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ABSTRACT

Inter-meeting time between mobile nodes is one of the key
metrics in a Mobile Ad-hoc Network (MANET) and central
to the end-to-end delay and forwarding algorithms. It is
typically assumed to be exponentially distributed in many
performance studies of MANET or numerically shown to
be exponentially distributed under most existing mobility
models in the literature. However, recent empirical results
show otherwise: the inter-meeting time distribution in fact
follows a power-law. This outright discrepancy potentially
undermines our understanding of the performance tradeoffs
in MANET obtained under the exponential distribution of
the inter-meeting time, and thus calls for further study on
the power-law inter-meeting time including its fundamen-
tal cause, mobility modeling, and its effect. In this paper,
we rigorously prove that a finite domain, on which most
of the current mobility models are defined, plays an impor-
tant role in creating the exponential tail of the inter-meeting
time. We also prove that by simply removing the boundary
in a simple two-dimensional isotropic random walk model,
we are able to obtain the empirically observed power-law
decay of the inter-meeting time. We then discuss the rela-
tionship between the size of the boundary and the relevant
timescale of the network scenario under consideration. Our
results thus provide guidelines on the design of new mobility
models with power-law inter-meeting time distribution, new
protocols including packet forwarding algorithms, as well as
their performance analysis.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign - Wireless communication

General Terms: Theory

Keywords: mobile ad-hoc network, inter-meeting time dis-
tribution, exponential vs. power-law, bounded domain, time
and space scaling
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1. INTRODUCTION

Capacity and delay are two main factors in assessing the
performance of MANETSs. In order to successfully transfer
data from a mobile node to another, the mobile node needs
to first wait until it ‘sees’ other mobile node (until it gets in-
side the transmission range of the other node) for data-relay,
and then will be able to relay the data during the period it
maintains the connection with the other node. The former
metric is called the inter-meeting time of the two nodes [8,
16, 35, 17], and the latter is called the contact time [17, 21].
These two metrics are critical in determining the delay and
capacity of the network, as well as choosing various schedul-
ing/forwarding algorithms. In particular, the inter-meeting
time of two nodes is a major component of the end-to-end
delay in MANET [15, 13, 14, 31, 32, 33|, as it denotes how
long it takes to encounter the other mobile node to have
any chance to relay/forward the data for communications.
Larger inter-meeting time leads to larger end-to-end delay.

There have been several studies on the characteristics of
the inter-meeting time in the literature. For example, au-
thors in [14, 31, 13] assume that the inter-meeting time
is exponentially distributed so as to make their analysis
tractable. This assumption is supported by numerical sim-
ulations [32, 34, 13] based on random waypoint mobility
model (RWP) [5, 9, 19, 20, 7]. Further, there have been also
some theoretical results showing that the first and second
moments of the inter-meeting time are bounded above [34,
33] under Brownian motion model on a sphere [12, 32].

However, recent empirical results on the inter-meeting
time via real, extensive mobility traces [8, 16, 17, 35] in
fact indicate that the tail behavior of the inter-meeting time
is far from being exponential, but is close to a power-law [8,
17]. For example, in [17], four distinct sets of data are used
to analyze the inter-meeting time. Two of them test WiFi
networks (large area) containing thousands of nodes over
three or four months (UCSD [28], Dartmouth [16]); another
two use a Bluetooth network [17] containing hundreds of
nodes in an office/lab environment (small area) over several
days. All of these invariably show that the distribution of
the inter-meeting time T follows a power-law over a wide
range of timescale, i.e., P{T > t} ~ ¢t~ for some constant
a > 0. More strikingly, there it was also shown that the
power-law exponent « is typically less than 1, making even
the first moment of the inter-meeting time infinite. This is
in sharp contrast to all the results in the current literature
where an exponential inter-meeting time distribution is ei-
ther assumed or numerically verified through various current
mobility models.



The above discrepancy between the recent empirical data
and the theoretical /simulation results based on current mo-
bility models has motivated several studies in the literature.
[8] investigates the effect of power-law inter-meeting time
distribution on the system performance (capacity and de-
lay) and calls for new mobility models to produce power-
law inter-meeting time; [27] studies the effect of infrastruc-
ture and multi-hop transmission on networks with power-law
inter-meeting time and calls for new forwarding algorithm
to effectively utilize communication opportunities such as
the existence of low-delay multi-hop path; [3] proposes a
method to generate power-law inter-meeting time using one
dimensional random walk model. While these works provide
some answers to the effect of power-law inter-meeting time,
the following question still remains: What is the fundamen-
tal reason for this discrepancy? Answer to this question is
very important because the disclosure of the fundamental
reasons will provide essential guidelines on all related stud-
ies in MANET's — modeling of power-law inter-meeting time,
analysis of its effect [8, 27|, capacity-delay trade-offs [14, 33,
12, 37], and the design and performance analysis of relaying
algorithms [14, 32, 8].

In this paper, we first show that the finite boundary is
one of the key aspects that give rise to the universal ap-
pearance of the exponential inter-meeting time distribution
in the literature. Indeed, almost all the current mobility
models have boundaries or “end-of-the-world”. For exam-
ple, in the definition of RWP [5, 9, 19, 20, 7], the bound-
ary is necessary because whenever the node changes direc-
tion and/or speed, it selects the destination ‘uniformly’ over
some bounded simulation area. As for random direction mo-
bility model (RDM) [30] and 7.i.d. mobility model [37, 26],
a boundary is incorporated into their definitions. Similarly,
for random walk mobility model (RWM) [10] or Brownian
motion on a sphere [32, 12], the boundary is also enforced
as all the mobile nodes are constrained to move on a sphere
or inside a boundary. Here the boundary may be of dif-
ferent types including ‘reflective’ or ‘wrapping’ as defined
in 7], which converts a 2-D rectangular simulation area into
a torus-shaped area.

In particular, we rigorously prove that the tail of the inter-
meeting time between two independent mobile nodes' de-
cays at least exponentially fast for any RWP model and for
any RWM (or RDM) as long as the boundary is finite, i.e.,
the mobility model is defined on a bounded domain. Our
assumptions are quite general in that they are satisfied by
nearly all the current mobility models in the literature. Our
results readily show the finiteness of all the moments of the
inter-meeting time (much stronger than the finiteness of only
the first and second moments as shown in [34]), and provide
analytical support on the simulation-based studies of the
inter-meeting time under the current mobility models with
boundaries [32, 34, 13].

Our theoretical results imply that the finite boundary,
among others, is the key determining factor of the expo-
nential decay in the inter-meeting time distribution, and
thus potentially undermines our understanding of the per-
formance of MANET. Moreover, we prove that removing the

'Mobile nodes may be dependent if they belong to the
same ‘group’ and follow similar paths, or belong to different
groups whose pathways rarely overlap. The inter-meeting
time in such cases may show very different characteristics,
which is beyond the scope of this paper.

boundary from 2-D RWM readily gives the power-law distri-
bution of the inter-meeting time.? We also discuss the rela-
tionship between the size of the boundary and the relevant
timescale of interest and their effect on the inter-meeting
time distribution, and provide simulation results to support
this relationship.

