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ABSTRACT
The study in mobile ad-hoc networks (MANET) is facing
challenges brought by recent discovery of non-exponential
behavior of the inter-contact time distribution of mobile
nodes. In this paper, we analyze various characteristics of
the relative mobility of a random pair of nodes in MANET
to show that they produce inter-contact time with differ-
ent aging properties. First, by fixing one node and resort-
ing to the random walks on directed graphs, we mathe-
matically prove that under four classes of stochastic mo-
bility patterns, the resulting inter-contact times have con-
stant/decreasing/increasing failure rate and new-better-than-
used property. Then, we consider the case when both nodes
are mobile and use simulation results to uncover the ag-
ing property of their inter-contact times under random way-
point models and random walk mobility models. This aging
property tells us how to correctly relate the past experience
of mobile nodes with their future behavior, thereby allow-
ing tremendous opportunities brought by the memory struc-
ture in the non-exponential inter-contact time, which would
be impossible under the widely assumed exponentially dis-
tributed (memoryless) inter-contact time. As an application
of our results, we establish for the first time that the ap-
proach based on exponential inter-contact time assumption
can either under-estimate or over-estimate the actual system
performance, under different stochastic mobility patterns in-
dexed by their aging properties. Our results on aging prop-
erties also provide theoretic guidelines on how to exploit the
memory structure toward better design of protocols under
general mobility.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign - Wireless communication

General Terms: Theory
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1. INTRODUCTION
Mobility is central to applications in mobile ad-hoc net-

works. Mobility patterns in various scenarios can be very
different. Hence, the studies in MANET have taken two sys-
tematic approaches in parallel: one is based on real traces,
the other is based on synthetic mobility models that abstract
out key mobility characteristics. These two approaches are
complimentary to each other: the former is more realistic,
while the latter facilitates tractable performance analysis as
well as system design over different mobility settings in a
controlled and repeatable manner. Synthetic mobility mod-
els have also been used for deducing properties of link-level
metrics such as the inter-contact time of a pair of mobile
nodes (the length of time period over which the two nodes
are out of contact), which in turn is used as an input to the
analysis and prediction of network performance [20, 13, 16,
33]. The relationship between key characteristics of mobility
patterns and the resulting link-level dynamics is thus crucial
to the study of MANET.

A popular and effective abstraction for this relationship
has been to assume that the inter-contact time is exponen-
tially distributed [14, 13]. This assumption of memoryless
inter-contact time (or Poisson contacts if all nodes are i.i.d.),
supported by numerical simulations [32, 13] based on ex-
isting synthetic mobility models [21, 6], has been heavily
adopted for tractable analysis with Markovian modeling on
MANET performance [20, 13, 16, 33]. However, recent mea-
surement studies [8, 17, 18, 23, 29] clearly show the existence
of mixture behavior (first power-law followed by an exponen-
tial) of the CCDF of inter-contact time. Recent work [23,
4] studies mobility models that can produce inter-contact
time distribution with this mixture behavior. At the same
time, due to the complexity of analyzing performnace under
non-exponential inter-contact time, the classical approach
based on exponential inter-contact time assumption is still
very popular. The coexistence of two approaches based on
exponential and non-exponential inter-contact time seems
reasonable in view of two contradictory goals – realism and
simplicity (or analytical tractability). Nevertheless, up till
now, works based on these two approaches are conducted in
separate ways, and this raises the following question: how
much sacrifice have we made for simplicity?

In this paper, we analyze various characteristics of the
relative mobility of a random pair of nodes in MANET to
show that they produce inter-contact time with different ag-



ing properties. Particularly, by exploring the memory struc-
ture of the inter-contact time, we characterize how the past
experience of a mobile node (e.g., the time elapsed since
the latest meeting between the node and its target node,
called the age) relates to its future behavior (e.g., how long
it will take to meet the same target node again, called the
residual lifetime). Due to the memoryless property of expo-
nential inter-contact time, the memory structure in contact
dynamics has seldom been analytically studied. In contrast
to existing works on the explanation and modeling of non-
exponential inter-contact time, our work here focus on op-
portunities brought by the non-exponential (memory) struc-
ture of the inter-contact time.

Specifically, by first fixing one node and changing the law
of random walks on directed graphs with dynamic topolo-
gies modeling random environments, we analyze four classes
of stochastic mobility patterns and show that they produce
inter-contact times with constant/decreasing/increasing fail-
ure rate and new-better-than-used property. We then con-
sider the case when both nodes are mobile and use simu-
lation results to disclose that the inter-contact times under
Random Waypoint (RWP) models [22, 6] and random walk
(RW) mobility models [9] have increasing and decreasing
failure rates, respectively. After that, we show convex order-
ing relationships between exponential and non-exponential
inter-contact times with different aging properties, which
allow us to establish for the first time that the approach
based on exponential inter-contact time assumption can ei-
ther under-estimate or over-estimate the actual network per-
formance depending on positive or negative aging properties
of underlying non-exponential mobility patterns. Our re-
sults on aging properties rigorously state how we should de-
velop forwarding/routing algorithms that exploit the ‘mem-
ory’ in the right way.

The rest of this paper is organized as follows. Section 2
provides backgrounds on random walks on (directed) graphs
and how to characterize aging property of a given random
variable. In Section 3, we analyze aging property of inter-
contact time under four classes of stochastic mobility pat-
terns as well as some existing mobility models in terms of
its failure rate. In Section 4, we show how to compare ap-
proaches based on non-exponential and exponential inter-
contact time in the sense of stochastic ordering. In Sec-
tion 5, we discuss how our results on aging properties can
be exploited toward better design of forwarding/routing al-
gorithms in MANET. We finally conclude in Section 6.

2. PRELIMINARIES
In this section we first give definitions of random walk

on directed graph and then collect several concepts used in
reliability engineering to characterize aging properties of a
random variable, which will be used throughout the paper.

2.1 Random Walk on Directed Graph
A finite digraph (graph with directed edges [35]) G is de-

scribed by G = {V, E ,W} where V = {0, 1, . . . , N} (N<∞)
is a vertex set, E is an edge set such that (i, j) ∈ E if and
only if a directed edge from vertex i to j exists (i, j ∈ V),
and W = {wij} is (N+1)×(N+1) matrix with edge weight
0 < wij < ∞ if (i, j) ∈ E and wij = 0 otherwise. Through-
out the paper, we assume that the graph G has no multiple
edges. A directed path of length m from vertex i to vertex
j (i = k0, k1, . . . , km−1, km = j) (kr ∈ V for r = 0, . . . ,m)

exists if for each r=0, . . . , m − 1, (kr, kr+1) ∈ E . An undi-
rected path between i and j exists if, for each r, at least one
of (kr, kr+1) and (kr+1, kr) belongs to E . In our study of
MANET, we find the following definitions useful.

