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ABSTRACT
Recent discovery of the mixture (power-law and exponen-
tial) behavior of inter-meeting time distribution of mobile
nodes presents new challenge to the problem of mobility
modeling and its effect on the network performance. Ex-
isting studies on this problem via the average inter-meeting
time become insufficient when the inter-meeting time dis-
tribution starts to deviate from exponential one. This in-
sufficiency necessarily leads to the increasing difficulty in
the performance analysis of forwarding algorithms in mobile
ad-hoc networks (MANET). In this paper, we analyze the
effect of mobility patterns on the inter-meeting time distri-
bution. We first identify the critical timescale in the inter-
meeting distribution, at which the transition from power-
law to exponential takes place, in terms of the domain size
and the statistics of the mobility pattern. We then prove
that stronger correlations in mobility patterns lead to heav-
ier (non-exponential) ‘head’ of the inter-meeting time distri-
bution. We also prove that there exists an invariance prop-
erty for several contact-based metrics such as inter-meeting,
contact, inter-any-contact time under both distance-based
(Boolean) and physical interference (SINR) based models,
in that the averages of those contact-based metrics do not
depend on the degree of correlations in the mobility patterns.
Our results collectively suggest a convex ordering relation-
ship among inter-meeting times of various mobility models
indexed by their degrees of correlation, which is in good
agreement with the ordering of network performance under
a set of mobility patterns whose inter-meeting time distribu-
tions have power-law ‘head’ followed by exponential ‘tail’.

Categories and Subject Descriptors: C.2.1 [Computer-
Communication Networks]: Network Architecture and De-
sign - Wireless communication

General Terms: Theory

Keywords: mobile ad-hoc network, inter-meeting time dis-
tribution, first passage time, stochastic ordering
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1. INTRODUCTION
As a crucial mobility metric and the main determinant

of the link level dynamics in MANETs, the characteristics
of inter-meeting time of mobile nodes have received ever-
increasing attention. From the earlier work on the delay-
capacity tradeoff [12] up to recent work in [20] and refer-
ences therein, most studies in MANET have relied on expo-
nentially distributed inter-meeting times for tractable anal-
ysis of network performance. Quite recently, the discovery
of its non-exponential behavior inspires a new surge of re-
search interest, e.g., the effect of power-law inter-meeting
time on the performance of forwarding algorithms [7], the
characteristic time of inter-meeting time [15], and the fun-
damental reason for the non-exponential behavior [5]. While
there is now strong evidence showing that the distribution
of inter-meeting time has a mixture of power-law and expo-
nential behavior in reality [15] with partial explanation for
its root [5], the following issue still remains unsolved: the
effect of mobility patterns on the network performance such
as network capacity or the end-to-end delay of forwarding
algorithms through the mobility-induced inter-meeting time
distribution.

The problem of the impact of mobility patterns on net-
work performance is not new. However, it is facing new chal-
lenge due to the discovery of the mixture of power-law and
exponential behaviors in the inter-meeting time distribution.
While [15] maintains that current mobility models can still
generate this mixture behavior, due to the complexity of the
problem at hand, the study of effect of mobility patterns
on the inter-meeting time distribution is largely limited to
the estimation of the average inter-meeting time (first-order
behavior) [11, 23, 15], or two extreme cases, exponential
and power-law, separately. Under exponential inter-meeting
time distribution, the performance of forwarding algorithms
(e.g., epidemic routing [24], its K-hop variants [11], spray
and wait [22], etc.) has been widely studied based on Marko-
vian analysis [11, 22, 13, 21]. or so-called the mean-field ap-
proach based on ordinary differential equation (ODE) [13,
25]. On the other hand, under the assumption that inter-
meeting time distribution has power-law tail, [7] analyzes
the performance of generic two-hop forwarding algorithms
and draws rather pessimistic conclusions.1 The only excep-
tion is the very recent work [1] on the analysis and compar-
ison of two-hop routing algorithms under exponential and
hyper-exponential inter-meeting time distribution.

