X̃t} as T̃A = min{t ≥ 0 : X̃t ∈ A}, and

subsequently define Ei{T̃π} =
∑

j∈S E{T̃j|X̃0 = i}πj and

Eπ{T̃A} =
∑

i∈S E{T̃A|X̃0 = i}πi for i ∈ S and A ⊆ S,

respectively. We then have the following.

Lemma 2: If P � P̃, then Ei{Tπ}≥Ei{T̃π} for all i∈S,

and Eπ{TA}≥Eπ{T̃A} for any non-empty subset A⊆S. 2

Proof: Let 1=λ1>λ2≥· · ·≥λn≥−1 be the eigenvalues

of P, and 1= λ̃1> λ̃2 ≥ · · ·≥ λ̃n≥−1 be the eigenvalues of

P̃. It is known that if P and P̃ are reversible with respect to

π, and P � P̃, then λi ≥ λ̃i for i=2, 3, . . . , n [27]. It thus

follows that for i ∈ S,

Ei{Tπ} =

n
∑

k=2

1

1− λk

≥
n
∑

k=2

1

1− λ̃k

= Ei{T̃π}. (7)

The representation of Ei{Tπ} (resp. Ei{T̃π}) in terms of

eigenvalues of P (resp. P̃) can be found in [29, Ch.3,

Proposition 13] or [30, Eq.(10)].

Next, the extremal characterization of the mean hitting time

of a subset for a reversible Markov chain in [29, Ch.3,

Proposition 41] says that for any non-empty subset A ⊆ S,

Eπ{TA} = sup
g

{

1

EP,π(g, g)
: −∞<g<∞, g(·)=1 on A,

and
∑

i∈S

πig(i) = 0

}

, (8)

where the Dirichlet form EP,π(g, g) is defined as EP,π(g, g)=
1
2

∑

i,j∈S πiPij (g(i)−g(j))
2

for functions g : S→R exclud-



ing g≡0. Then, from P � P̃, we have

EP,π(g, g) =
1

2

∑

i,j∈S

πiPij (g(i)− g(j))
2

≤
1

2

∑

i,j∈S

πiP̃ij (g(i)− g(j))2 = E
P̃,π(g, g)

for any given function g. Together with (8), this implies that

Eπ{TA} ≥ Eπ{T̃A}.

From (2)–(3), one can see that Pmh-srw � Pmh-max , i.e.,

Pmh-srw is more efficient than Pmh-max. Clearly, in view of

Lemmas 1–2, Pmh-srw is a better choice than Pmh-max when

constructing a random walk on a graph with a given stationary

distribution π. Here, we note that there exists a tradeoff be-

tween cost and efficiency; Pmh-max with proposal distribution

qmax
ij = 1/d for any d ≥ dmax requires only local information

such as the target stationary distribution of neighbors up to

a constant multiple (i.e., πj/πi for j ∈ N(i)). On the other

hand, Pmh-srw with proposal distribution qsrw
ij = 1/di achieves

higher efficiency at the cost of additional information – the

degree of neighbors, i.e., dj for j ∈ N(i).

IV. MAIN RESULTS

A. Revisiting the MH Algorithm: New Observation

We first point out that there is a room for further im-

provement on the MH algorithm when running on a graph

G. Consider Pmh-srw obtained from the MH algorithm in (3)

to achieve a uniform stationary distribution of interest. As

an example, consider a ‘wheel’ graph with n + 1 nodes.

Figure 1(a) is the resulting MH chain in (3) with uniform

target distribution πi = 1/(n+1). The walk has self-transition

probability of 1
3−

1
n

at each of n nodes on the rim, while it has

zero self-transition probability at the center node. Figure 1(b)

shows another reversible chain with transition matrix P̃, where

the self-transition probabilities are symmetrically redirected

into more ‘useful’ transitions among nodes on the rim. Clearly,

P̃ is reversible with respect to the same uniform stationary

distribution, but now P̃ ≻ Pmh-srw. This example clearly

demonstrates possible improvement over Pmh-srw when the

stationary distribution is uniform. In what follows, we explain

why such an improvement is possible in a much more general

setting with arbitrary stationary distribution, and formally state

how to achieve the improvement.