The rest of the paper is organized as follows. Section 2 first
presents related work on empirical observation of the power-
law inter-meeting time distribution, and then provides sev-
eral definitions and technical results to be used later on. In
Section 3, we prove that mobility models with finite bound-
ary always yield exponential inter-meeting time distribution
at least in an asymptotic sense. In Section 4, we show that
mobility models in an unbounded space necessarily produce
power-law decay of the inter-meeting time. In Section 5,
we provide some discussion on the relationship between the
size of the boundary and timescale of interest, and their ef-
fect on the inter-meeting time. Some simulation results are
presented in Section 6 to support our theoretical findings
and discussion on time/space scaling. We finally conclude
in Section 7.

2. PRELIMINARIES

2.1 Empirical Observation of Power-law

The power-law behavior of the inter-meeting time distri-
bution has been reported through various data sets under
different scenarios. In this section, we provide brief sum-
mary on how those data sets have been collected and inter-
preted in the context of the inter-meeting time distribution,
while referring to [17, 8, 27] for more details.

Most data sets available for inter-meeting time study in
the literature can be classified into access point (AP) based
or Bluetooth-based ones. AP-based data sets [28, 16] keep
track of the time instants at which a mobile node gets asso-
ciated with an AP and typically record activities (AP logs)
of a large number of mobile nodes for a long period of time.
Two nodes are assumed to ‘meet’ only if both of them are in
the range of the same AP. In view of the inter-meeting time
of mobile nodes, some inaccuracies are inevitable in these
AP-based data sets since (i) two nodes within the range of
each other may not be within the range of the same AP,
i.e., the duration of the inter-meeting time could be over-
estimated, and (ii) two nodes within the range of the same
AP may be out of their communication ranges as well, i.e.,
the inter-meeting time could also be underestimated.

On the other hand, Bluetooth-based data sets record time
instants at which a node is in contact with other nodes, along
with the ID of the node in contact [17, 8, 27]. While the
number of nodes and the duration of the activities are typi-
cally smaller than those of AP-based ones,® Bluetooth-based
data provide more accurate information on the inter-meeting
time, as they are free of any reference to APs and directly
keep track of contact/inter-contact events. Nevertheless, in
all AP-based and Bluetooth-based data sets, the power-law

2Similar suggestion has been made in [3] via 1-D random
walk, while our example in Section 4 is in 2-D.

3For example, the UCSD data set [28] includes more than
195 thousands contacts collected from 273 participating de-
vices over 16 days, while the Infocom 2005 Blluetooth-based
data set includes about 7 thousands contacts collected from
41 dedicated iMote devices over 3 days.



behavior of the inter-meeting time has been shown to per-
sists over from several hours up to even days.

2.2 Assumption and Definitions

In this section we collect basic assumptions, notations and
several definitions of the metric of interest that will be used
throughput the paper. We also provide some basic proper-
ties associated with those definitions and notations.

We consider two mobile nodes A and B, each of which
moves according to some mobility model in Q@ C R?. The
domain Q (the entire ‘world’ for the mobile nodes) can be
bounded or unbounded depending on our choice of mobility
models in sequel. Let A(t), B(t) €  be the position of the
node A and B at time ¢, respectively. We will assume that
A(t) and B(t) are independent unless otherwise specified. As
our main interest lies in the statistics of the inter-meeting
time of two nodes, we find the following definition useful.

DEFINITION 1. Let {S(t) € Q}i>0 be a collection of sub-
sets of Q. The first passage time (FPT) Tr of A(t) to {S(t)}
is defined as

Tr 2 tig(f) {t:Al) e S(t)}.
given that A(0) ¢ S(0). O

ASSUMPTION 1. Two mobile nodes can communicate with
each other whenever they are within a distance of d, the
transmission range of the mobile node. a

REMARK 1. Assumption 1 is reasonable if the density of
the mobile nodes is not high and the interference from other
mobile nodes are negligible. This is especially the case in
sparse mobile networks or delay/disruption tolerant networks
(DTNs) [11, 21, 27, 6, 28, 17]. In case of high level of
density of mobile nodes, our assumption might be rather
optimistic and would lead to underestimation of the actual
inter-meeting time, since two nodes may not be able to com-
municate due to interference even when they are nearby.
Still, even for such a highly populated MANET, our subse-
quent analysis can also be applied to different mobile ‘groups’
whose density is usually much lower than that of mobile
nodes.

DEFINITION 2. The inter-meeting time T of nodes A and
B is defined as

Ty £ inf{t: | A(1) - B()| < d), (1)

given that ||A(0) — B(0)|| = d and ||A(0T) — B(0M)| > d.
Here, || - || is the Euclidian norm in 2-D. O

Define by Ng(t) a set of points that can be reached by
node B at time ¢. Specifically,

No(t) 2 {s € Q: |ls - B(t)| < d). (2)

Then, the inter-meeting time becomes the first passage time
of A(t) to {N5(t)}, given that A(0) € Np(0) and A(0T) ¢
Ne(0™).

As we will be interested in the behavior of the tail of
the inter-meeting time distribution, it is advantageous to
introduce the following definition.

DEFINITION 3. Let P be a collection of positive random
variables whose complementary distribution decay at least

exponentially fast. Specifically, we write X € P if there
exists a constant ¢ > 0 such that

lim sup % logP{X >t} =—c<0. (3)
t—oo

Note that (3) implies P{X > ¢} < exp(—ct + o(t)) where
o(t)/t — 0 as t — oo. Or, equivalently, P{X > t} =
exp(—c[t+o(t)/t]) < Ke™“ for some K >0 and for all suffi-
ciently large t, indicating that the tail of X decays at least
exponentially fast. With this definition, we immediately ob-

tain the following properties that will be useful later.

(P1) If X,Y € P, then aX + bY € P for any positive
constants a, b.

(P2) If X € P, then X. € P, where X, has the equilibrium
distribution of X, i.e.,

Fu(x) = P{X. <} = / (1 - Fw) du/E{X}, (4)

where F(z) =P{X < z}.
Property P1 can be seen by noting that for any (possibly
dependent) random variables X and Y,

P{aX +bY >t} <P{X >1t/(2a)} +P{Y >t/(2b)}. (5)
Thus, if X € P with constant ¢; > 0and Y € P with ¢a > 0,
it follows that

1

P2 follows since

P{X. >t} = ﬁ /too P{X > z}dz

1 o —cx K —ct
< — = —
*E{X}/t Ke “dz cIE{X}e

for all sufficiently large ¢. Further, X € P ensures that all
the moments of X are finite, thus its moment generating
function is well-defined, i.e., E{e’*} < oo for some 8 > 0.

3. INTER-MEETING TIME WITH EXPO-
NENTIAL TAIL

In this section we are interested in mobility models with
finite boundaries, i.e., Q € R? is bounded, and rigorously
prove that mobility models such as random waypoint mobil-
ity models (RWP) and random walk models (RWM), defined
on a bounded domain €2 necessarily result in an asymptotic
exponential tail of the inter-meeting time. We will consider
the case of unbounded Q (e.g., Q = R?) later in Section 4.