In this paper, we investigate how the stochastic nature of
the mobility patterns affects the whole distribution of the

1It is shown in [7] that the mean end-to-end delay of any two-
hop forwarding algorithm is infinite if the inter-meeting time
between two nodes has power-law tail with infinite mean.



inter-meeting time. In contrast to existing works focusing
largely on the mean inter-meeting time under a given spe-
cific mobility model, we directly quantify the impact of sta-
tistical mobility patterns on the shape of the inter-meeting
time distribution, which in turns critically affects the per-
formance of forwarding/routing algorithms running on top
of the underlying nodes’ mobility pattern. Motivated by re-
cent findings in [15, 5] that shows clear transition behavior
of the inter-meeting time distribution from power-law to ex-
ponential (which is called ‘dichotomy’ in [15]), our approach
in this paper is to first divide the whole distribution of the
inter-meeting time into head and tail, which is separated
by the critical timescale τ0, beyond which the inter-meeting
time distribution shows exponential decay (tail).

Specifically, we first study the scaling relationship between
τ0, the size of the domain, and the statistical nature of gen-
eral mobility patterns such as the degree of correlations
or tendency of preserving the same direction in the mo-
bility pattern. Second, for the ‘head’ of the inter-meeting
time distribution (t < τ0), we prove via correlated random
walk models that the inter-meeting time of mobile nodes
with stronger correlations in their paths is stochastically
larger [16] than that with weaker correlations. This stochas-
tic ordering result, along with our scaling relationship be-
tween τ0 and the degree of correlations, provides quantita-
tive understanding of how different mobility models lead to
different shapes of the inter-meeting time distribution and
enables us to compare different degrees of power-law behav-
ior in the head of the inter-meeting time. Third, we establish
an invariance property for a class of mobility models. Based
on reformulation of Kac’s recurrence theorem [14, 10, 2] for
any stationary ergodic process, we prove that the average
inter-meeting time is invariant with respect to the degree of
correlations in the mobility models. More interestingly, we
also show that this invariance result holds not only for the
inter-meeting time but also for many other variants of the
contact-based metrics including contact time, inter-hitting
time, inter-any-contact time, both under Boolean (distance-
based) model and under physical interference models. The
invariance result thus tightly binds the head and the tail
of the inter-meeting time distribution and imposes a unify-
ing constraint in that the mean inter-meeting time (and its
variants) remains the same under a given domain size, re-
gardless of the shape of the distribution and the location of
τ0. Last, we discuss the impact of our results on the study
of mobility metrics and on the performance analysis of for-
warding/routing algorithms in contact-based MANETs.

2. PRELIMINARIES
In this section we first collect a set of distinct mobility

models to be used for our study and then give definitions of
several contact-based metrics including inter-meeting time
among nodes and the first passage time, which will be used
throughout the paper.

2.1 Mobility Models
Correlated Random Walk on Grid (CRW) [3]: In each

time step, a mobile node moves to one of its 2(4) neighbor
sites on 1-D(2-D) grid. The initial direction of the node’s
step is randomly chosen from right and left (1-D case), or
from right, left, up and down (2-D case). Then, the node
takes a step in the chosen direction. After that, at each
time slot, the node takes a step in the same direction with
probability p, opposite direction with probability q and turns

to other directions with probability r.2 Hence, in 1-D case,
p + q = 1, while in 2-D case, p + q + 2r = 1. Boundary
condition is wrapping around.

Random Direction Mobility Models (RD) [19, 6]: a mo-
bile node first chooses a uniform random direction, then
moves until it hits the boundary of the domain in that direc-
tion.3 After that, it chooses another random direction and
the whole process repeats itself.

Isotropic Random Walk (IRW) [8, 6]: a mobile node first
selects a random step-length L, a speed v from some well-
defined distribution, and a direction φ taken uniformly and
randomly from [0, 2π). Then, it moves according to the cho-
sen velocity for L with angle φ, and upon its completion
of the step, the whole procedure repeats independently of
all others. Note that by taking suitable step-length distri-
bution, IRW can generate many different mobility patterns.
For instance, Brownian motion mobility model can be ap-
proximated by taking very small step-lengths over small time
intervals.