Definition 1. A graph G is connected if for any i, j ∈ V,
there exists a directed path from i to j.

Definition 2. A graph G is weakly connected if for any
i, j∈V, there exists an undirected path between i and j.

In MANETs such as pocket switched networks [8, 18],
usually there is a ‘two-way’ path connecting any two dif-
ferent sites, i.e., G is connected, while in vehicular ad-hoc
networks, there might be only ‘one-way’ path connecting
two different sites (e.g., the ‘one-way’ roads), for which G is
weakly connected. Clearly, any connected graph G is also
weakly connected, but the converse is generally not true.

We define a vertex weight matrix D as follows:

Definition 3. For G = {V, E ,W}, the vertex weight ma-

trix D = {dij} is (N+1)×(N+1) matrix with dii =
∑N

k=0 wik

(sum of ith row elements of W ) and dij = 0 for i 6= j.

For a mobile node C following random walk on G (written
as RWG), at each time step, the probability for C walk-
ing from vertex (or site) i to site j is pij = wij/dii, which
is well defined when G is connected, i.e., dii > 0. (From
now on, we will assume graph G is connected, unless oth-
erwise specified.) Since D is a diagonal matrix with posi-
tive elements on the diagonal, we can set D−1 as the diag-
onal matrix with diagonal elements 1/dii. Then, the ran-
dom walk on graph G (or the position of the walker C(t)
at time step t) can be described by a Markov chain (MC)
with state space V = {0, 1, . . . , N} and transition matrix
P = D−1W = {pij}.

Remark 1. Conversely, for any MC with transition ma-
trix P , we can always find a RWG model with edge weight
matrix W (and thus D constructed from W ) such that P =
D−1W .1 In other words, the set of random walk on graph
(RWG) mobility models is equivalent to the set of all Markov
chain mobility models.

2.2 Aging Property of Random Variables
For a positive random variable denoting certain duration

of an event such as the inter-contact time in MANET or the
system (component) lifetime in reliability engineering [12,
27], a simple but powerful way to characterize how its past
experience relates to the future behavior (memory struc-
ture) is through its aging property. For instance, for a given
component with its age t > 0 (has been operational since t
seconds ago), what is its residual life (remaining time until
failure)? Similarly, given that the latest contact with a cer-
tain node took place t seconds ago, how long does it take
until encounter to the same node again? To characterize the
aging property, we need the following definition:

Definition 4. [30, 27] For a discrete random variable
X > 0 with distribution F (t) = P{X < t} (t = 1, 2, . . .), for

1The simplest way is to set D = I (identity matrix) and
W = P .



each t such that F̄ (t) = 1−F (t) > 0, the failure/hazard rate
function of F (t) is defined by

r(t) , P{X = t}/F̄ (t) = P{X = t}/P{X ≥ t}. (1)

X is an increasing/decreasing failure rate (IFR/DFR) ran-
dom variable if r(t) is increasing/decreasing function of t.

The failure rate of a continuous lifetime random variable
X can be similarly defined as in Definition 4. Note that
from (1) the failure rate r(t) can be looked as the conditional
probability that a component with lifetime X fails at time
t, given that it has not failed till time t − 1. When X is
geometrically distributed with P{X = t} = p(1 − p)t−1 for
some p ∈ (0, 1), it follows that r(t)=p, i.e., X has constant
failure rate (CFR). Conversely, if a discrete random variable
X has CFR, then its distribution is necessarily geometric or
equivalently memoryless (in continuous time case, exactly
exponential).

Denote by Xt the residual lifetime of X at time t ≥ 0.
Then, its ccdf F̄t(τ ) = P{Xt ≥ τ} (called survival function
at time t) is given by

F̄t(τ ) = P{X − t ≥ τ |X ≥ t} = F̄ (t+ τ )/F̄ (t), (2)

for all t such that F̄ (t) > 0. Then, it is well known that a
distribution F has IFR/DFR if and only if F̄t(τ ) is decreas-
ing/increasing in t for any given τ > 0 [27]. This means
that for DFR F (t) and for any t1 ≤ t2, F̄t1(τ )≤ F̄t2(τ ) for
all τ >0. (The inequality is reversed for IFR F (t).) This is
equivalent to Xt1 ≤st Xt2 [30], i.e., E{f(Xt1)}≤E{f(Xt2 )}
for any increasing (non-decreasing) function f . For this rea-
son, a DFR random variable X is said to have ‘negative
aging’ property. (The residual life becomes stochastically
larger as the age t increases.) Similarly for an IFR random
variable X, the residual life Xt at age t is stochastically de-
creasing in t (positive aging). The positive/negative aging
property can also be defined in weaker sense:

Definition 5. [30, 27] For a discrete random variable
X > 0 with ccdf F̄ (t) = P{X ≥ t} (t = 1, 2, . . .), X is called
new better than used (written as X ∈ NBU), if

F̄ (t+ τ ) ≤ F̄ (t)F̄ (τ ). (3)

If the inequality in (3) is reversed, X is called new worse
than used (written as X ∈ NWU).

When F̄ (τ ) > 0, (3) is equivalent to F̄ (t+τ )/F̄ (t) ≤ F̄ (τ ).
Also, from (2), if X has IFR, then F̄t(τ ) = F̄ (t+ τ )/F̄ (t) is
decreasing in t for each τ > 0. Hence, from Definition 5, if
X has IFR, X ∈ NBU. Similarly, if X has DFR, X ∈ NWU.

3. MOBILITY PATTERNS WITH
CFR/DFR/IFR INTER-CONTACT TIME

As mentioned in Section 2.2, the aging property of a ran-
dom variable can be properly captured by its failure rate.
To show the relationship between the various characteristics
of relative mobility of a pair of nodes and the correspond-
ing inter-contact times with different aging properties, in
this section, we first fix one node and show four classes of
stochastic mobility patterns that give rise to inter-contact
time with constant/decreasing/increasing failure rates and
new-better-than-used property. We then study the aging
property of the inter-contact times of a pair of mobile nodes

following two popular mobility models in MANET study, i.e.
RWP and RW, through simulations.