1/n

1/3

1/3
1/3 – 1/n

(1–1/n)/2

0

1/n

(1–1/n)/2

(a) Pmh-srw (b) P̃

Fig. 1. A wheel graph with n+ 1 nodes and uniform target distribution

Consider a transition matrix P = {Pij}i,j∈N obtained from

the MH algorithm with any proposal matrix Q in order to

achieve a given, desired stationary distribution π. Suppose

that there are two nodes v and w that are neighbors of each

other, i.e., (v, w) ∈ E , and that self-transition probabilities at

nodes v and w are both positive, i.e., Pvv > 0 and Pww > 0.

This situation arises, in fact, quite frequently. For instance,

consider Pmh-srw in (3) with a uniform stationary distribution.

For an edge (v, w), if there exists a neighbor x of node

v and another neighbor y of node w such that dx > dv
and dy > dw, then Pmh-srw

vv > 0 and Pmh-srw
ww > 0. This is

because Pmh-srw
vx = Pmh-srw

xv = min{1/dv, 1/dx} < 1/dv and

Pmh-srw
wy = Pmh-srw

yw =min{1/dw, 1/dy}< 1/dw. See Figure 2

for an illustrative example. Similarly, even for a non-uniform

stationary distribution, it is very likely that such ‘fat’ edges

whose both ends have non-zero self-transition probabilities

exist whenever there is a mismatch between steady-state

probabilities πi and node degrees di.

x y
v w

dv=3 
dw=3 

dx=6 

dy=5 

Fig. 2. An example graph with ‘fat edge’ (v, w)

We then note that there are infinitely many ways to improve

the chain P given by the MH algorithm (with any proposal

matrix) in the sense of Peskun ordering, by simply modifying

transition probabilities between nodes v and w as follows:

Construct a new transition matrix P̃ = {P̃ij} in which,

for any constant βv, βw ∈ (0, 1],

P̃vw = Pvw +min

{

βvPvv, βwPww

πw

πv

}

, and

P̃wv = Pwv +min

{

βwPww, βvPvv

πv

πw

}

, (9)

while P̃ij = Pij for all the other i, j (i 6= j), and P̃ii =
1−

∑

j 6=i P̃ij for all i ∈ N .

The new transition matrix P̃ is also reversible with respect to

π by noting that

πvP̃vw = πvPvw +min {πvβvPvv, πwβwPww}

= πwPwv +min {πwβwPww, πvβvPvv} = πwP̃wv,

while P̃ is (strictly) better than P in the sense of Peskun order-

ing, i.e., P̃≻P. Note that the above operation of constructing

P̃ from P is only done between neighboring nodes v and

w. This is the main ingredient for our proposed distributed

algorithms improving the MH algorithm to the maximum



extent possible. To be precise, we define the following notion

of Peskun-optimality.

Definition 2: For a given graph G, consider an irreducible,

reversible Markov chain P on G achieving stationary distri-

bution π. P is said to be Peskun-optimal, if there does not

exist another irreducible, reversible Markov chain on G with

transition matrix P̃≻P while having the same π. 2

Peskun-optimal transition matrix does not need to be unique

for a given π. Let Ωπ be the set of all transition matrices

of reversible chains defined over the same graph G with the

same π. Since P̃ ≻ P is a strict partial order, based on the

ordering between every off-diagonal element of P̃ and P, there

may exist P,P′ ∈Ωπ for which neither P≻P′ nor P≺P′

holds, and thus there can be multiple Peskun-optimal transition

matrices. It is also possible that the standard MH algorithm

readily provides the Peskun-optimal transition matrix. For

instance, if πi ∝ di for each i, then Pmh-srw is already

Peksun-optimal. Nonetheless, as mentioned earlier, further

improvement is possible for very general cases whenever there

is a mismatch between the desired stationary distribution π

and the stationary distribution of the proposal matrix Q. Our

next result presents a convenient way to test for Peskun-

optimality (or efficiency-optimality).