3.1 RWP Models

In the RWP model [18], a node first selects a random
waypoint as its destination uniformly in a convex bounded
region 2, and a speed V uniformly from [vmin, Umas] (0 <
Umin < Umaz), and then moves to its destination at its cho-
sen speed. After it reaches the destination, it pauses for a
random amount of time and then selects a new destination
and speed, and repeat the whole procedure independently.
Denote the time instant at which a node pauses and chooses
a new destination as joint time and the path of a node con-
sisting of a straight line segment as one leg [18]. The speed
of node A is chosen uniformly from [via,, Vises). Let 7' be
the duration of the n'" pause time of node A. Similarly we
define 7.2 for node B.



We first consider the traditional RWP model where all
the pause times are zero and mathematically prove that the
inter-meeting time decays at least exponentially fast. Later
in this section, we generalize the result to include the case of
non-zero random (possibly infinite) pause time. Throughout
the section we assume that nodes A and B are independent,
but we do allow that the speed and pause time distributions
are different for different nodes.

RWP with Zero Pause Time: First, consider the zero
pause time case. Let 72 = 75 = 0foralln =1,2,.... Then
we have the following result.

PROPOSITION 1. There exists constant ¢ > 0 such that
P{T; >t} < e,
for all sufficiently large t. a

PrROOF. Let D < oo be the ‘diameter’ of 2 or the maxi-
mum length of a line segment (leg) in Q. Let

¢ =2D/min{vinin, virin} > 0,

which is well defined since vmin > 0 for both nodes and
D < oo. Note that ¢ is the longest time it takes for both
nodes to finish two legs. In other words, during the time
interval of ¢, both nodes must have jumped at least twice.
Hence, ¢ can be interpreted as a renewal interval for nodes A
and B since for any ¢ > 0, {A(s); s <t} and {A(u+();u > t}
are independent (similarly for node B), i.e., after ¢ seconds,
nodes A and B completely forget where they were ¢ seconds
ago [18].

Let ma and wp be the stationary node distributions of A
and B, respectively, and let X (t) = (A(t), B(t)) € Q*. With-
out loss of generality, we assume that the initial distribution
of X (t) is chosen as its stationary distribution 74 x 75. One
immediate consequence is that the joint node distribution of
A and B becomes stationary, i.e., P{A(t) € S1, B(t) € S2} =
7a(S1)mB(S2) for all t > 0 and S1,S52 C Q.

Let & = {||A(t) — B(t)|| > d} be the event that two nodes
are ‘out-of-range’ at time t. From the stationarity assump-
tion, P{&} does not depend on ¢. Since the stationary node
distribution of the RWP is non-zero on any point of Q [18],
for any given B(t) = B € (2, we see that there exists a posi-
tive constant f (may depend on d and the shape of ©2) such
that ma(NB(¢)) > f > 0 where N(¢) is from (2). Thus, by
taking average again with respect to mg, we have

P{&I<1—-f2p<1. (6)

Observe that for the inter-meeting time 77, we have

t
{Ti>t}= () &c ()& (7)
s=0t1 s€Zy
for any subset (index set) Z; C (0,t]. Now, we choose the
index set Z; as 7 = {¢, 2¢, ..., L%JC} Since ( is the ‘renewal’
interval for both nodes, it follows that X (¢;) (¢ = 1,2,...)
are all independent whenever ¢; € Z; and t; # t;. Thus,
&, for different ¢; in the index set Z; are also independent.
Hence, from (7),

BIr> <B{() &) =[] BEI<p T ve ()
sE€ETy sE€ETy

where ¢ = —(logp)/¢ > 0 from 0 < p < 1 and 0 < ¢ < co.
This completes the proof. [
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Figure 1: Illustration for the construction of Z,,. Start
from Sffl, first skip two consecutive ‘renewal’ points of
node A and then wait for the next following renewal
point of node B. This defines Z,. T and T'F are ‘residual
life’ of node A and B, respectively.

REMARK 2. Proposition 1 can be immediately extended
to the case of non-zero pause time as long as it is bounded
above. If max{ri}, 72} < M < oo, we just need to redefine
the renewal interval as ' = ¢ + 2M in the above proof.

RWP with Random Pause Time: We now consider
RWP models with non-zero random pause time. Let V4, V5
and 72, 77 be the speed and pause time of two independent
nodes A and B, respectively. Similarly as before, we define
a sequence of ‘renewal’ intervals for node A as

D
Vin

D
T} 2 At Tom—1 +
2n—1

+T£L, forn=1,2,...,

where D < 0o is the diameter of Q. In words, T2 is the
longest time it takes for node A to finish two legs including
two pause times. Then, as before, for each T2, {A(s); s < t}
and {A(u+T2);u > t} are independent. Since {V,*,n > 1}
are i.i.d. (so are {7, n > 1}), it follows that {T',n > 1}
are also 4.i.d. Similarly define T:® for node B.

Define X (t) £ (A(t), B(t)) € Q* and assume that the
system is in the steady-state with its stationary distribution.
Then, along the same line in the proof of Proposition 1, we
have for some 0 < p < 1,

P{T; >t} < pl7!], 9

where | S| is the cardinality of a set S and I; = {t1,t2,...,t|7,|} C

(0,¢] is an index set with the following property:
{X(t:),i=1,2,...,|Z¢|} are independent. (10)

The difficulty here lies in the fact that, in contrast to
Proposition 1, there is no finite ¢ such that X (¢) and X (¢+¢)
become independent. In addition, even if T/ forms a ‘re-
newal’ sequence for A(t) (T2 for B(t)), this does not mean
that X (t) is also ‘renewing’ on any such sequence. For in-
stance, after a ‘renewal’ of node A, it could be that the pause
time of node B is exceptionally long so that the node A still
has to renew itself possibly an infinite number of times be-
fore it ‘sees’ a renewal of node B.

In what follows, we will construct a random index set Z;
satisfying (10). For notational simplicities, we use T and
TE to denote the distribution of T2 and T2, T# and TZ to
denote the equilibrium distribution of 74 and T (see (4)),
respectively, whenever no ambiguity arises.

Set t = 0 as one of the ‘renewal’ point of node B. We will
inductively construct a sequence of Z,, n = 1,2,..., where



each Z,, is a sum of non-overlapping T}?. Define

S7 = En: Zx
k=1

and S§ = 0. Starting from SZ_, (n > 1), we first skip
two consecutive ‘renewal’ points of node A and then mark
the next following renewal point of node B. Let t' be this
marked point. Then, we set Z, £ t' — SZ_; and ¢ = SZ.
See Figure 1 for illustration. Notice that Z,, consists of three
parts: (i) the residual life of node A (T;) evaluated at S7_;
(time from SZ_, until the first renewal point of node A),
(ii) a renewal interval of length T} for some k, and (iii) the
residual life of node B (T}P) evaluated at the second renewal
point of node A (from the second renewal point of node A
until SZ). From this construction, we have the following:

Claim 1: {Z3,_1}r>1 are independent. So are {Zak }i>1.

Claim 1 immediately follows since for each n, the first
component of Z,4o (residual life of node A) and the last
component of Z, (residual life of node B) are disjoint and
separated apart by at least one renewal interval of node A
and B (see Figure 1).

In order to proceed, we need the following technical as-
sumption.