Consider a mobile node C following the class of RWG
models on G = {V, E ,W} as defined in Section 2.1. Let
C(t) ∈ V be C’s position at time t ≥ 0. The inter-contact
time TI between node C and any given site j ∈ [0, N ] is
defined by

T
(j)
I = min

t>0
{t : C(t− 1) 6= j, C(t) = j}, (4)

given that C(0) = j and C(1) 6= j. In general, T
(j)
I 6= T

(k)
I

for j 6= k in the RWG model and such distinction will be
important in describing various topologies with different de-
grees of ‘popularity’ of sites. Since we can always renumber
the vertex (site), without loss of generality, we consider only

T
(0)
I and omit the superscript, unless otherwise specified.

3.1 Mobility Patterns with CFR Inter-contact
Time

When TI has CFR, its distribution is exactly geometric (or
exponential in continuous time case). A well-known mobil-
ity pattern producing memoryless inter-contact time is the
so-called i.i.d. mobility pattern, as shown in Figure 1(a). In
this model, the mobile node chooses any site randomly and
uniformly at each time step, and then jump to it. This cor-
responds to RWG model with wij = w > 0 for all i, j (com-
plete graph with equal edge weights). We will present a more
general class of mobility patterns but still with memoryless
property all the time. This class of CFR mobility patterns
here will be useful in understanding the asymptotic behav-
ior of the failure rate of any general mobility model and also
constructing DFR/IFR mobility patterns later on.
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Figure 1: Examples of mobility patterns with CFR
TI (site 0 is the ‘home’ vertex). (a) i.i.d. mobility
pattern, pij = 1/6 for all i, j ∈ V; (b) p10 = p20 = p30 =
γ ∈ (0, 1) (in solid lines) and for all other i, j ∈ V,
pij ∈ (0, 1) and

∑

j∈V pij = 1.

Definition 6. [7] The spectral radius ρ(B) of n×n ma-
trix B with its eigenvalues λi (i = 1, 2, ..., N) is defined as

ρ(B) = max
i

|λi|. (5)

Now, we define a class of mobility models MC1 as:

Definition 7. The class of mobility models MC1 are ran-
dom walks on a 2-connected [35] digraphs G satisfying either
one of the following:

• In-home condition: when mobile node C is at site
i∈V−{0}, it jumps to site 0 with probability γ∈(0, 1).

• Out-home condition: when mobile node C is at site
0, it jumps to site i ∈ V − {0} with probability p0i



satisfying

~pout
0 P ∗ = ρ(P ∗)~pout

0 , (6)

where ~pout
0 = [p01, . . . , p0N ] with

∑N
k=1 p0k = 1, P ∗

is N ×N matrix obtained by deleting the first row and
the first column of matrix P defined in Section 2.1, and
ρ(P ∗) is the spectral radius of P ∗ as in Definition 6.

Remark 2. In a 2-connected graph G in Definition 7, for
any two different sites i, j ∈ V, there exist at least two paths
from i to j. This corresponds to a ‘self-recovery’ feature,
i.e., when one vertex of 2-connected G becomes unavailable
(due to some emergency or failure), mobile nodes are still
able to bypass this site to visit other parts of G. Moreover,
~pout
0 in (6) is called quasi-stationary distribution [24].

We now have the following theorem:

Theorem 1. Under the class of mobility models MC1,
the inter-contact time TI has constant failure rate. 2

Proof. See Appendix.

Remark 3. As mentioned in Section 2.2, TI has CFR is
equivalent to that TI is geometrically distributed, hence sat-
isfies the memoryless property. Or equivalently, the survival
function at time t, i.e., F̄t(τ ) = P{TI ≥ t + τ |TI ≥ t} is
invariant with respect to t. Also, mobility patterns in Fig-
ure 1(b) satisfy the in-home condition in Definition 7, hence
the corresponding TI has CFR.

The ‘in-home’ condition in Definition 7 implies that all
other sites V −{0} are essentially the same to site 0, regard-
less of their internal transition probabilities. Hence, when
the recurrence to site 0 is considered, there will be no dif-
ference whether the mobile node is at site i or site j as long
as i, j ∈ V − {0}. Thus, the inter-contact time is CFR or
memoryless as expected. The ‘in-home’ condition can also
be looked as an evidence for a ‘small world’ around site 0,
where from any site other than 0, site 0 can be reached with
the same probability γ > 0.

Under the ‘out-home’ condition in Definition 7, before re-
turning back to site 0, the conditional distribution of {1,..., N}
(given that the node has not visited site 0) always remains
the same. In fact, when the graph G \ {0} (after removal
of site 0 and all its edges from G) is non-bipartite [35], it
can be shown that ~pout

0 is the stationary distribution of ran-
dom walk on this resulting graph G \ {0}. In other words,
if πi(t) is the probability that the node is at site i at time
t, [π1(t), . . . , πN (t)] converges to ~pout

0 under a conditioning
event that the node never visits site 0. Consequently, The-
orem 1 also implies that for general mobility patterns (not
limited to MC1), the failure rate of the inter-contact time
eventually converges to a constant,2 i.e., the inter-contact
time is asymptotically CFR. This is also in consistent with
previous studies showing the exponential tail behavior of the
inter-contact time distribution [23, 4, 29].

3.2 Mobility Pattern with DFR Inter-contact
Time

In this section we show that a time reversibility property
in mobility patterns is a main factor that leads to inter-
contact time with DFR. Since most components are from

2Here, conditions such as 2-connected and non-bipartite
graph G \ {0} are sufficient to ensure the convergence.

existing studies [25, 1] (and references therein), we will just
briefly explain key steps of existing results and add some
missing links to show the relationship between the time re-
versibility property in mobility patterns and inter-contact
time with DFR.

First, consider a class of random walks on an undirected,
connected, and non-bipartite graph G. The edge weight ma-
trix W = {wij} of an undirected graph G is symmetric,
i.e., wij = wji. When this graph G is connected and non-
bipartite, a mobile node B’s position at time t (i.e., B(t)) is
irreducible and positive recurrent MC and thus it has unique
stationary distribution [π0, . . . , πN ] = [d00/d, . . . , dNN/d],

where dii is given in Definition 3 and d =
∑N

i=0 dii. Fur-
ther, from wij = wji, it is easy to see that for any i, j ∈
{0, 1, . . . , N}, πipij = πjpji, i.e., B(t) is a time reversible
MC [30]. The time reversible MC can also be similarly de-
fined in a continuous time setting.