Lemma 3: For an irreducible, reversible Markov chain on

a graph G with transition matrix P={Pij}i,j∈N achieving a

stationary distribution π, P is Peskun-optimal if and only if

Pii · Pjj =0 for every (i, j)∈E . 2

Proof: (=⇒) Suppose that P is Peskun-optimal and there

exists an edge (v, w)∈E such that Pvv ·Pww>0 (Pvv>0 and

Pww>0). As shown above, we can construct a new transition

matrix P̃ ≻ P which is reversible with respect to the same

π. Since the Markov chain with P is irreducible, and P̃ij ≥
Pij for all i, j (i 6= j), the Markov chain with P̃ remains

irreducible. Thus, P is not Peskun-optimal, which leads to a

contradiction.

(⇐=) Suppose that P is not Peskun-optimal, or there exists

another transition matrix P̃ ≻ P of an irreducible, reversible

Markov chain on G with the same π. So, there should be at

least one (v, w) ∈ E such that P̃vw > Pvw while P̃ij ≥ Pij

for all other i, j (i 6= j). It then follows that Pvv = 1 −
∑

u6=v Pvu > 1 −
∑

u6=v P̃vu = P̃vv ≥ 0. In addition, from

the reversibility condition with respect to π, we have P̃wv =
πv

πw
P̃vw > πv

πw
Pvw = Pwv. Following the same line, we also

have Pww > 0. Therefore, there exists an edge (v, w) such

that Pvv > 0 and Pww > 0.

Remark 1: The chain P̃ in Figure 1(b) can be obtained

by setting uniform π and applying the operation in (9) with

βv = βw = 1/2 for neighboring nodes v 6= w on the rim.

Lemma 3 guarantees that this chain P̃ is Peskun-optimal. 2

B. Distributed Algorithms for Achieving Efficiency-Optimality

We present simple yet effective distributed algorithms to

obtain the Peskun-optimality when starting from the plain MH

algorithm running on a network or graph where each node can

communicate with its neighbors to exchange local information.

In this setting, the Metropolized random walk corresponds to

a packet, message, or agent of interest moving over the nodes

in the graph, and its transition from one node to another is

controlled and governed by each node on the graph.

Recall that the operation in (9) is done between neigh-

boring nodes v and w to obtain a ‘Peskun-better’ transition

matrix P̃ from the plain P, and so it is implementable via

local information exchange between v and w in a distributed

manner. That is, an improvement over the plain MH algorithm

up to the Peskun-optimality should be possible by leveraging

local message passing to conduct the operation in (9) with

properly chosen βv and βw for every edge (v, w) with non-

zero self-transition probabilities at both ends. This observation

allows us to develop distributed and iterative algorithms using

local message passing. Before proceed, we explain the basic

principle behind our proposed algorithms.

Pxx

Pvv

Pww

Pyy

x

y
v

w

Fig. 3. Progressive emptying process to drain out as much water as possible
from every tank.

Imagine that each node i is equipped with a water tank

in which the amount of water is given by the self-transition

probability Pii arising from the plain MH algorithm, and there

exists a water pipe over each edge (i, j) ∈ E . Figuratively

speaking, our objective here is to perform progressive empty-

ing in order to drain out as much water as possible in every

tank (ideally at the same rate while ensuring the reversibility)

under the condition that the water drainage is only available

for each non-empty water tank, connected to other non-empty

tank(s) via the water pipe(s) as depicted in Figure 3. The

emptying process at each node i, if started, continues until

its water tank becomes empty or all its neighbors’ water tanks

become empty. This is conceptually similar to the well-known

progressive filling algorithm (but opposite to our objective) to

achieve max-min fair allocation [33], which is why we use the

term ‘progressive-emptying’ as a mnemonic.