Remark 1. It is known that the stationary distributions
of node positions in the steady-state for all the above mobility
models exist and are given by a uniform distribution over
Ω [17, 4, 3]. There are also many other mobility models
whose stationary distributions of the node position are all
uniform [4, 17]. In order to focus on the effect of mobility
pattern on the network performance, in this paper, we do not
consider the pause of mobile nodes. �

2.2 Contact-based Metrics
Consider a set of mobile nodes {A, B1, B2, . . . , BN} fol-

lowing some mobility models in a common domain Ω. For
a node A, let A(t) ∈ Ω be the position of node A at time t.
Similarly for Bi(t).

We define by NA(t) ⊂ Ω the contact set of node A at
time t, i.e., a node X can communicate with A at time t if
and only if X(t) ∈ NA(t). Exact definition of the contact
set varies depending on the context: (i) If we consider A’s
contact with an arbitrary set of nodes Θ = {Bi, i ∈ I} for
some index set I under Boolean model with communication
range d, then the contact set of Θ becomes

NΘ(t) =
⋃

i∈I
{x ∈ Ω : ‖x − Bi(t)‖ ≤ d}. (1)

(ii) If we consider contact of node A under SINR (Signal-to-
Interference-Noise Ratio) model [9], then the contact set of
A at time t will be in the form of

NA(t) =
{

x ∈ Ω :
P‖x − A(t)‖−α

N0 +
∑

i P‖x − Bi(t)‖−α
≥ β

}
(2)

for some suitable threshold β (e.g., the minimum signal-to-
interference noise ratio required for successful decoding at
the receiver) and path loss exponent α ∈ [2, 4.5], i.e., node
X can communicate with node A at time t (X(t) ∈ NA(t)) if
and only if the channel condition between two nodes (given
by SINR) is good enough.

2Our definition is a bit different from [3], where a node takes
step at time instance governed by a Poisson process.
3In fact, there are two variants of RD [6]. Here we describe
the first variant; the second variant of RD belongs to the
IRW described next.



Definition 1. The inter-meeting (or inter-contact) time
of node A with a set of nodes Θ is defined by4

TI � inf
t>0

{t : A(t) ∈ NΘ(t)} (3)

given that

A(0−) ∈ NΘ(0−) and A(0) �∈ NΘ(0). (4)

If we replace NΘ(t) in (3) and (4) by N ′
Θ(t) = Ω \ NΘ(t),

we obtain the contact time (or contact duration) of node A
with a set of nodes Θ. Similarly, if the set of nodes in Θ
are static (not moving), then we call the inter-meeting time
as inter-hitting time. Further, if we remove the condition in
(4), i.e., we start measuring the time until next encounter
to Θ from a randomly chosen time instant t = 0, then TI

becomes the first passage time (FPT) of node A to the set
Θ. In other words, the FPT TF corresponds to the residual
life time of the inter-meeting time [7, 15]. When the inter-
meeting time TI has a finite mean, the distribution of TF is
given by

P{TF > t} =
1

E{TI}

∫ ∞

t

P{TI > s}ds, (5)

i.e., TF has the equilibrium distribution of TI . Finally, we
note that all these metrics can be similarly defined under
a discrete time setting. For instance, for the inter-meeting
time between nodes A and B, TI becomes

TI = min
t>0

{t : A(t) ∈ NB(t), A(t + 1) �∈ NB(t + 1)}

given that A(0) �∈ NB(0) and A(1) ∈ NB(1).

3. HEAD/TAIL OF INTER-MEETING TIME:
A CLOSER LOOK AT DICHOTOMY

Recent studies in [5, 15] have pointed out that the inter-
meeting time distribution is largely characterized by first a
power-law until certain time scale (head of the inter-meeting
time), beyond which the inter-meeting time distribution be-
comes of exponential type (tail of the inter-meeting time).
Specifically, in [15], this dichotomic behavior is empirically
observed and emphasized via a large set of real traces, while
[5] suggests, via a simple i.i.d. uniform mobility model, that
the transition from exponential to power-law behavior of
the inter-meeting time arises from the coupled dynamics be-
tween the relevant time scale of interest and the size of the
bounded domain. In this section, we give a closer look at
this transition and quantify the timescale for transition in
terms of the size of the domain and certain key characteris-
tics of general mobility patterns, thereby providing precise
distinction between the head and tail of the inter-meeting
time distribution for any general mobility models under ar-
bitrary sized domain.