Now, consider a time-reversible continuous-time MC B(t)
on states {0, 1, . . . , N} with transition rate matrixQ = {qij}.
Define (N+1)×(N+1) matrix U = {uij} with uii =

√
πi

and uij = 0 for i 6= j. Since the graph G is connected,
πi > 0, and U−1 is well-defined. Note that the matrix
S = UQU−1 is a real symmetric matrix from the time re-
versibility. Thus, the spectral representation theorem [7]
allows to write S = V ΛV T , where V is orthonormal (i.e.,
V V T = I) and Λ = {λij} is a diagonal matrix with λii be-
ing the eigenvalues of matrix S (also eigenvalues of matrix

Q). In consequence, S(t) , exp(St) = V exp(Λt)V T and

Q(t) , exp(Qt) = U−1S(t)U = U−1V exp(Λt)V TU . This
implies that the transition function [25] can be written as

fij(t) = P{B(t) = j|B(0) = i} = Q
(t)
ij

=
∑N

k=0
a(i, k)a(j, k) exp(−λkkt), (7)

where a(i, k), a(j, k) are real numbers. Thus, fii(t) is com-
plete monotone. Here, a function f : [0,∞) → [0,∞) is said
to be completely monotone (CM) [25] if f(t) =

∫ ∞

0
e−tτγ(dτ ),

where γ is a probability measure on [0,∞). This com-
plete monotonicity of fii(t) can be extended to a set S , i.e.,
fSS(t) = P{B(t) ∈ S|B(0) ∈ S} is also complete monotone.
In this set-up, it is shown [1] that the first hitting time TF

of time-reversible MC B(t) to the state 0, starting from the
initial distribution P{B(0) = j} = q0j/

∑

k 6=0 q0k (j 6= i), is

completely monotone. Specifically, [1] modified the original
MC by making the state 0 as an absorbing state and setting
S = {1, . . . , N}. Then, P{TF > t} = fSS(t), i.e., TF has
CM distribution.

We now return to the case of inter-contact time. Let MC2

denote the class of random walks on an undirected, con-
nected, and non-bipartite graph G. Consider a mobile node
C under MC2 in continuous time setting3 with transition
rate matrix Q′ = {q′ij}. Then, upon leaving state 0, node
C arrives at state j (j 6= 0) with probability q′0j/

∑

k 6=0 q
′
0k.

Therefore, the inter-contact time TI of node C has the same
distribution as the aforementioned TF . Hence, TI is also
CM. The failure rate function of a positive random variable

3Our focus here is to find characteristics of the relative
mobility that produce contact dynamics with certain aging
property (here, DFR). We choose the continuous time set-
ting only for convenience borrowing results in [1]. Same
results can be also stated in the discrete time setting but
with more involved notations.



with complete monotone density (or ccdf) is known to be
decreasing [27]. In other words, TI has DFR.
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Figure 2: Examples of mobility models belonging to
MC2. In (a) and (b), the weight of each edge can be
any arbitrary positive number.

The class of stochastic mobility patterns MC2 is quite
large, as it includes random walks on any connected, non-
bipartite and undirected graph G. Figure 2(a) and (b) show
examples of RWG mobility models belonging to MC2. Clearly,
the graphs in both Figure 2(a) and (b) are connected with
undirected edges with arbitrary positive weights. The non-
bipartiteness follows from the existence of a closed path with
odd length [35] (e.g., 0 − 1 − 5 − 0) in Figure 2(a) and of a
self-loop (site 1) in Figure 2(b).

3.3 Mobility Pattern with IFR Inter-contact
Time

As mentioned in Section 2.1, some MANETs may have
‘one-way’ feature, i.e., while there is a (directed) path con-
necting site i to site j, a (directed) path from site j to i
may not exist. Reasons for this ‘one-way’ feature are not
only from geographical constraints (e.g., one-way street or
bus route) [3, 36], but also from social behavior. For ex-
ample, in a park with several attractions/sites (e.g., Magic
Kingdom park at Walt Disney World), although there are
likely to be two-way connections between any two sites in
the park, visitors usually take ‘streamlined’ path (tour-like)
over multiple sites one by one, often bypassing less popular
sites for efficiency. We first show a class of stochastic mobil-
ity patterns that formalize this ‘tour’–like path, leading to
IFR inter-contact time.

To proceed, we need the following definitions:

Definition 8. [26] A nonnegative N × N matrix R =
{rij} (N ≥ 2) is called totally positive of order 2, denoted
by R ∈ TP2, if determinants of all 2 × 2 submatrices of R,
[

rij rij′

ri′j ri′j′

]

, where i < i′ and j < j′ (i, j, i′, j′ ∈ [1, N ]), are

nonnegative.

We define a class of models MC3 as follows:

Definition 9. The class of mobility models MC3 are ran-
dom walks on weakly connected digraph G satisfying p0N = 1
and either one of the following:

• Traffic-circle condition: when mobile node C is at
site i ∈ V−{0}, it chooses one of sites in {0, 1, . . . , i−
1} randomly and uniformly, and then jumps to it.

• Total-positivity condition: Q ∈ TP2, where Q is
obtained by replacing the first row of matrix P with
[1, 0, . . . , 0].

Remark 4. The condition p0N = 1 sets a primary direc-
tion for the mobility patterns in MC3. In particular, define
a directed route R starting at site 0. Since p0N = 1, the
route R visits sites N,N − 1, . . . , 1 sequentially, often skips
some sites in the middle, and finally returns to site 0. In this
‘traffic-circle’ condition, mobile nodes following R generally
take a tour and never go backward between two adjacent
visits to the site 0, but they can take short-cuts. As will
shown later in the proof of Theorem 2, this ‘traffic-circle’
condition is a special case of the total-positivity condition.
However, we list the former separately, since the character-
istics of mobility patterns in this case is more intuitive.
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Figure 3: Examples of mobility patterns belonging
to MC3 in Definition 9.

Figure 3 shows two examples of mobility patterns satis-
fying the total-positivity condition in Definition 9. Specifi-
cally, the Q matrix of mobility patterns in Figure 3(b) is:

Q(b) =















1 0 0 0 0 0
1 0 0 0 0 0
p2 1 − p2 0 0 0 0
0 p3 1 − p3 0 0 0
0 0 p4 1 − p4 0 0
0 0 0 p5 1 − p5 0















, (8)

where 0 < pi < 1 (i = 2, . . . , 5). The Q matrix of mobility

patterns in Figure 3(a) equals to Q(b) with pi = 0. It follows

that the matrix Q(b) is TP2 for all choices of pi ∈ [0, 1] (see
Definition 8).

We now have the following theorem:

Theorem 2. Under the class of mobility models MC3,
the inter-contact time TI has increasing failure rate. 2

Proof. See Appendix.