We first present a distributed iterative algorithm under a

synchronized network setting, whose operations are described

in Algorithm 1. It aims to iteratively keep improving the MH

algorithm in the sense of Peskun ordering and finally attain the

Peskun-optimality. Let Pk={Pk(i, j)}i,j∈N be the transition

matrix by our proposed algorithm at kth iteration, with P0 set

to be the one by the MH algorithm with any arbitrarily given

proposal matrix. P∞ denotes the transition matrix when the

operation of our algorithm stops at every node, or no further

update of the transition matrix is available. We also define by

mk(i) = |{j ∈N(i) : Pk(j, j)> 0}| the number of neighbors



of node i, each of which has non-zero self-transition transition

probability, at kth iteration.

Algorithm 1 Synchronous Algorithm (k = 1, 2, . . .)

1: For each node i ∈ N :

2: if Pk−1(i, i) > 0 and mk−1(i) > 0 then

3: Update the transition probabilities from node i as

Pk(i, j) =























Pk−1(i, j) + min
{

Pk−1(i,i)
mk−1(i)

,
Pk−1(j,j)
mk−1(j)

πj

πi

}

,

if (i, j) ∈ E and pk−1(j, j) > 0,

Pk−1(i, j), if (i, j) ∈ E and Pk−1(j, j)=0,

0, if (i, j) 6∈ E and i 6= j,
(10)

with Pk(i, i) = 1−
∑

j 6=i Pk(i, j).
4: Update mk(i).
5: else

6: Stop the algorithm operation (no update of the transition

probabilities starting from node i).
7: end if

Algorithm 1 is, in fact, nothing but to repeat the operation

in (9) with βi = 1/mk−1(i) and βj = 1/mk−1(j) for every

edge (i, j) ∈ E for which Pk−1(i, i)Pk−1(j, j) > 0 at every

kth iteration (k≥1). It can also be thought of as a realization

of performing the aforementioned progressive emptying. We

then have the following.

Theorem 1 (Properties of Algorithm 1): Pk is reversible

with respect to π, and Pk−1 � Pk for all k ≥ 1. Also, P∞ is

Peskun-optimal. 2

Proof: The reversibility proof is by induction. By def-

inition of the MH algorithm, P0 is reversible with respect

to π. As the induction hypothesis, assume that Pk−1 =
{Pk−1(i, j)}i,j∈N is reversible with respect to π for any

k = 1, 2, . . .. Fix node v ∈ N . Suppose that Pk−1(v, v) >
0 and mk−1(v) > 0. (If otherwise, the algorithm would

stop at node v, implying that Pk(v, u) = Pk−1(v, u) and

Pk(u, v) = Pk−1(u, v) for all u ∈ N \{v}, and the reversibility

condition between nodes v and u would hold by the induction

hypothesis.) Then, observe that mk−1(v) > 0 means there

exists a neighbor w of node v such that Pk−1(w,w) > 0.

At the same time, for such node w, Pk−1(v, v) > 0 implies

that mk−1(w) > 0. Thus, by the operation in (10), we have

πvPk(v, w)

= πvPk−1(v, w) + min

{

πv

Pk−1(v, v)

mk−1(v)
, πw

Pk−1(w,w)

mk−1(w)

}

= πwPk−1(w, v) + min

{

πw

Pk−1(w,w)

mk−1(w)
, πv

Pk−1(v, v)

mk−1(v)

}

= πwPk(w, v),

where the second equality is from the induction hypoth-

esis. In addition, if Pk−1(x, x) = 0 for any neighbor x
of node v, then the algorithm operation in (10) says that

Pk(v, x) = Pk−1(v, x). In this case, the algorithm also stops at

node x, which implies Pk(x, v) = Pk−1(x, v). The induction

hypothesis ensures the reversibility condition between nodes

v and x. The reversibility trivially holds for the other cases in

(10). Therefore, Pk is reversible with respect to π for all k.