To this end, first note that for a given mobility model M
and the size of the domain5 (‘diameter’ of the domain D),
the node will forget where it was after it hits the boundary
and bounces back to the ‘center’ of the domain. In other

4Note that our definition includes the pairwise inter-meeting
time and the aggregate inter-contact time [15] by appropri-
ately choosing the set Θ.
5This should be interpreted as a virtual boundary as in [5]
in that mobile nodes tend to return to where they belong
after reaching out beyond this virtual domain, either by ac-
tual reflection (wrapping around) as typically assumed in
mobility models or by quasi-periodic returning behavior in
reality.

words, the timescale beyond which the inter-meeting time
becomes of exponential type (tail) is on the same order of
the typical amount of time it takes for the node to travel D
distance. We call this timescale as regenerative period and
write as

τ0 = τ0(M, D)

to explicitly denote that it depends on the size of the domain
as well as the characteristics of the mobility pattern. The
concept of regenerative period is similar to the characteristic
time of the inter-meeting time proposed in [15] except that
here τ0 is adopted to study the inter-meeting time distri-
bution of general mobility models under arbitrary domain
size. In light of the results in [5], for a given mobility model
and under a given finite domain, the ‘head’ of P{TI > t} is
largely of power-law type for t < τ0 (essentially unbounded
domain) while its ‘tail’ becomes exponential for t > τ0.
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(a) P{TI > t} (b) Rescaled P{TI > ηt}

Figure 1: Effect of domain size on the regenerative pe-

riod τ0. IRW defined in Section 2.1 is used. Step length

distribution is exponential with mean 100m and speed is

set to constant (1m/s). Communication range d = 50m.

Simulation time: 106 seconds. (a) P{TI > t} in log-log

scale; the inset is drawn in linear-log scale to show the

power-law behavior more clearly. (b) shows the rescaled

complementary cumulative distribution function (ccdf),

i.e., P{TI >ηt} with factors η = 1, 4, 16, proportional to D2.

Figure 1(a) shows P{TI > t} of two i.i.d. mobile nodes
under Boolean model with communication range d = 50m,
each of which follows IRW with constant speed 1 m/s whose
step-length distribution is exponential with mean 100m. As
expected, the ‘head’ of the inter-meeting time distribution
displays power-law behavior and is prolonged as the domain
size increases. In order to grasp the relationship among τ0,
D, and M, we consider the average displacement of a mo-
bile node A at time t, which is given by σ(t) =

√
E{|A(t)|2}.

From the aforementioned reasoning, we set σ(τ0) = D. Since
σ(t) ∼

√
t for the IRW with exponential step-length distri-

bution, it follows that τ0 ∝ D2 for this mobility model.
To quantitatively observe this scaling behavior, we consider
P{TI > τ0t}, a rescaled version of the ccdf of the inter-
meeting time where the time scale is normalized such that
the typical amount of time to travel D is equal to one time
unit, regardless of the domain size. Figure 1(b) shows rescaled
versions of P{TI > ηt} where η is chosen to be proportional
to D2. As clearly can be seen, the timescales beyond which
the inter-meeting time distribution shows exponential decay
all coincide, which asserts that τ0 is indeed proportional to
D2 under the given IRW model.

Next, to quantify the impact of mobility pattern on the
location of τ0, we fix the domain size to D = 2000m and
consider a set of IRW models, but now with different mean
step-length λ = 10, 50, 100m. Since the speed is always kept
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Figure 2: Effect of ‘correlation’ of the mobility model

on the regenerative period τ0. Domain size is fixed to

2000m × 2000m. We use IRW models with exponential

step-length distribution with means λ = 10, 50, 100 to

represent different degrees of ‘correlation’ (stronger ten-

dency of moving straight for longer duration) (a) P{TI >

t} in log-log scale; (b) shows the rescaled ccdf, P{TI > ηt}
with factors η =

√
10,

√
2, 1, such that η2λ = Const.

to 1 m/s, longer mean step-length naturally translates into
stronger tendency of moving straight or preserving the same
direction, i.e., stronger correlation over short time scale (un-
til the current step finishes).