In fact, mobility patterns in Figure 3(a) and (b) as well as
those satisfying the ‘traffic-circle’ condition in Definition 9
have a common ‘self-avoidance’ property, i.e., mobile nodes
following them never go backward to the sites it has already
visited between two consecutive visits to site 0. However,
MC3 (specifically, TP2) also includes mobility patterns that
are not self-avoidance type. A simple example can be seen
by slightly modifying the tour walk in Figure 3 such that
when mobile node C is at site 1, it can choose to jump to
site 0 with probability p1 ∈ (0, 1), or stay at site 1 with
probability 1 − p1. After this change, the second row of
Q(b) in (8) becomes [p1, 1 − p1, 0, . . . , 0] and all other rows
remain the same. As long as p1 and p2 are chosen such that
p1 ≥ p2, the modified Q(b) is still TP2, thereby giving IFR
inter-contact time from Theorem 2. In what follows, we will
present an even more general class of mobility models M′

C3,
which includes MC3 as a subset and allow ‘going backwards’



as long as its tendency to go backwards is getting weaker.
To proceed, we need the following definitions:

Definition 10. [26] For any two nonnegative vectors
~x = [x1, x2, . . . , xn] and ~y = [y1, y2, . . . , yn], we write ~x ≤st

~y if
∑k

i=1 xi ≥
∑k

i=1 yi for any 1 ≤ k ≤ n−1 and
∑n

i=1 xi =
∑n

i=1 yi.

Definition 11. [26] A matrix R = {rij} (i, j ∈ {1, . . . , n})
is stochastically monotone if

~r1 ≤st ~r2 ≤st · · · ≤st ~rn, (9)

where ~rk = [rk1, rk2, . . . , rkn] (k = 1, 2, . . . , N).

Any matrix R ∈ TP2 is stochastically monotone [26]. For

example, the matrix Q(b) in (8) is TP2, hence is stochasti-
cally monotone.

Consider route R as in Remark 4, i.e., R starts at site
0, goes over sites N,N − 1, . . . , 1 sequentially and occasion-
ally skips sites in the middle, and ends at site 0. Consider
a stochastic monotone Q and a mobile node at site i (i ∈
{N,N−1, . . . , 1}), occasionally going backward with proba-

bility p
(back)
i =

∑N
j=i pij on R. From Definitions 10 and 11,

∑N
j=i pij ≤ ∑N

j=i p(i+1)j . In other words, p
(back)
i ≤ p

(back)
j

for any i < j. Since site i is more ‘forward’ on R than site
j when i < j, under the stochastic monotone matrix Q, the
mobile node C’s tendency to go backward becomes weaker
and weaker as it proceeds on R.

We below show that if the Q matrix in Definition 9 is
stochastically monotone but not necessarily TP2 (thus a
weaker condition), then the inter-contact time TI is not nec-
essarily IFR, but NBU.

Now we define a class of models M′
C3 as follows:

Definition 12. The class of mobility models M′
C3 are

random walks on weakly connected digraph G satisfying p0N =
1 and either one of the following:

• Progressive-route condition: when mobile node C is
at site i ∈ V−{0}, it chooses one of sites in 0, 1, . . . , i−
1 randomly with probability

(

1−(N−i+1)pi

)

/i, or one
of sites in i, i+ 1, . . . , N randomly with probability pi,
and then jump to it, where pi is any number satisfying
pi ∈ [0, 1/(N − i+ 1)) and

Np1 ≤ (N − 1)p2 ≤ . . . ≤ 2pN−1 ≤ pN . (10)

• Stochastic-monotone condition: Q is stochastically
monotone, where Q is from replacing the first row of
matrix P by [1, 0, . . . , 0].

Note that the ‘progressive-route’ condition in Definition 12
allows some probability of going backwards and as a special
case, it becomes the traffic-circle condition in Definition 9
when pi = 0 for all i ∈ [1, N ]. Note however that it is not a
special case of the total-positivity condition in Definition 9.
Still, as will be shown later in the proof of Theorem 3, the
progressive-route condition is a special case of the stochastic-
monotone condition. We then have the following theorem:

Theorem 3. Under M′
C3, TI ∈ NBU. 2

Proof. See Appendix.

Remark 5. Since the class of mobility models M′
C3 is

a superset of MC3, Theorem 3 implies that under MC3,
TI ∈ NBU.

In Section 3.1 to 3.3, we have proposed three classes of
stochastic mobility models MC1, MC2, and MC3, each of
which abstracts out common characteristics such as ‘small
world’ property for MC1, time reversibility’ for MC2, or
‘traffic-circle’ property for MC3. In addition, each of these
classes of models possesses very strong aging property in
that the failure rate is monotone for all t > 0. There are
cases whose failure rates are non-monotone and hence clearly
the union of the aforementioned four classes cannot cover
the entire spectrum of all possible mobility patterns. Still,
we point out that each of these classes is general enough.
For instance, the class of mobility models MC2 that include
all random walks on undirected graphs, share the property
of time-reversibility – which by no means is a small class,
thereby leading to DFR inter-contact time.

3.4 Aging Properties in Existing Models
In this section, we consider the inter-contact times be-

tween a pair of independent mobile nodes following RWP
models [22, 6] and RW mobility models [9], which are widely
used in protocol design and performance analysis/comparison
in MANET. The relative mobility of a pair of mobile nodes,
even when they both follow simple mobility patterns, can
become unwieldy for rigorous stochastic analysis. Neverthe-
less, based on our analytical results in Sections 3.1–3.3, we
will discuss the similar features between the relative mobil-
ity under RWP/RW model and one of the four classes of
stochastic mobility models (e.g., MC2 or MC3) to establish
the aging property of the corresponding inter-contact times.

Under RWP model, a mobile node first selects a random
waypoint as its destination uniformly in the domain, and
then moves to its destination. After it reaches the desti-
nation, it selects a new destination, and repeat the whole
procedure independently. Consider two independent mo-
bile nodes A and B following RWP model on the same do-
main. The inter-contact time between A and B is equiva-
lent to the inter-contact time of mobile node C satisfying
C(t) = A(t) − B(t) to a static reference site 0.4 The far-
ther nodes A and B are away from each other, the higher
the chance that they are taking opposite directions (away
from the center) at the current step. Thus, in the next step,
they are likely to choose their destinations in each other’s
side and cross each other’s path. In other words, the farther
node C is away from site 0, the stronger tendency it has to
visit site 0. This is to some extent similar to the traffic circle
property of MC3, and we expect that the inter-contact time
under RWP model would have IFR.