Moreover, Pk−1 � Pk for k = 1, 2, . . . follows from the

algorithm operation in (10) implying that Pk(i, j) ≥ Pk−1(i, j)
for all i, j ∈ N (i 6= j) and thus Pk(i, i) ≤ Pk−1(i, i) for all

i. Finally, the stopping rule in Algorithm 1 ensures that P∞

satisfies the condition in Lemma 3 for Peskun-optimality.

Remark 2: Algorithm 1 can be modified in many different

ways while satisfying Theorem 1. For instance, mk−1(i) and

mk−1(j) in (10) can be replaced by any larger integer values,

e.g., di and dj , respectively. 2

Remark 3: Since the transition matrix Pt is time-varying,

the resulting Markov chain is time-inhomogeneous. It is not

difficult to see that for any t, Pt is aperiodic, as the undirected,

connected graph G is non-bipartite (i.e., it contains an odd

cycle), and has the same unique stationary distribution π.

It then follows from Theorem 8.5 [34, pp.247] that the

convergence to the stationary distribution π is ensured. 2

We also point out that any transition matrix Pt � P0

(t > 0) by Algorithm 1 is still beneficial even when the

desired stationary distribution changes from π to π
′ over time,

as typically would be the case in dynamic environments. To

see this, we first show an order-preserving property on the

Peskun ordering. Suppose that there are two different transition

matrices Q= {qij} and Q̃= {q̃ij} of irreducible, reversible

Markov chains on the same graph G (that may have different

stationary distributions). For a given graph G, we obtain new

transition matrices P and P̃, both reversible with respect to

π
′, from the MH algorithm using proposal matrices Q and

Q̃, respectively. We then have the following.

Lemma 4: For any stationary distribution π
′, if Q̃ � Q,

then P̃ � P. 2

Proof: For every edge (i, j) ∈ E , from (1), observe that

P̃ij = min
{

q̃ij , q̃jiπ
′
j/π

′
i

}

≥ min
{

qij , qjiπ
′
j/π

′
i

}

= Pij

since Q̃ � Q. Also, P̃ij=Pij=0 for every (i, j) 6∈ E (i 6= j).

Therefore, P̃ � P.

Lemma 4 asserts that any transition matrix Pt by Algo-

rithm 1 is better reusable as a proposal matrix for the MH

algorithm than any other Ps (s < t), in order to achieve a

different stationary distribution π
′. Since the new transition

matrix (say, P′
t), which is reversible with respect to π

′,

may not be Peskun-optimal, we can also subsequently run

Algorithm 1 starting from P′
t to attain a Peskun-optimal

transition matrix with respect to π
′.

We next explain how to modify Algorithm 1 to be work-

ing asynchronously, as it may not be always the case that

every node in a graph can update its transition probabilities

simultaneously at each iteration. For example, when a multi-

hop network composed of wireless terminals (or nodes) forms

a graph according to the communication availability between

geographically neighboring nodes, a node cannot communi-

cate with its multiple neighbors at the same time due to

interference. It is thus desirable to develop an asynchronous

algorithm improving the MH algorithm on a graph, which is



done iteratively, but asynchronously in a distributed fashion.

In view of the operation in (9), this should be always possible

whenever there exists an edge (i, j) with non-zero self-

transition probabilities at both ends. Algorithm 2 shows one

such instance where βi=βj =1 for a randomly chosen edge

(i, j) ∈ E , if Pk−1(i, i)Pk−1(j, j) > 0, at every kth iteration

(k≥1). P0 is again set to be the one by the MH algorithm.

Algorithm 2 Asynchronous Algorithm (k = 1, 2, . . .)

1: Choose an edge (i, j) ∈ E uniformly at random.