Figure 2(a) shows P{TI > t} in a log-log scale for differ-
ent mean step-lengths. We notice that larger step-lengths
(stronger tendency of moving straight) make τ0 smaller. This
is well expected, since larger step-lengths mean that the mo-
bile node will ‘hit’ the boundary earlier. Similarly as before,
to quantify the scaling behavior with respect to different
mean step-lengths, we consider how σ(t) scales as the mean
step-length increases under a given domain size. While ex-
act computation of σ(t) is quite involved, the scaling be-
havior can be obtained in a relatively simple manner as fol-
lows. Suppose N(t) is the number of steps generated over
[0, t] under a given IRW model with mean step-length λ.
Then, the position of the node at time t is approximated by

A(t) ≈
∑N(t)

i=1 Lie
jφi where Li (i = 1, 2, . . .) are i.i.d. step-

lengths with E{Li} = λ and φi are i.i.d. angles uniformly

over [0, 2π]. Thus, σ2(t) ≈ E{|
∑N(t)

i=1 Lie
jφi |2}. Now, sup-

pose that we increase the mean step-length λ to kλ (k > 1)

and let L̂i be the exponential random variable with mean
kλ. Then, approximately, there will be N(t)/k number of
steps generated over [0, t], while the mean of each step-length

becomes k times larger, i.e., E{L̂i} = kλ. Since Li is expo-

nentially distributed, this means that E{L̂2
i } = k2

E{L2
i }.

Thus, we have

σ̂2(t) ≈ E

{∣∣ ∑N(t)/k

i=1
L̂ie

jφi
∣∣2} ≈ kσ2(t).

Hence, we have σ̂(t) ≈
√

kσ(t), i.e., the average displace-
ment of mobile nodes with k times larger mean step-length
grows

√
k times faster, which implies that the regenerative

period (τ0) becomes 1/
√

k times smaller. In other words,
while we increase the mean step-length by k times, τ 2

0 k al-
ways remains constant. As Figure 2(b) shows, after properly
rescaling the ccdf P{TI > ηt} for different mean step-lengths
λ with η chosen such that η2λ remains constant throughout,
the regenerative periods τ0 are all aligned around the same
value.

The observations made from Figures 1 and 2 suggest that
τ0, the timescale that separates the head and tail of the inter-
meeting time distribution, increases as the domain size in-

creases and decreases as the degree of correlations (tendency
of moving straight) increases, whereby the exact scaling re-
lationship can be made through the average displacement
σ(t). Our finding here also matches with empirically ob-
served exponential behaviors of the inter-meeting time over
almost all time scale under several popular mobility models
such as Random Waypoint (RWP) or RD, since these mod-
els have either very short regenerative period (for RWP) or
very strong tendency of moving straight (RD), which both
contribute to small τ0, thus making the inter-meeting time
distribution exponential virtually everywhere.6

While the tail behavior of the inter-meeting time distribu-
tion has received much attention in the literature, the quan-
titative analysis of the ‘head’ of P{TI > t} in terms of mobil-
ity patterns has been uncharted territory; the only available
result in the literature is that the head of P{TI > t} basi-
cally follows a power-law distribution [5, 15], without any
attempt to characterize or compare its ‘shape’ for different
mobility models. Therefore, in the next section, we turn our
attention to the behavior of the head of the inter-meeting
time distribution, i.e., P{TI > t} for t < τ0 over which the
node rarely hits the boundary and thus the domain is essen-
tially unbounded.