Under RW model, a node chooses a direction randomly
and uniformly from [0, 2π), and then moves on a straight line
for a time period S (random variable) with constant speed.
In this case, the uniform stationary distribution for both
node position (i.e., πi = πj , where i, j are different positions
on the domain) and node direction (i.e., pij = pji) [28, 11, 2]
readily leads to the time reversibility property (i.e., πipij =
πjpji). This property is preserved under two independent
mobile nodes following RW model. Thus, we expect that
the inter-contact time under RW model would have DFR.

Figure 4 shows the survival function at time t (i.e., F̄t(τ ))
in (a) and failure rate function r(t) in (b) of the inter-contact
time under RWP and RW models. Under each model, 105

inter-contact time samples between a pair of i.i.d. mobile
nodes with constant speed 1m/s on a (1000m)2 domain are

4A(t),B(t), C(t) are the positions of nodesA,B,C at time t.
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Figure 4: Survival function at time t (a) and fail-
ure rate function r(t) (b) of the inter-contact time
under RWP and RW models. (a) shows F̄t(τ ) with
t = 10 and the case of t = 50 is plotted in the in-
set. (Small fluctuations in the curve caused by the
sampling interval effect are eliminated when t = 10.)

collected. The communication range is 50m. The time pe-
riod S in RW model is exponentially distributed with av-
erage 100 seconds. Under both RWP and RW models, the
tail of inter-contact time ccdf is known to decay exponen-
tially [23, 32, 13, 4], which implies that the failure rate of
the inter-contact time eventually converges to a constant,
or equivalently, as τ increases, F̄t(τ ) converges to the same
constant under different t (See also Section 3.1). This can
be see in the inset in Figure 4(a). To better capture the
aging property in smaller time scale, we plot F̄10(τ ) and
r(t) for τ ∈ (0, 2000), to show the difference between two
curves more clearly. As expected, Figures 4(a) and (b)
show that the inter-contact time under RWP/RW model
has IFR/DFR.

4. PERFORMANCE COMPARISON UNDER
EXPONENTIAL AND NON-EXPONENTIAL
INTER-CONTACT TIME

So far we have considered various classes of stochastic mo-
bility patterns that lead to different aging properties. In this
section, we show that our results can be applied to compare
approaches based on exponential and those based on non-
exponential inter-contact time in MANET study.

When TI has DFR, for larger age (time elapsed since the
most recent meeting between a pair of mobile nodes A and
B under consideration), the residual lifetime (the remaining
time till A and B meet again) of TI is stochastically larger.
In this case, TI has ‘negative aging’ property. Correspond-
ingly, IFR/CFR inter-contact time TI has positive/zero ag-
ing property. The stochastically increasing/decreasing prop-
erty of the remaining contact time is indeed very strong as
it requires monotone incresaing/decreasing failure rate for
all time t. Sometimes, we only need negative/positive aging
property in a weaker sense. For instance, under the class of
stochastic mobility patterns M′

C3 in Section 3.3, the inter-
contact time TI ∈ NBU. From Definition 5, the residual
lifetime of TI at age t > 0 is stochastically smaller than
TI itself (at age t = 0). Note that this corresponds to the
stochastic ordering relationship between the residual lifetime
at age t and 0, while for the case of IFR/DFR, the relation-
ship is between the residual lifetime at any age t1 and t2
(t1, t2 ≥ 0) with monotone stochastic ordering indexed by

age t. In fact, for any positive random variable X ∈ NBU,
the following result proves to be very useful:

Proposition 1. [30] For a new better than used (NBU)
discrete positive random variable X, define its exponential
counterpart Xe as a positive random variable satisfying
P{Xe > x} = e−x/E{X} (x ≥ 0). Then, for any convex
function ψ(·),

E{ψ(X)} ≤ E{ψ(Xe)}, denoted by X ≤cv Xe, (11)

i.e., X is smaller than Xe (exponential random variable with
the same mean as X) in convex ordering. The inequality in
(11) is reversed if X is new worse than used (NWU). 2

Considering that IFR/DFR implies NBU/NWU, the re-
sult in Proposition 1 can be used to establish a convex order-
ing relationship between the IFR/DFR inter-contact time
TI and its exponential counterpart. For example, denote

TI under MC2,MC3,M′
C3 by TMC2

I , TMC3

I , T
M′

C3

I , respec-
tively, and let the corresponding exponential counterparts be

TMC2
e , TMC3

e , T
M′

C3
e . Then, from the results in Section 3

and (11), we have

TMC2

I ≥cv T
MC2

e , (12)

TMC3

I ≤cv T
MC3

e and T
M′

C3

I ≤cv T
M′

C3
e . (13)

Further, as seen in Section 3.4 and following the similar line
as above, we have

T
(RWP )
I ≤cv T

(RWP )
e and T

(RW )
I ≥cv T

(RW )
e . (14)

Remark 6. [5] shows a convex ordering relationship in-
dexed by different degrees of correlation in the class of RW
type mobility models, in which the inter-contact time has
always DFR according to our study here. In contrast, we
provide much more general classes of mobility patterns with
various aging properties and a way to compare the non-
exponential inter-contact times with different aging proper-
ties with the corresponding exponentially distributed inter-
contact time with the same mean.

How does the convex ordering result in (12)–(14) impact
system performance? Consider the following simple sce-
nario: a set of i.i.d. mobile nodes following some given
stochastic mobility pattern with certain aging property. Let
T be the inter-contact time between a pair of these mobile
nodes. As has been done frequently, suppose that the inter-
contact time is now assumed to be exponentially distributed
with the same mean E{T}, and let Te denote this exponen-
tial random variable. Then, if all nodes are initially located
independently according to their stationary distribution, the
time to forward/copy a packet from a node A to any other
node B upon encounter (link delay) becomes the residual
lifetime of the inter-contact time T between A and B at
equilibrium [8, 23] (denoted by TF ), i.e.,

P{TF > t} ,
1

E{T}

∫ ∞

t

P{T > s}ds =
E{[T − t]+}

E{T} .

Note that for the exponential random variable Te, we have

P{TF
e > t} ,

1

E{Te}

∫ ∞

t

P{Te > s}ds = P{Te > t}.