ASSUMPTION 2. Let up = E{Zy} < oco. Then,

Ll _

lim — Z“Qk*l = [i1 < 0. (11)
nmee

Further, there exists 0y > 0 such that for each 6 € [0, 6o),

we have

1 0(Zp1— )
1 - 1 ]E{ 2k—1"H2k—1 } — A 9 , 12
Jim 5 2 logB e 10 oo (1)

where A1(0) is well-defined and differentiable at § = 0. Sim-
tlarly for fiz and A2(8) with indices in (11) and (12) replaced
by even numbers. a

REMARK 3. Assumption 2 is quite reasonable since (11)
and (12) require that {Zak—1}r>1 have similar distribution
and the moment generating function of each zero-mean ran-
dom variables Zy, — uy, be finite, only in the asymptotic sense.
For example, if each of the three components belongs to P,*
then from property (P1), it readily follows that Z, € P,
which guarantees the existence of the moment generating
function. One special case can be where T and T® are
both exponentially distributed, for which T2 and TP are also
exponentially distributed (due to memoryless property) and
thus Assumption 2 is automatically satisfied. a

‘We now state our main result.

THEOREM 1. Under Assumption 2, we have Tt € P, i.e.,
the inter-meeting time of nodes A and B decays at least ex-
ponentially fast. a

PrOOF. Similarly as in the proof of Proposition 1, we
take one ‘snapshot’ of X (t) per each renewal interval Za,

4If T4, T8 € P and the system is in the steady-state that

T4 L 74 (same for TP), then properties (P1) and (P2)

ensure that Z < TA+TA4+TFE ep.

(n = 1,2,...). To be specific, we construct a random in-
dex set Z; = {t1,t2,...} as follows: choose t1 € [Slz,SQZ],
to € [SZ,57], and in general, t; € [SQZj_l,SQZj]‘ Repeat
this procedure until SZ, becomes larger than ¢. Then, for
any @ < j, [t t;] contains at least one full renewal interval of
node A and B, thus X (¢;) and X (¢;) are independent. In this
way, it is straightforward to see that {X (¢;),i =1,2,...} are
independent (and actually identically distributed from the
stationarity of X (t)).

Let N(t) £ |Z:| be a counting process that tells us the
number of independent ‘snapshots’ of X (u) = (A(u), B(u))
during [0, ¢]. By conditioning on N (¢) and from (9), we have

P{T; > t} <E{p" P} = E{e N}, (13)
where £ = —log p > 0. Note that, for any constant 8 > 0,
E{e™ M =E{e™ " v <on }HEle N Vv o0}
< P{N(t) < Bt} + e . (14)
A closer look at the way we construct Z; reveals that
{N(t) < Bt} = {853 >t}

assuming that 8t takes on integer value without loss of gen-
erality. Thus, for all sufficiently large ¢, we have

P{N(t)< Bt} = P{S% > t} = P{S5, > g} (set n=p3t)

< BLS Zany > P4 P(S Zae > (15)
{kgl 2k—1 2/8} {; 2k 2/8}

where (15) is from (5) with @ = b = 1. For the first term
in (15), note first that from the assumption in (11), for any
given € > 0, we have

}%kz_lu%fl—[h’ <e€ (16)

for all sufficiently large n. We then choose 3 > 0 such that
1
a

— — ([ . 1
*= 55 (i1 +€) >0 (17)
Then, from (16) and (17), it follows that
L atiutesatliy (1)
2670{ f1+e>a nk:luzkfl

for all sufficiently large n.
Rewriting the first term in (15) gives, for any 6 > 0 and
for all sufficiently large n,

LY Zona> 55} B3 (Zova—pars) 2o} (19)
k=1 k=1

< e " "E{exp(0 Z[szﬂ — p2k—1])} (20)
k=1

n

= exp (— n[aﬁ—% Z log ]E{et‘/’(szA*Mqu)}] )’ (21)
k=1

where (19) is from (18), (20) is from Markov’s inequality,
and (21) is from independence of {Zax_1}r>1 (Claim 1).
We then take log in both sides of (21), divide by n, and
take limit with respect to n. By optimizing the resulting



expression over 0 < § < p, from the assumption in (12), we
have

n— oo

1 S n
lim - log P{ ; Zok—12 ﬁ} < —I(a) (22)

where

I(z) = sup [z0 — A1(0)].
0<6<6g

Note that the function I(z) is a well-defined convex func-
tion from Assumption 2. Further, since A:1(0) = 0 and
A1(0) = 0 (from E{Zx — px} = 0), we have I(a) > 0 from
our choice of @ > 0 in (17). Similarly, we can repeat the
same lines for the second term in (15). This completes the
proof of Theorem 1. []

REMARK 4. The exponential tail behavior of the inter-
meeting time of two nodes moving according to RWP model
has been mentioned in [34]. However, while [3]] provides
only simulation results, we rigorously prove the results. Our
theoretical result is quite general in that it applies to not
only the bounded pause time case, but also the random, un-
bounded pause time case (see Assumption 2). Moreover, two
users under discussion are not required to have the same sta-
tionary node distribution.

3.2 Random Walk Models (RWM)

In the current literature studying the RWM [12, 33|, com-
monly a discrete-time, discrete-space 2-D model is used:
A square (the bounded area) is divided into multiple sub-
squares, called cells, and time is divided into slots of equal
duration. At each time slot a node is in and can be only in
one cell. The initial position of a node is uniformly chosen
from all cells. At the beginning of each time slot, the node
jumps from its current cell to one of its adjacent cells with
equal probability. Moreover, the boundary can be wrapping
or reflecting (see Figure 2).
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Figure 2: A trajectory of our RWM model: The node
can jump from a cell to any other cell with certain prob-
ability, and the boundary condition can be arbitrary
(z1 — x2: wrapping; y1 — y2: reflecting).

In this section, we consider a more general RWM. The
bounded area is assumed to be a unit square. Divide the

square into N = 1/[% X %] sub-squares (cell)®, each of
which with area % X % as shown in Figure 2. The initial
position of a node is chosen uniformly from N cells. We
number the cells by 1,2,..., N: the cell on the n'* row and
mt" column is assigned the number i = (n — 1)v/N + m,
where n,m =1,2,...,v/N and i = 1,2,..., N. At the be-
ginning of each time slot, the node jumps from the ** cell
to the ;™ cell with probability p(i,j) € [0,1]. This model
is very general in the sense that: (i) in any position, the
node can jump to any other cell (including the current cell)
with any preassigned probability, which obviously includes
the model in [12, 33] where the node can only jump to one
of its adjacent cells with equal probability, and (ii) we al-
low any arbitrary boundary condition including wrapping,
reflecting, etc., by assigning different jumping probabilities
for the cells on the boundary. (See Figure 2 for example.)

This general RWM can be studied using a Markov Chain
(MC) with N states and its transition matrix P = {p;;}
where p;; = p(i,j), i.e., the probability of jumping from
state 7 to j. In the following, we will give our main result on
the inter-meeting time of a pair of nodes, in which only one of
the two nodes is required to follow the RWM described above
and the mobility model of the other node can be completely
arbitrary.