4. STOCHASTIC ORDERING FOR THE
HEAD OF INTER-MEETING TIME

In this section, we show how correlations in mobility pat-
terns affect the shape of the head of the inter-meeting time
distribution. As mentioned earlier, in this regime, the mo-
bile node practically resides in an unbounded domain (as it
rarely hits the boundary). Consider first the inter-meeting
time TI of two independent mobile nodes A and B in an
unbounded domain, each of which follows correlated mobile
trajectory. Then, the difference C(t) = A(t) − B(t) is also
correlated over time t and the inter-meeting time of A and
B reduces to the inter-hitting time of C to the origin. In
order to properly capture the effect of correlations in the
mobile trajectories on the inter-meeting time distribution in
this regime, we employ a simple, yet effective CRW model
introduced in Section 2.1 defined on 1-D grid (unbounded)
and consider its inter-hitting time to origin. Recall that
for 1-D CRW model, larger p means stronger correlation
(stronger tendency to follow the same direction) between
adjacent steps.

Define ρ = p− q (p + q = 1). To avoid trivialities, assume
−1 < ρ < 1: when ρ = −1, the mobile node always bounces
back and forth between two adjacent sites; when ρ = 1, it
always goes straight line following the same direction. Note
that ρ = 0 (p = q = 0.5) corresponds to a simple random
walk. Let Xt = ±1 be the direction (step) of node C. Then,
it follows that P{Xt+1 =Xt} = p, P{Xt+1 =−Xt} = q, and
the position of node C at time t is given by S(t) =

∑t
k=1 Xk.

Note here that when ρ �= 0, S(t) itself is not a Markov
chain, but a partial sum of Markov chain Xt. Assume that
node C is initially at the origin, i.e., S(0) = 0 and we use
X0 = ±1 to denote the initial condition for the direction,

6We note that this is one of the key reasons why there have
been many results assuming pure exponential distribution
of inter-meeting time (thus leading to either Markovian or
ODE based analysis), since those models indeed have expo-
nential inter-meeting time distribution throughout and thus
the theoretical results do match with the simulation in their
setup, until recent empirical measurement of inter-meeting
time reveals a different story.



e.g., X0 = −1 means that C’s first step, X1, will be left
(right) with probability p (q).

To proceed, we need the following definition:

Wt �
∑t

k=1
1{E(k)}, (6)

where 1{·} is the indicator function and E(k) = {S(k) >
0} ∪ {{S(k) = 0} ∩ {S(k − 1) > 0}} denotes the event that
mobile node is on the positive side at time k, i.e., the mobile
node is on site S(k) > 0 or on S(k) = 0 with S(k − 1) > 0.
Hence, Wt counts the number of steps the node is on the
positive side out of t steps. From this definition, clearly
0 ≤ Wt ≤ t and t − Wt is the number of steps the node is
on the negative side out of t steps. The event {S(k) = 0} is
special here; {S(k) = 0} alone cannot determine which side
the node belongs to at time k. If the node has jumped from
site 1 to site 0, i.e., S(k− 1) = 1, then we say that the node
is on the positive side at time k; or else, it is on the negative
side.

From (6) and S(0) = 0, we have

P{TI > t} = P{Wt = t|X0 =1} = P{Wt =0|X0 =−1}. (7)

To see the first equality in (7), note that from X0 = 1 and
S(0) = 0, we can define a virtual state S(−1) = S(0) −
X0 = −1. Then, P{Wt = t|X0 = 1} is the probability that
node C starts from site −1 and goes right to the origin and
then never returns back to −1 within t steps. Note that in
any realization of {Wt = t}, if there exists 0 < k ≤ t with
S(k) = 0, then the node must be on the positive side at time
k, since S(k − 1) = −1 immediately implies Wt < t. From
the definition of the inter-hitting time in Section 2.2, this is
exactly P{TI > t}.7 Similarly, the second equality in (7) can
also be derived by considering inter-hitting to site 1, with
similar virtual state S(−1) = 1 and the event that node C
always stays on the negative side up to time t.