2: if Pk−1(i, i) > 0 and Pk−1(j, j) > 0 then

3: Update the transition probabilities starting from each of

nodes i and j as

Pk(i, j) = Pk−1(i, j)+min

{

Pk−1(i, i), Pk−1(j, j)
πj

πi

}

,

while Pk(i, u) = Pk−1(i, u) for u ∈ N \ {i, j}, and

Pk(j, i) = Pk−1(j, i)+min

{

Pk−1(j, j), Pk−1(i, i)
πi

πj

}

,

while Pk(j, v) = Pk−1(j, v) for v ∈ N \ {i, j},

with Pk(i, i) = 1−
∑

u6=i Pk(i, u) and Pk(j, j) = 1 −
∑

v 6=j Pk(j, v).
4: end if

As can be seen from Algorithm 2 (uniform edge selection),

only two neighboring nodes i and j on a graph can commu-

nicate with each other at each iteration in order to update the

transition probability from i to j (and vise versa) as well as

their self-transition probabilities ensuring the sums of rows

equal to one. Note that the uniform edge selection can be

achieved by running Poisson clocks in a real implementation.

Specially, each edge (i, j) ∈ E can be associated with a

Poisson clock with the same rate γ, or any one of two

neighboring nodes can be associated with a Poisson clock with

γ initiating their communication.

In Algorithm 2, we do not explicitly state its stopping rule.

As shall be shown below, once every edge (i, j) ∈ E has

been chosen by the uniform edge selection, the update of the

transition matrix is no longer available, and we will then have

reached P∞. Thus, the stopping rule can be made from a node

point of view as follows: for each node i, as long as each of

edges incident to node i has been selected at least once, node

i stops the algorithm operation (no more update of transition

probabilities starting from node i). It is also worth noting that

due to the randomized nature of Algorithm 2, the convergent

transition matrix P∞ is not unique but can be different,

depending on the realizations of the random sequence of

selected edges. Nonetheless, all those P∞ are still Peskun-

optimal, as shall be shown below. In addition, we also obtain

an upper bound on the ‘expected time to converge’ to P∞,

formally defined as E{Z} = E{min{k ≥ 0 : Pk = P∞}}.

Theorem 2 (Properties of Algorithm 2): For all k ≥ 1, Pk

is reversible w.r.t. π, and Pk−1 � Pk. Also, P∞ is Peskun-

optimal, and E{Z} ≤ |E|
∑|E|

l=1
1
l
= Θ(|E| log |E|). 2

Proof: For a uniformly chosen edge (i, j)∈E such that

Pk−1(i, i)>0 and Pk−1(j, j)>0, if πiPk−1(i, j)=πjPk−1(j, i),
then by the algorithm operations, we have

πiPk(i, j) = πiPk−1(i, j) + min {πiPk−1(i, i), πjPk−1(j, j)}

= πjPk−1(j, i) + min {πjPk−1(j, j), πiPk−1(i, i)}

= πjPk(j, i).

Thus, after repeating the similar induction argument as in the

proof of Theorem 1, one can show that Pk is reversible with

respect to π for all k. It also easily follows from the algorithm

operations that Pk−1 � Pk for all k.

Observe now that for node i and its neighbor j with

Pk−1(i, i) > 0 and Pk−1(j, j) > 0, the algorithm operations

give that if Pk−1(i, i) < Pk−1(j, j)πj/πi, then Pk(i, j) =
Pk−1(i, j) + Pk−1(i, i), implying Pk(i, i) = 0. Similarly, if

Pk−1(i, i) ≥ Pk−1(j, j)πj/πi, then Pk(j, j) = 0. Thus, after

every edge (i, j) ∈ E has been chosen at least once, there

does not exist node i and its neighbor j with Pk(i, i) > 0
and Pk(j, j) > 0. By Lemma 3, the convergent transition

matrix P∞ is Peskun-optimal, irrespective of any realization

sequence of the randomly selected edges. This also implies

that E{Z} is upper-bounded by the cover time of a complete

graph composed of |E| nodes with self-loops, i.e., the average

number of time steps taken by a simple random walk until to

visit all |E| nodes. By the usual coupon collector arguments,

we have E{Z} ≤ |E|
∑|E|

l=1 1/l = Θ(|E| log |E|).