To avoid trivialities, the MC is assumed to be irreducible,
i.e., any single node in this finite system can go to anywhere
in a finite number of steps. Still, this alone is not sufficient to
establish a well-defined mobility model. For example, define
a mobility model such that the node can only jump from cell
i to cell i + 1 (when ¢ = N, the user can only jump to cell
1). Obviously this MC is irreducible, but it is not a good
mobility model. The introduction of a mobility model is to
emulate the mobility pattern in real life in an abstract and
simple way. In reality, if an obstacle is present, the moving
object (people, bus, etc.) will simply bypass it and continue
the movement in the system, rather than get stuck on it.

From the viewpoint of graph theory, the mobility model
can be looked as a directed graph. Each cell corresponds to
a vertex, and there is a directed edge from vertex i to vertex
j if and only if p;; > 0. Hence, the irreducibility actually
ensures that the graph is connected. However, how strong
is the connectivity? One fundamental way to test it is to
delete one vertex; if the graph is still connected after the
deletion of any one vertex, then we say that the graph is 2-
connected. For example, the mobility model example given
above is connected, but not 2-connected. In view of this, we
impose the following assumption to avoid trivial models.

ASSUMPTION 3. After we delete any single state from the
MC model, the resulting state space is still a communicating
class. a

Note that we are interested in the tail behavior of the
inter-meeting time, so we surely want to rule out any pos-
sibility that two nodes never meet. For example, if nodes
A and B somehow conspire together not to meet each other
forever (e.g., node B always move ‘parallel’ to node A), the
inter-meeting time becomes infinite with probability 1. In
order to rule out this possibility, we also need the following
technical assumption.

SWe assume /N is an integer without loss of generality.



AsSUMPTION 4. For any possible trajectory of node B,
node A eventually meets node B with positive probability.
Specifically, there exists M < oo such that P{Tr > M} < 1
regardless of the trajectory of node B, i.e., P{Tr > M} < 1
is true for any trajectories. O

REMARK 5. Assumptions 3 and 4 ensure that (i) there
exist at least two different paths between any two cells and
(%) it is impossible for node B to get away from node A
forever even if it chooses its ‘optimal’ path to stay away from
node A (no conspiracy). Note that all existing versions of
RWM [7, 12, 35] readily satisfy Assumptions 3 and 4. a

To proceed, we present the following definitions and lemma:

DEFINITION 4. Let |l|lo be the norm of a matriz K ={k;;}
defined by || K |joo= max > j\kijl, i.e., the largest absolute row

sum. For any k-dimensional vector & = {x1, -, xr} and
n€N, we define n—norm of ¥ as H;E'Hn:(zikzﬁxi\")l/”. O

DEFINITION 5. A finite set of matrices Crmy = {c[}} €
RNY*N where m € {1,...,L} is said to be a sub-stochastic
matriz set if there exists a finite integer M such that for
any integer set {h1,...,.hp} with h; € {1,...,L} and i €
{1,..., M}, |Chy -+ Chypllee < 1. O

LEMMA 1. Let {Pn} € RN (m = 1,2,...,M) be a
sub-stochastic matrix set. Then, for any inder set T =
{ni,n2,...} where n; € {1,...,M} and i € N, there ex-
ist constants ¢ > 0 and 0 < g < 1 (independently of the
choice of I) such that for any & € R*Y | the product of any
k (k € N) matrices A(Z,k) = Pn, Pn, - - - Pn, satisfies

|ZAZ, K)|ln < cq"||E||n  for all sufficiently large k.
PrOOF. See Appendix. []

‘We now state our main result.

THEOREM 2. Suppose that node A moves according to
the RWM described above satisfying Assumptions 8 and 4.
Then, these exists constant v > 0 such that P{T7 > t} <
e for all sufficiently large t.

REMARK 6. We require that only one of the nodes (node
A) moves according the RWM. This means that the other
node (node B) can move according to any other arbitrary
mobility models defined on a bounded domain such as RWP,
random direction models, etc., as long as two nodes eventu-
ally meet with non-zero probability.

PRrROOF. Since node B moves according to some arbitrary
mobility model, the only information we know about node
B’s movement is its path-wise position at t = 0,1,2,.... Let
7 be the set of all possible trajectories of node B satisfying
Assumptions 4. Without loss of generality, assume A and
B are in the communication range just before time 0 and
A(0) =1 # B(0). (If A(0) # 1, simply renumber the cells.)
Let T2 be the FPT of A to the trajectory B € 7 as in
Definition 1. Then, we have

P{T; >t} = > P{TR > t}P{B} forallt>1  (23)
BeT

In the following, we fix B £ {B(t) = ki, t € N} (k: €

{1,2,...,N}) to show that P{T8 > t} is uniformly upper-

bounded by cexp(—~t) where ¢ > 0 and v > 0, i.e., for any

B e T, P{TE > t} < cexp(—yt). For the simplicity of
expression, we use Tr in stead of TE because now we are
discussing fixed trajectory B.

Let P = {p;;} be the transition matrix of the Markov
chain for A(t) (position of node A at time t) where p;; is the
probability of jumping from cell 7 to cell j in one step. We
then define a set of matrices {P;,7 =1,2,..., N} by setting
the i** column of P to 0 and keeping all the other elements
the same.

From A(0) = 1, the initial state vector becomes Ty =
[10 ...0]. Then P{Tr > 1} is the probability that node A
jumps from state 1 to any state other than B(1) = k1, i.e.,

P{Te>1}= >  py (24)

1<j<N, j#k1

Define a matrix QW) € RNV as QW) = Py, and denote by
qg;) the i*" row and j** column element of Q*. Then, from
(24), it follows that P{Tr > 1} = Z;V:l q%-) = 7HQW1,
where 1 =[11 ... 1]7 is the N-dimensional column vector
whose elements are all 1. Following the similar line, we

define QM = Q(t_l)P,rCt for all t > 2. Then we can show by
induction that

N
P{Tr >t} =Y ¢} = %Q"1, (25)

j=1
0)
15
following matrix Q*:

where ¢\" is the first row and j'* column element of the

QY =P, P, Py, t>1. (26)

Consequently, if we can prove that for any given trajectory
B of node B, there exists constant ¢ < oo and v > 0 (inde-
pendently of B) such that ZoQ®1 < ce™* for all sufficiently
large ¢, then from (23) and (25), we are done.

In what follows, we will show that {F;, ¢ = 1,...,N}
is a sub-stochastic matrix set as defined in Definition 5.
From (25), ZoQ®1 is the sum of the first row of Q, or
equivalently, the probability that node A starts from cell 1
(A(0) = 1) and never meets node B (with the trajectory B)
up to time t. Similarly, it can be shown that the sum of the
it" row of Q™ is the probability that node A starts from cell
i (A(0) = %) and never meets B with the trajectory B up to
time t. Thus, from Assumption 4, there exists 0 < M < co
such that for any t > M, ¢\ = P{Tr >t} < P{Tr >

ij
J
M} < 1, for any trajectory B and any ¢ € {1,2,...,N}.
Subsequently, for all t > M,

1P P - Peclloe = Q) oo = max> "l (27)
J
= maqu%) <1, (28)
J

where (27) is from (26) and || - ||c norm is from Definition 4,
and the equality in (28) is from ql(? >0.