Define r(i, m, t)=P{Wt =m|X0 = i} (t=0, 1, . . . , i=±1),
with r(i, 0, 0)=1 and Wt is given by (6). Then, from (7)

P{TI > t} = r(1, t, t) = r(−1, 0, t). (8)

We only need to compute either r(1, t, t) or r(−1, 0, t). To
this end, for t ∈ Z

+ and i, j = ±1, we define

p(i, j, t) = P{St =0, Xt = j|X0 = i},
f(i, j, t) = P{St =0, St−1 �=0, . . . , S1 �=0, Xt = j|X0 = i},
p(i, j, 0) = 1{i=j}, f(i, j, 0) = 0. (9)

Here, p(i, j, t) is the probability that node C returns to the
origin at time t, and f(i, j, t) is the probability of the first
return to the origin at time t (after getting out of it). The
event {St = 0, Xt = j|X0 = i}, i.e., return to the origin
with direction j at time t > 0 from initial direction i, can
be decomposed into (i) the first return to the origin with
direction j from initial direction i at some time 1 ≤ k ≤ t
and (ii) a return to the origin with direction j from initial
direction j. Hence, p(i, j, t) and f(i, j, t) satisfy the following
recursion [18]

p(i, j, t) =
∑t

k=1
f(i, j, k)p(j, j, t−k)+1{t=0}p(i, j, t). (10)

Similarly, suppose now that node C starting from the ori-
gin does not always stay on either positive or negative side
until a given time t. Then, it must have returned to the

7Since all sites are symmetric, the inter-hitting times of node
C to any site (not necessarily the origin) must have the same
distribution.

origin at some earlier time l (0 < l < t). Thus, the event
of node C’s stay on the positive side for m out of t steps
(0 < m < t) can be decomposed into (i) the first return
to the origin with direction j = ±1 at time l from initial
direction i and (ii) the node stays on the positive side for
m1{j=1} +(m− l)1{j=−1} out of t− l steps. Hence, we have
another recursive relationship between r(i, m, t) and f(i, j, l)
for 0 < m < t as follows:

r(i, m, t) =
∑m

l=1
f(i,−1, l)r(−1, m − l, t − l)

+
∑t−m

l=1
f(i, 1, l)r(1, m, t − l). (11)

For simple (independent) random walk, similar recursion re-
lationship exists [18], although many other nice properties
of simple random walk do not apply to CRW model here.

From the ‘convolution-like’ structures in (10) and (11), it
is convenient to use generating functions. Define

P (i, j, z) =
∑∞

t=0
p(i, j, t)zt, F (i, j, z) =

∑∞
t=0

f(i, j, t)zt

R(i, z, φ) =
∑∞

m=0

∑∞
t=m

r(i, m, t)zmφt−m. (12)

Then, multiplying both sides of (10) by zt leads to

P (i, j, z) = 1{i=j} + F (i, j, z)P (i, j, z). (13)

Similarly, by multiplying zmφt−m in both sides of (11) and
considering the case of m = 0, t (since (11) holds only under
0 < m < t), we obtain from (12)

R(−1, z, φ) − R(−1, z, 0) − R(−1, 0, φ) + 1

= [R(−1, z, φ) − R(−1, z, 0)] F (−1,−1, z)

+ [R(1, z, φ) − R(1, 0, φ)] F (−1, 1, φ), (14)

which corresponds to the initial condition i = −1 (i.e., X0 =
−1). Similarly, we can obtain another equation like (14)
starting from i = 1.

We collect several useful properties for R(i, z, φ):

Lemma 1. We have R(−1, z, 0) = R(1, 0, z),
R(−1, 0, z) = R(1, z, 0), R(i, z, z) = 1/(1 − z) and

(1 + ρ) [R(−1, z, 0) − 1] = (1 − ρ) [R(1, z, 0) − 1] . (15)

Proof. See Appendix.

We are now ready to state our main result in this section.

Theorem 1. Let TI be the inter-hitting time of a mobile
node C to the origin in an unbounded 1-D grid. Then, for
any given t > 0, P{TI > t} is an increasing function of
ρ ∈ [0, 1).