V. NUMERICAL EVALUATION

In this section, we present numerical results to demonstrate

how our algorithms leading to the class of efficiency-optimal

chains perform and quantitatively capture their improvements

over existing algorithms in the literature for a number of

key metrics such as the asymptotic variance, expected hitting

time, as well as the SLEM λ(P) (or the mixing time) over

various graph settings. We first consider a family of random

graphs [16] with 50 nodes. To generate such a graph G, we

assign random numbers Rij (independently and uniformly

distributed over the interval [0, 1]) for nodes i and j. Then,

for each threshold value p ∈ (0, 1), we place an edge between

nodes i and j into the graph G if Rij < p. By increasing p
from 0.2 to 0.7, we obtain an increasing, monotone family of

random graphs with 50 nodes, i.e., it is equivalent to adding

edges into the graph G when increasing p from 0.2 to 0.7.

Each data point in all our simulation figures is obtained by

taking an average over 50 different realizations of the graphs,

for each of which the network connectivity is ensured. In all

figures, we also provide 95% confidence intervals.

For each realization of the graph with 50 nodes (while

the number of edges varies depending on the value of p),

we run the following four chains on this graph: (i) the MH

chain Pmh-max in (2), (ii) the MH chain Pmh-srw in (3), (iii)

the efficiency-optimal chain P∞ obtained by running our

Algorithm 1 starting P0 := Pmh-srw, and (iv) the fastest-

mixing Markov chain (FMMC) P∗ [16].‡ For each of these

‡To obtain the FMMC for each graph with a given π, we use CVX [35],
a package for specifying and solving convex programs, to solve the SDP
problem [16], enabling us to obtain the resulting transition matrix P

∗ .
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Fig. 4. Performance comparison of various chains with the same stationary distribution

chains considered, we then compute all its 50 eigenvalues and

eigenvectors, giving us the SLEM of each chain as defined

in (4) and the expected hitting time Ei{Tπ} by using the

formula in (7). For the asymptotic variance σ2(P, f) of a

reversible chain P with a given f , we utilize the following

representation [34]:

σ2(P, f) =

n
∑

i=2

1 + λi

1− λi

|〈f,vi〉π|
2
,

where λi,vi, i = 1, 2, . . . , n are the eigenvalue and eigen-

vector pair of the matrix P such that 〈vi,vj〉π = δij for

i, j =1, 2, . . . , n, where δij = 1 if i= j and zero otherwise.

Here, 〈x,y〉π =
∑n

i=1 x(i)y(i)πi is the inner product of two

vectors x and y with respect to π.

Figures 4(a)–(c) show the resulting SLEM, the expected

hitting time, and the asymptotic variance, respectively, under

four different chains. In all cases, we assume the target

distribution is uniform. For the asymptotic variance σ2(P, f)
in Figure 4(c), we set f(i) = 1{d(i)=dmedian} for i ∈ N ,

where dmedian is the median degree over each instance of the

graph G. Figure 4(d) shows the number of iterations under

Algorithm 1 starting P0 := Pmh-srw until the time-varying

chain Pt reaches the class of Peskun-optimal chains P∞.

First, we observe that in all cases, our Algorithm 1 leading

to P∞ outperforms Pmh-srw (MH-SRW), which is still better

than Pmh-max (MH-MAX), as predicted by the Peskun ordering

relationship Pmh-max � Pmh-srw � P∞.§ There is, however,

no such outright comparison between P∞ and FMMC. As

shown in Figure 4(a), FMMC gives smaller SLEM (and thus

faster mixing time) than our efficiency-optimal chain P∞. This

is well expected since the FMMC is constructed specifically

for this purpose by solving the optimization problem of

minimizing λ(P) out of all reversible chains defined on the

same graph with the same π [16].