Note that (28) is true for any trajectory B of node B. In
particular, choose B = {B(t) = k:} where k; € {1,2,...,N}
and t € {1,...,M} and M is the finite integer as in As-
sumption 4. Hence, from Definition 5, {P;,s = 1,...,N} is
a sub-stochastic matrix set.



In consequence, from Lemma 1, there exists constant ¢ > 0
and 0 < ¢ < 1 such that

1 #Q |l < cq' 1ol (29)
for any n-norm, where & = [1 0 ... 0]. Fix || - |1 in (29
as in Definition 4. Then, ||:E'0Q<t)||1 = Z]- qu;)l = Zj qg) =
ZoQ™W1 and ||Zolli = ||[1 0 ... 0] = 1. Hence, for all
sufficiently large ¢, from (29), we have
N
70QW1 =3¢ < g’ = cexp(—t) (30)
j=1

where v = —Ing > 0. Note that (30) holds good for any
trajectory B and the constants ¢, ¢ are independent of B.
Hence, from (23) and (25), we are done. [

Through space/time quantization, Theorem 2 can also
be applied to any other continuous-time, continuous-space
models (e.g., random direction model (RDM), etc) provided
that both the time it takes for a node to walk from one
cell to another and the pause time are bounded. For any
continuous-space analogue of our model, note that whenever
nodes A and B are in the same cell, they are ‘in-range’ (the
maximum distance between A and B is no larger than d).
Note also that even when they meet in the continuous-space
model, they may not in the quantized discrete-space model.
For example, nodes A and B in Figure 2 are within a distance
of d, but they are in different cells, i.e., they do not meet in
the discrete-space model. In consequence, the inter-meeting
time in a continuous-space model is upper-bounded by that
in the discrete-space (quantized) model. Hence, Theorem 2
readily shows that the tail of the inter-meeting time of a
continuous-space model also decays at least exponentially
fast.

4. FROM EXPONENTIAL TO POWER-LAW
INTER-MEETING TIME

4.1 Finite Boundary and Exponential Tail

So far we have proven that the inter-meeting time of two
independent mobile nodes with mobility models such as RWP,
RWM, and RDM in a bounded domain has at most exponen-
tial tails. These models are clearly different in defining each
node’s mobility pattern. In fact, for other mobility models
in a bounded domain (e.g., Brownian motion on a sphere,
ii.d. mobility model on a square, etc.), we can also show
similar exponential behavior of the inter-meeting time. This
observation along with our theoretical results assert that the
exponential tail of the inter-meeting time seems a universal
property and the empirically observed power-law decay of
the inter-meeting time will not arise by simply tweaking the
aforementioned mobility models.

What is common in all these mobility models? The finite
boundary. Suppose that two mobile nodes (without pause)
have not met for a long time (e.g., several hours). If there
is no boundary, intuitively, it is more likely that they are
moving toward different directions, hence chances are that
they will not meet for the next several hours and the inter-
meeting time is prolonged. In other words, the inter-meeting
time has very strong memory and may result in a power-law
type distribution.

However, when there is a finite boundary, after a long
time (much longer than a typical amount of time for a node
to hit the boundary), it forces the mobile nodes to bounce
back once being hit, which tends to reset the nodes’ loca-
tion and ‘erase’ the memory in the inter-meeting time. This
nearly memoryless behavior caused by the existence of the
finite boundary tends to shorten the inter-meeting time and
actually results in an asymptotic exponential tail.

REMARK 7. While Theorems 1 and 2 in Section 8 clearly
indicate that finite boundaries have significant impact on the
tail behavior of the inter-meeting time distribution, we point
out that they both require mobile nodes to be independent
and the moment generating function of the pause time to
be finite. (See Remark 3 and 5.) In other words, in the
presence of non-negligible dependency among mobile nodes
(e.g., they belong to the same group following similar paths
all the time or totally different groups whose typical path-
ways do not overlap) or significant amount of pause time
(e.g., pause time following power-law with infinite mean),
the inter-meeting time could be power-law type even under a
finite boundary. Another exception could be the case where
there exists a considerable amount of correlations in the tra-
jectory of a mobile node (e.g., the Gauss-Markov mobility
model [24]). The effect of finite boundary on the inter-
meeting time distribution under such spatial-temporal cor-
relations and possibly power-law pause time is beyond the
scope of this paper and left for future study.

4.2 Infinite Domain and Power-law Tail

In what follows, we will show through a class of simple
isotropic random walks in an open-space without boundary
(i.e., Q = R?) that the power-law decay of the inter-meeting
time will arise by simply removing the boundary. We con-
sider only a discrete-time model here, but similar results also
hold for its continuous-time analogue, which we omit due to
the space constraint.

In a two-dimensional (2-D) discrete-time isotropic random
walk model, at the beginning of each time slot, the node
chooses a random direction uniformly from [0,27], travels
for a random length R which is chosen from (0, c0) follow-
ing certain distribution, then the process repeats itself. De-
note by Ry the length of the k" step and 0, the random
angle uniformly distributed over [0, 27]. Then, the position
of node A at time ¢t (t =1,2,...) can be written as

Aty =>_¢" (k)= Ri'exp(iti) eR?,  (31)

k=1 k=1

where A(0) = 0. Since both sequences {Rj} and {#;} are
i.i.d. and independent from each other, ¢ (k) = R exp(i65})
(k=1,2,...) are also i.i.d. Thus, A(¢) is a sum of 4.i.d. vec-
tors, i.e., a random walk in 2-D. (Similarly for node B.)

The following result will be used in our proof of the main
result in this section.

THEOREM 3. [Sparre-Andersen (S-A) Theorem in [1, 2,
29]]: For any one-dimensional discrete time random walk
process starting at xo # 0 with each step chosen from a con-
tinuous, symmetric but otherwise arbitrary distribution, the
First Passage Time Density (FPTD) to the origin asymp-
totically decays as ~ t=3/2 with the number of steps t.



REMARK 8. The only assumption required in S-A Theo-
rem is that each step of the random walker is chosen from a
continuous (the probability of choosing a specific step length
is zero) and symmetric distribution (at each step, the ran-
dom walker goes left or right with equal probability). Denote
the first passage time (FPT) as Tr, then by S-A Theorem,
the probability density function of Tr decays as ~ t~°/2,
which means that the complementary cumulative distribu-
tion function (ccdf) of T decays as P{Tp > t} ~ t~1/2.
The result is applicable for any initial position of the node
except the origin.

Now we present our main result on the inter-meeting time
of two isotropic random walkers.

THEOREM 4. Suppose that two independent nodes A and
B mowve according to the 2-D isotropic random walk model
described above. Then, there exists constant C > 0 such that
the inter-meeting time Tt of nodes A and B satisfies

P{Tr >t} > Ctil/z, for all sufficiently large t. (32)
Proor. Define by C(t) = A(t) — B(t) € R? the difference
vector between the position of node A and B at time ¢.

Assume ||C(0)|| = d and ||C(1)|] > d. Then, the inter-
meeting time 77 becomes Tt := 7§r>1£ {t|C@®)| < d}.
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Figure 3: Tr is a lower bound on the inter-meeting time
Tr as C(t) must cross the line z = d before crossing the
circle of radius d.