Thus, from the convexity of ψ(x) = [x − t]+ in x for any
t ≥ 0 and from (12)–(14), we have, for each t ≥ 0

P{TF > t} ≥ P{TF
e > t} = P{Te > t}, (15)

for all mobility patterns with DFR or NWU. Or, equiva-
lently, for any non-decreasing function ϕ(·), we haveE{ϕ(TF )}
≥ E{ϕ(Te)}. In other words, in this case, the analysis as-
suming exponentially distributed inter-contact time results
in under-estimation of the real system performance (in the
sense of stochastic ordering in the link delay) when the real
underlying mobility pattern is any of MC2 or RW models.
Similarly, in case of IFR or NBU (e.g., MC3,M′

C3 or RWP
models), the inequality in (15) is reversed and the anal-
ysis assuming exponentially distributed inter-contact time
results in over-estimation of the real system performance
(in the sense of stochastic ordering in the link delay). We
expect that this stochastic comparison result forms an an-
alytic foundation toward the design and comparison of for-
warding/routing protocols over mobile nodes with general
non-exponential inter-contact time by analytically compar-
ing its performance with that of the much simpler case –
‘exponentialized’ inter-contact time.

Lastly, we want to point out that although (14) shows that
the inter-contact time TI under RWP model is smaller than
its exponential counterpart in convex ordering, the distribu-
tion of TI is still quite close to an exponential distribution.
For example, the survival function under RWP model in
Figure 4(a) is almost invariant with respect to τ for large
τ . Also, Figure 4(b) shows that compared to the case of
RW model, r(t) under RWP model varies over much smaller
range (order of 10−4 compared to 10−3 in RW case over the
same time interval). Thus, we expect that the resulting per-
formance under RWP models will be better than the case of
pure exponential inter-contact time, but quite close. How-
ever, (14) also applies to any other mobility patterns (e.g.,
vehicles’ movement on routes, visitors’ tour in a park, etc.)
under the class of MC3 and M′

C3, in which the distribution
of inter-contact time can be much different from exponential
distribution, leading to bigger ‘gap’ in the aforementioned
stochastic ordering.5

5. APPLICATION OF AGING PROPERTY
IN FORWARDING/ROUTING

In Section 4, we show how the aging property in mobil-
ity pattern leads to performance comparison between ap-
proaches based on exponential and non-exponential inter-
contact time. In this section, we discuss how the aging
property can be actively exploited toward better design of
forwarding/routing algorithms over mobile nodes.

For simplicity of exposition, here we denote by Age(A,B)
the time elapsed since the latest encounter between nodes
A and B and by Res(A,B) the remaining time until nodes
A and B meet again (residual lifetime). This age infor-
mation Age(A,B) between two mobile nodes has been uti-
lized in wireless sensor networks [15, 31, 19] to estimate the
change in the relative positions of nodes A and B and thus
change in the overall network topology caused by nodes’ mo-
bility. Similarly, this age information has been partially ex-
ploited in MANET forwarding/routing algorithm design [10,

5A simple example is the periodic walk in Figure 3(a), under
which the inter-contact time ccdf is a step function.

34]. For example, [10] proposes an efficient route discov-
ery strategy from the source node S = R0, through search-
ing for a series of intermediate nodes R1, R2, . . . , Rn to the
destination node D with the property that for any i ∈
[0, n− 1], Age(Ri+1,D) ≤ Age(Ri,D). [10] then shows that
as Age(A,B) increases, the empirical conditional mean of
the distance between A and B also increases and finally con-
verges to a constant after certain time TM, which depends
on the underlying mobility pattern M of mobile nodes A
and B. [34] present mobility assisted routing algorithms,
under which only a small number of copies of a packet are
allowed in the network and each copy, if currently resides in
node A, can be further relayed to other node B upon en-
counter only when Age(B,D) ≤ Age(A,D) − t0 with some
constant parameter t0 > 0 of their choice. This algorithm is
shown to perform well under RW mobility models.

Compared to the existing works showing that the smaller
Age(A,B) indicates the smaller mean distance between A
and B before certain time TM (from now on, the time scale
of our discussion is between time 0 and TM), our results
shows that smaller Age(A,B) can lead to either stochas-
tically smaller or larger residual lifetime Res(A,B) when
the inter-contact time has DFR or IFR. For instance, under
DFR mobility patterns, we have

Age(A,D)≤Age(B,D) ⇒ Res(A,D)≤stRes(B,D), (16)

and in this case a mobile node ‘closer’ in distance to the
destination D indeed will meet it in shorter time. However,
under IFR mobility patterns such as RWP model or MC3

in Section 3.3, we have

Age(A,D)≤Age(B,D) ⇒ Res(A,D)≥stRes(B,D), (17)

which implies that a mobile node that is closer to D in dis-
tance will now spend stochastically longer time to meet the
destination.6 In other words, while indeed successively find-
ing ‘better’ nodes (in terms of smaller residual lifetime with
D) under DFR type mobility patterns, the same algorithm
based on age information as above may choose ‘worse’ set
of nodes for IFR type mobility patterns. In fact, the sim-
ulation results in [34] have shown that while their forward-
ing algorithm improves the system performance in terms
of packet delay under RW mobility model, the same algo-
rithm then leads to worse performance under RWP mobility
model. The authors in [34] discussed that the inferior per-
formance under RWP mobility model might be caused by
the ‘high mobility’, still assuming that the age information
should be utilized in the same way as it was for RW mobility
models, and they regarded the age information not so much
helpful (due to ‘high mobility’) for RWP mobility models.
From our results, however, the true reason for this perfor-
mance discrepancy under RWP and RW models should be
that RWP mobility model has IFR property, while RW mo-
bility model has DFR property, as shown in Figure 4. In
this regard, our results suggest that existing forwarding al-
gorithms need to be modified to adapt to different aging
properties of inter-contact times, so as to correctly predict
the future dynamics (residual lifetime) based on the past

6An intuitive explanation is that under IFR mobility pat-
terns, a mobile node A with small Age(A,D) (‘closer’ to D)
is most likely taking the direction that is away from D due
to its tour (or traffic circle) type mobility pattern and it will
take longer to come back and meet D again.



events (age information) in an attempt to exploit the non-
exponential (memory) structure. Further, we expect that
not only the ordering in (16) and (17) but also the ‘range’
over which the failure rate function r(t) fluctuates, can be
utilized to predict how much improvements the forwarding
with aging information will bring.