For the expected hitting time and the asymptotic variance,

however, we note that our efficiency-optimal chain P∞ out-

performs the FMMC, as shown in Figures 4(b)–(c), which

§The Peskun ordering guarantees the ordering on the eigenvalues λi as
also stated in the proof of Lemma 2, not on the SLEM of the chain. Our
results on the ordered performance on SLEM thus suggest that λ(P) is mainly
determined by λ2, not on |λn|.

translate into better delay performance and higher sampling

efficiency for various networking applications. More impor-

tantly, we here maintain that obtaining P∞ is simple and can

be made in a distributed fashion, in contrast to the FMMC with

mostly centralized and computationally expensive algorithms

to solve SDP [16], [17]. As Figure 4(d) shows, the convergence

to the efficiency-optimal class is quick, monotonically improv-

ing itself over each step (as also shown in Theorem 1), offering

far more versatility for various performance metrics and more

amenable for dynamic environments with changing π, when

coupled with the ‘better reusable’ property in Lemma 4.

0 1 2 3 4 5 6
6.2

6.25

6.3

6.35

6.4

6.45

6.5

6.55
x 10

4

# of Iterations

E
x

p
e

c
te

d
 H

it
ti

n
g

 T
im

e

0 1 2 3 4 5 6
0

1000

2000

3000

# of Iterations

#
 o

f 
F

a
t 

E
d

g
e

s

Fig. 5. Expected hitting time on power-grid graph. Inset figure shows the
number of ‘fat-edges’ for chains over iteration.

Figure 5 shows the expected hitting time Ei{Tπ} as in

(7) for the time-varying chain Pt when running our Algo-

rithm 1, over a power-grid graph. This graph is an undirected,

unweighted network with 4941 nodes and 6594 edges, repre-

senting the topology of the western states power grid of the

United States, and also exhibits the small-world property [36].

We set uniform stationary distribution, with the initial chain

P0 = Pmh-srw. As expected, Ei{Tπ} monotonically decreases,

as the chain becomes more efficient over steps.¶ The inset

figure shows how the number of ‘fat-edges’ (i.e., edge (i, j)
with PiiPjj > 0) decreases over steps. It turns out that our

Algorithm 1 finishes after only 6 steps, leaving no fat-edge

behind, implying P6 is Peskun-optimal by Lemma 3.

¶Note that for this size of graph, it was not possible to run the SDP solver
to obtain FMMC.



Although we have used Algorithm 1 to obtain P∞ in our

numerical evaluation for comparison, we point out that the

asynchronous version in Algorithm 2 may well run equally

for all the scenarios so far. The only difference would be

the number of required steps till converging to the class of

efficiency-optimal chains, which scales well with the size of

the graph, as proven in Theorem 2. In addition, even when

no interaction among neighboring node is possible, we note

that our algorithms can further be modified so as to obtain

efficiency-optimal chains, as long as some local neighborhood

information (such as degrees of a neighbor) can be made

available to the ‘agent’ walking on the graph [37], [38]. In

this case, whenever the chain (or the agent) is on node i,
it can adjust its own transition probabilities from i on-the-

fly by utilizing second-hop neighborhood information (i.e.,

Pjj for neighboring node j). Similar to the arguments in the

proof of Theorem 2, such an algorithm would converge to the

efficiency-optimal one once the chain has visited every node

of the graph at least once, i.e., after the ‘cover time’ of the

underlying time-varying chain.

VI. CONCLUSION

We have developed a formal framework toward efficiency-

optimal chains on an arbitrarily given graph, from which

no further improvement is possible in the sense of Peskun

ordering, for various networking applications. More efficient

chains on a graph directly translate into better performance

such as smaller average delay and higher sampling efficiency

of a graph, and are also closely related with fast mixing

Markov chains. Our algorithms scale well with the size of

the graph, take advantage of the order-preserving property for

dynamic environments, and can be made distributed under var-

ious networking constraints with or without node interactions.

Our numerical results confirm all the theoretical findings and

demonstrate that our algorithms are comparable to (and often

better than) the well known fastest mixing Markov chain, but

without all those high computational costs. The outcome of

our framework (efficiency-optimal reversible chains) can be

combined with any other existing module that converts a given

reversible chain into a non-reversible one for potentially better

performance, while keeping its distributed nature intact.
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