Draw an z-axis connecting C'(0) and the origin as shown
in Figure 3 and also y-axis accordingly. Let [C(¢)]. be the
projection of C'(¢) onto the z-axis. Then, clearly, [C'(0)], = d
and [C(1)] > d.° Define by Tr the FPT of [C(t)]. to
x = d in 1-D (the vertical line tangent to the circle at (d, 0)).
Suppose that the two nodes meet for the first time at t = T7
since t = 0, or equivalently, C(t) crosses the circle for the
first time at ¢t = Tt after ¢ = 0. Then, it is clear that C(¢)
must have crossed the vertical line z = d before it crosses
the circle. In other words, we have T7 > Tr, and hence

P{T[ > t} > ]P{TF > t}, for all ¢t > 0. (33)
Observe that

C) =3 6" (k) —

t t

¢” (k) =

k=1 k=1

A o B 6P
(Rkezk *Rk61k>,

Thus, we have

M-

[Ct)]s = (R,? cos0f — RP cos 9;?)

El
Il

1

SThis is always possible by making one time step small
enough such that when the node gets out of the circle at
t =1, it is located outside that tangential line at = = d.

where R{*, RE are all i.i.d. and so are 61, 02 . In other words,
[C(t)]« is one-dimensional random walk (sum of i.i.d. ran-
dom variables) with each step distributed as R, = R cos § —

REB cos6®. Clearly, R, 4 — R, so it is symmetric. Also, the
distribution of R, is continuous because the uniform distri-
bution is continuous. Hence, by Theorem 3 and Remark 8,

P{Tr >t} ~t /%

In view of (33), this completes the proof. [J

The result in (32) is close to the empirical result reported
in [17] that the coefficient of the power-law tail is nearly 0.4
(see Figure 4 in [17]). Recall that in Section 3, mobility
models are analyzed through an irreducible Markov Chain
(MC) by quantizing the space and time. Whenever there is
a finite boundary, since the communication range d of two
nodes is non-zero, we can always divide the system (bounded
area) into a set of finite cells, each with diameter d. Hence,
the MC has finite states. This finiteness of the state-space
along with the irreducibility condition implies that the MC
is positive recurrent [4]. In other words, starting from any
initial position, the MC will return to a given state infinitely
often, and the mean return time is finite. Further, Assump-
tions 3 and 4 guarantee that the MC will visit any arbitrary
moving set of states also infinitely often and the mean re-
turn time to this moving set is finite.In fact, our result in
Theorem 2 shows not only the mean of this return time (to
a moving set) is finite, but its distribution is at most expo-
nential, making all the moments also finite.

In contrast, however, when the node walks in an open
space without boundary, the corresponding MC has an in-
finite number of states. As a result, even if the chain is
recurrent, it may take infinitely long on average to return
to a given state (null recurrence), which clearly rules out
the possibility of an exponential tail of the inter-meeting
time. In some sense, different recurrence properties in a
bounded/unbounded space provide a quick explanation on
the completely distinct tail behaviors of the inter-meeting
time in these two situations.

S. SCALING THE SIZE OF THE SPACE

From Sections 3 and 4, we see that the finite boundary
plays a key role in generating the exponentially decaying
inter-meeting time or the FPT, and by removing the bound-
ary, the power-law inter-meeting time distribution can be
observed. However, the question is: How to decide whether
a domain is virtually bounded or not? In fact, it is hard to
believe that this change happens abruptly only at the in-
finity. If we set the boundary for RWM in Section 3 large
enough such that the mobile node rarely hits the boundary
under the timescale of interest, it is almost equivalent to the
random walk in an open-space or we can say there is prac-
tically no boundary. In this regard, the question is: where
does the transition from exponential to power-law happen?
Or, equivalently, how do we choose (or scale) the size of the
space (boundary) to observe the power-law inter-meeting
time distribution over a given timescale?

The answer lies in the interaction between the timescale
under discussion and the size of the boundary. As an exam-
ple, consider a 2-D random walk model in (31) (or equiv-
alently we can take 2-D Brownian motion in a continuous
time case). Note that E{A(¢t)} = 0 for all ¢ from symmetry.



However, observe that

t

E{AMP) = 3 E{Ry R0} =3 E{RE) =0t

k=1 k=1

from E{e*®} = 0 and the independence of the random vari-
ables for k # [. Thus, its standard deviation or the average
displacement of node A during time ¢ scales as O(v/t).” In
other words, after a duration of time ¢, a node will typically
travel a distance of O(v/t) from its original position.

Suppose that the maximum timescale of interest is to, i.e.,
we are interested in system dynamics only over [0, o], and
the ‘radius’ of the bounded space is 79. When ro < /%o, the
node will hit the boundary (thus ‘feel’ it) many times and a
mobility model with a finite boundary is in effect. Hence all
the results in Section 3 naturally apply. In contrast, when
r0 > v/to, the node will almost never hit the boundary and
we can say that the node is moving around practically in an
unbounded space. Hence in this case results similar to those
in Section 4 apply.

In order to grasp better idea of the space-time dynamics,
let us take an example of the so-called i.i.d. mobility model
and study different ways of scaling the size of the boundary
as a function of time and their impact on the distribution of
the inter-meeting time. In the .i.d. mobility model, a node
moves in a D x D square consisting of N = D? unit cells.
At the start of each time slot, the node jumps to one of
N cells with equal probability independently of everything
else. Note that this is equivalent to setting p;; = 1/N in the
RWM in Section 3.2. The two nodes ‘meet’ whenever they
are in the same cell, and at any given time, this happens
with probability 1/N = 1/D?. Suppose now that the length
of the boundary is a function of time, i.e., D = D(t). When
D(t) grows over time (i.e., D(¢) — oo as t — 00), note that

P{T; >t} = [1 — 1/D*(t)]"
=[1-1/D*(t)]

where g(t, N) £ t/D?(t). Hence, the scaling function g(t, N)
completely determines the tail behavior of the inter-meeting
time. For example, when g(t, N) ~ 5t or D(t) = O(1), we
have P{T7 > t} ~ e P as expected. When g(t, N) ~ a/logt,
we get P{Tr > t} ~ e ®'°8" = ¢t~ In other words, we
get the desired power-law behavior when the length of the
boundary is scaled as D(t) ~ /t/(«logt). This is also con-
sistent with the aforementioned discussion that the average
displacement scales as O(v/t). By maintaining the size of
the space as D(t) = O(y/t/(alogt)) or larger, we can en-
sure that the ‘world’ is expanding at about the same rate
(or larger) as the node, so the node rarely feels the exis-
tence of the boundary. If D(t) < O(y/t/(alogt)), the size of
the world grows much slower than the average displacement
of a node, so the node inevitably hits the boundary many
times and the non-power-law or exponential behavior of the
inter-meeting time starts to kick in.