6. CONCLUSION
In this paper, by exploring the memory structure of con-

tact dynamics, we showed that recently discovered non-
exponential inter-contact time can bring tremendous oppor-
tunities to the study in MANET if correctly exploited. Un-
der four classes of stochastic mobility patterns, we mathe-
matically proved that they produce inter-contact times with
constant/decreasing/increasing failure rate as well as new-
better-than-used property. We then presented convex or-
dering relationships between inter-contact times with differ-
ent aging properties, based on which we compared two ap-
proaches using non-exponential and exponential inter-contact
time. We also discussed the implication of our results on for-
warding/routing algorithm design. We expect that our work
in this paper will form a rigorous foundation toward anal-
ysis and design of MANET protocols over non-exponential
contacts via stochastic ordering and thus bridge the gap be-
tween two parallel bodies of approaches focusing on realism
or mathematical simplicity.

APPENDIX
Proof of Theorem 1: From Section 2.2, we only need to
show that F̄t(τ ) in (2) does not depend on t. Since F̄t(τ ) =
F̄t(1)F̄t+1(1) · · · F̄t+τ−1(1), it suffices to show that F̄t(1) =
P{TI ≥ t+ 1|TI ≥ t} does not depend on t. Observe that

P{TI ≥ t+ 1|TI ≥ t} = 1 − P{TI = t|TI ≥ t}
= 1 − P{C(t) = 0|TI ≥ t}

= 1 −
∑N

i=1
P{C(t− 1) = i|TI ≥ t} · pi0. (18)

Under the ‘in-home’ condition in Definition 7, pi0 = γ (γ ∈
(0, 1)). Hence, from (18), P{TI ≥ t+1|TI ≥ t} = 1− γ does
not depend on t.

As for the ‘out-home’ condition in Definition 7, first note
that when G is 2-connected, P ∗ is irreducible. Since all
elements of P ∗ are non-negative, by Perron–Frobenius The-
orem [7], ~pout

0 > 0 in (6) exists. Now, define a matrix Q
by replacing the first row of matrix P with [1, 0, . . . , 0] and
consider another mobile node B whose mobility pattern is
defined by the transition matrix Q and position at time t by
B(t). Note that 0 is an absorbing state for node B, hence
the probability that B has never visited site 0 during time
instances 1, 2, . . . , t− 1 is simply P{B(t− 1) 6= 0}.

If C(0) = 0, then at time t = 1, C leaves site 0 (
∑N

k=1 p0k =
1) and arrives at site i ∈ [1, N ] with probability p0i. Suppose
at time t = 1, node B is located at site i (with probability
p0i). Then, the distributions of B(t) and C(t) from t ≥ 1
until they visit site 0 again are identical. Thus, we have

P{C(t− 1)= i|TI ≥ t}=P{B(t− 1)= i|B(t− 1) 6=0}
=qi(t− 1)/

[

1 − q0(t− 1)
]

, (19)

where qj(t) = P{B(t) = j}. Finally, note that ~pout
0 in (6) is

quasi-stationary distribution [24] in that when ~pout
0 is node

B’s initial distribution, qi(t)
1−q0(t)

is invariant with respect to

t. Hence, from (18) and (19), P{TI ≥ t+ 1|TI ≥ t} does not
depend on t and this completes the proof.

Proof of Theorem 2: We will first show that the traffic-
circle condition in Definition 9 implies the total-positivity
condition, i.e. Q = {qij} ∈ TP2. From Definition 8, we only
need to show that

qijqi′j′ − qij′qi′j ≥ 0, (20)

for all i, j, i′, j′ ∈ [0, N ] satisfying i < i′ and j < j′. Since
q00 = 1 and q0j = 0, (20) trivially holds when i = 0. When
i > 0, if j′ ≥ i or j ≥ i′, then at least one of qij′ = 0 and
qi′j = 0 is true, thus (20) automatically holds. Therefore,
we only need to consider the case when j < j′ < i < i′.
However, from the traffic-circle condition, we have qij =
qij′ = 1/i (note that i > 0), and qi′j′ = qi′j = 1/i′. In
other words, qijqi′j′ − qij′qi′j = 0 and (20) still holds. In
consequence, we have shown that Q ∈ TP2 under traffic-
circle condition.

Now, similar to the proof of Theorem 1, consider another
mobile node B whose mobility pattern is defined by transi-
tion matrix Q. If C(0) = 0, then C(1) = N from p0N = 1 in
Definition 9. Suppose that at time t = 1 node B is also at
site N . Then, as before, distributions of nodes B and C’s
trajectories until they visit site 0 again are identical, and
thus TI has the same distribution as that of the first hit-
ting time TF of mobile node B from site N to site 0. From
Theorem 3.21 in [26], TF has IFR. This completes the proof.

Proof of Theorem 3: We will first show that under
the progressive-route condition in Definition 12, the (N +
1) × (N + 1) matrix Q is stochastically monotone, where
Q = {qij} is from replacing the first row of transition matrix
P by [1, 0, . . . , 0]. Let the row vectors of matrix Q be

~qi = [qi0, qi1, . . . , qiN ], i = 0, 1, . . . , N.

From Definition 11, we only need to shows that

~q0 ≤st ~q1 ≤st . . . ≤st ~qN . (21)

Since ~q0 = [1, 0, . . . , 0], clearly ~q0 ≤st ~q1 (note that the
sum of all entries in ~q1 is 1). For any i ∈ [1, N ], from the
progressive-route condition in Definition 12, we have

∑k

j=1
qij =

{

(k+1)
(

1−(N−i+1)pi

)

/i if k ∈ [0, i− 1],

1 − (N − k)pi if k ∈ [i, N ].

Therefore, for any i ∈ [1, N ], when k ∈ [0, i− 1],

∑k

j=1
qij = (k + 1)

(

1 − (N − i+ 1)pi

)

/i

≥ (k+1)
(

1−(N−(i+1)+1)pi+1

)

/i (22)

≥ (k+1)
(

1−(N−(i+1)+1)pi+1

)

/(i+1) =
∑k

j=1
q(i+1)j ,

where (22) is from (10), i.e., (N − i+ 1)pi ≤ (N − (i+ 1) +
1)pi+1. When k = i,

∑k

j=1
qij = 1−(N− i)pi ≥ 1−(N− i)pi+1 =

∑k

j=1
q(i+1)j .

Similarly, when k ∈ [i,N ],
∑k

j=1 qij ≥ ∑k
j=1 q(i+1)j from

pi ≤ pi+1. Hence, (21) holds and the matrix Q is stochasti-
cally monotone.

Now, again, similar to the proof of Theorem 2, we can de-
fine another mobile nodeB whose mobility pattern is defined



by transition matrix Q, and TI has the same distribution as
that of the first hitting time TF of mobile node B from site
N to the site 0. From Theorem 3.20 in [26], TF ∈ NBU and
this completes the proof.
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