This first-order scaling rule via g(¢,N) also provides a
way to choose a ‘right’ size of the world in the random walk
model for the study of MANET. For instance, if one is in-
terested in some performance metric that makes sense only

D2<t)‘D+(t) -~ e_g(t,N), (34)

"We implicitly assume that o® = E{R?} < oco. If E{R?} =
o0, then under constant velocity, the mobile node tends to
‘spread out’ quicker and its average displacement will grow
faster than O(V/1).

over a certain time period, e.g., hours, days, or even weeks
(could be possible in delay-tolerant network settings), then
the scaling function g(t, N) tells us approximately how to set
the size of the boundary in which the MANET is operating
so as to make the inter-meeting time power-law distributed.
Another possible way is to dynamically increase the size of
the boundary D(t) as time goes on to control the ‘frequency’
of hitting the boundary as desired.

6. SIMULATION

In this section we provide simulation results to support
our theoretical results in Sections 3 and 4, as well as the
discussion on scaling the size of the space in Section 5.
We here consider RWP and random walk model (RWM)
with/without boundary. In any case, the speed of a node is
chosen uniformly from 1 m/sec to 1.68 m/sec with a mean
value of 1.34 m/sec [22], since this is known as the mean
walking speed of human beings. The transmission range is
set to 50 meters, and we have square domain for all mobility
models with finite boundary in our simulations.

As mentioned before, the interaction between the timescale
under discussion and the size of the boundary is essential in
determining the tail behavior of the inter-meeting time. To
see this interaction, we fix the simulation time period and
change the size of the boundary using RWP and RWM (in-
cluding both bounded and essentially unbounded domain
cases) models to observe possibly different tail behaviors of
the inter-meeting time.
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Figure 4: CCDF of the inter-meeting time for RWP
models under different sizes of the domain: “Pause”
means an exponentially distributed pause time with a
mean value of 3 minutes, and “No pause” means zero
pause time. Figure is drawn on a semi-log scale. In any
case, the slope increases for larger size of the domain.

Figure 4 shows the complementary distribution (CCDF)
of the inter-meeting time P{77 > ¢} on a semi-log scale
for RWP models under varying sizes of the domain. We
set the simulation period as 40 hours,® and simulate zero
pause time case (‘no pause’) as well as an exponentially
distributed pause time with mean of 3 minutes (‘pause’).
Note that no matter how large the boundary is, the inter-
meeting time always has an exponential tail, which is in good

8The timescale which matters in real network is commonly
in the order of hours (less than one day). Hence, we choose
40 hours, which is long enough to observe the accurate tail
behavior of the inter-meeting time in this timescale.
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Figure 5: CCDF of the inter-meeting time for RWM
models under different sizes of the domain on a log-log
scale (a) and on a semi-log scale (b). The hitting fre-
quency to the boundary decreases as the size of the do-
main increases. For 5000 x 5000 square meters size, a node
rarely hits the boundary and thus moves like in an un-
bounded space and produces power-law behavior of the
inter-meeting time, as seen in (a). Exponential behav-
ior of the inter-meeting time distribution under smaller
domains (e.g., 200m x 200m, 400m x 400m) is clearly shown
in (b) (straight line on a semi-log scale). Power-law type
behavior starts to appear in mid to large domain size as
shown in the inset in the top right of (b).

agreement with our theoretical results in Proposition 1 and
Theorem 1. Recall from Section 5 that in case of 4.i.d. mo-
bility models, the slope of the exponential tail is given by
g(t,N)/t = 1/D?. In other words, the slope of the tail in
a semi-log scale is inversely proportional to the area of the
bounded domain (D?). Similarly, even for RWP models, we
notice from Figure 4 that the product of the slope of the
tail and the area of the domain (ranging from 200 x 200
up to 1000 x 1000 square meters) remains almost constant,
which implies that the intuition obtained from i.i.d. mobility
models can also be applied to RWP models.

Figure 5 shows CCDF of the inter-meeting time on a log-
log scale for random walk models (RWM) under different
sizes of the domain, where the boundary is always reflec-
tive. To observe the transition of inter-meeting time behav-
ior from an exponential type to a power-law more clearly, we
draw the simulation results both on a log-log scale in Fig-
ure 5(a) and on a semi-log scale in Figure 5(b). In this case,

we set the simulation period to 40 hours.® Here, we use
a very simple and widely used random walk model where
a node changes directions uniformly from [0, 27] every 50
seconds [7]. For each size of the domain simulated, we cal-
culate the hitting frequency defined as the ratio between the
number of steps within which the node hits the boundary
and the total number of steps. For example, when the size
of domain is 200 x 200, the hitting frequency is quite high
(40.0%), thus the inter-meeting time behaves like an expo-
nential (The CCDF of inter-meeting time is a straight line
on semi-log scale, as Figure 5(b) shows.) as expected from
our theoretical results. In contrast, when the size of the do-
main is very large (5000 x 5000 square meters), the hitting
frequency is as low as 1.7%, which means that it is practi-
cally an unbounded domain for the duration of the timescale
(40 hours). Hence, as Theorem 4 shows, the inter-meeting
time follows a power-law distribution. (The CCDF of inter-
meeting time is a straight line on log-log scale, as Figure 5(a)
shows.) Further, the slope of this CCDF on a log-log scale
is shown to be around 0.25, which is also consistent with our
findings in Section 4. In addition, for a large domain size
(e.g., 5000m x 5000m), the power-law behavior is dominant
over up to O(10*) seconds, followed by a sharp decrease be-
yond that timescale. This behavior is also consistent with
the measurement studies in [17].

7. CONCLUSION

In this paper we have proven that one of the fundamental
reasons, for the discrepancy on the tail behavior of inter-
meeting time between the recent empirical data and the
theoretical /simulation results based on most of the current
mobility models, is the finite boundary. We have also shown
that simply removing the boundary can quickly change the
inter-meeting time distribution from exponential to power-
law by studying a simple random walk in an open space.
Further, our guidelines on scaling the size of the domain
also help better understand the true role of the boundary.
Our theoretical results and findings provide guideline on mo-
bility modeling, performance analysis, and protocol design,
to survive the ‘curse’ of the power-law distribution of the
inter-meeting time in MANET.

APPENDIX

Proof of Lemma 1: In view of Proposition 2 in [25] and
|[Pe, -+ Prylloo < 1 for any index set {ki,--- ,knm} (ki €
{1,---,N}, i € {1,--- ,M}) and M < oo, the following
condition is satisfied by A(Z, k):

klim A(Z,k) =0, for all Z = {ny,ns,...} (35)

where n; € {1,2,..., M} for all I € N.

Define a discrete-time system whose state at time ¢ is given
by a 1 x N vector X (t) where X(t) = X(t —1)P,, = --- =
X(0)A(Z,t) = ZoA(Z,t). Relation (35) means that the sys-
tem is absolutely asymptotic stable (Section 3.1.1 in [36]),
which is equivalent to saying that the system is absolutely
exponentially stable (Definition 3.1 in [36]), i.e., for any Zo,

9Since /144000 * 1.35 ~ 512 (144000 seconds are 40 hours,
1.35 is the square root of the second moment of step length),
we expect that the two smallest domains can be looked as
bounded, whereas the other two can be looked as essentially
unbounded from our discussion in Section 5.



there exists constant ¢ > 0, 0 < ¢ < 1 such that for all
sufficiently large k,

|20 A(Z, k)| < cq"[|Zo ], (36)

where || - || is any vector norm. Specifically, (36) is true for
n—norms || - ||n.
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