Proof. We will first compute P (i, j, z), the generating
function of p(i, j, t). Then, we can obtain P{TI > t} =
r(−1, 0, t) from (13), (14) and Lemma 1. Define

U(θ) =

[
θ−1p θq
θ−1q θp

]
, (16)

and let U t(θ)ij be the element on the ith row and jth column
of U t(θ). For notational convenience, we set i, j = ±1 and
let −1, 1 denote the first and the second row (column),
respectively. Then it follows that

U t(θ)ij =
∑∞

k=−∞
P{St = k, Xt = j|X0 = i}θk.



From (9), p(i, j, t) = P{St = 0, Xt = j|X0 = i} is equal to
the coefficient of θ0 in U t(θ)ij . Hence, P (i, j, z) equals to
the coefficient of θ0 in

∑∞
t=0 ztU t(θ)ij . Now, consider

M(z) =

[
P (−1,−1, z) P (−1, 1, z)
P (1,−1, z) P (1, 1, z)

]
,

which is equal to the coefficient of θ0 in
∑∞

t=0 ztU t(θ) =
[I − zU(θ)]−1. For example, we can write

P (−1,−1, z)=1+
1−ρz2

(1−z2)f(z, ρ)
, f(x, y)�

√
1−x2y2

1−x2
. (17)

Recall that r(−1, 0, t) (or r(1, t, t)) is equal to P{TI > t}.
Hence, we only need to derive R(−1, 0, φ).

R(−1, 0, φ) =
∑∞

m=0

∑∞
t=m

r(−1, m, t)0mφt−m

=
∑∞

t=0
r(−1, 0, t)φt (since 0m = 0 for m �= 0.) (18)

Set z = φ in (14), from (13), (17), and Lemma 1, we get

R(−1, 0, φ) = 1 + (1 + φ) [f(φ, ρ) − 1] /(φ(1 − ρ)), (19)

where f(·, ·) is defined in (17). From (18), r(−1, 0, t) is the
coefficient of φt in R(−1, 0, φ). Since r(−1, 0, 0) = 1 from
initial condition, in what follows, we only consider t ≥ 1.

From Newton’s generalized binomial theorem, we have

√
1−ρ2φ2 =

∞∑
m=0

bm(−ρ2φ2)m,
1√

1−φ2
=

∞∑
m=0

cm(−φ2)m,

where bm = d
1/2
m , cm = d

−1/2
m with the generalized binomial

coefficient dr
m = 1

m!

∏m−1
i=0 (r − i) (dr

0 = 1). Now, for any

given 0 ≤ ρ < 1, expand f(φ, ρ) =
∑∞

t=0 at(ρ)φt where

a2k(ρ)=
∑k

l=0
(−1)kblck−lρ

2l, a2k+1(ρ)=0, (k≥0). (20)

a2k+1(ρ) = 0 for any k ≥ 0, since f(φ, ρ) depends only on
φ2 for any given ρ.

Set ρ = 1 in f(φ, ρ), then we have

f(φ, 1) =
√

(1 − φ2)/(1 − φ2) = 1 =
∑∞

t=0
at(1)φ

t.

Since this is true for all |φ| < 1, we have at(1) = 0 for any

t > 0. From (20), this leads to
∑k

l=0(−1)kblck−l = 0, i.e.,

b0ck = −
∑k

l=1 blck−l. Consequently,

a2k(ρ) = (−1)kb0ck +
∑k

l=1
(−1)kblck−lρ

2l

=
∑k

l=1
(−1)k+1blck−l(1 − ρ2l). (21)

From (18), P{TI > t} = r(−1, 0, t) is the coefficient of φt

in R(−1, 0, φ). In light of (19), we have

P{TI > t} = r(−1, 0, t) = (at(ρ) + at+1(ρ)) /(1 − ρ).

(20) denotes that only one of at(ρ), at+1(ρ) is non-zero.
Suppose t = 2k w.l.o.g. Then, from (21),

P{TI >t} = r(−1, 0, t) =
at(ρ)

1−ρ
=

k∑
l=1

(−1)k+1blck−l
1−ρ2l

1−ρ
.

From direct computation, it is straightforward to see that
(−1)k+1blck−l is always positive for any 1 ≤ l ≤ k. There-
fore, since (1−ρ2l)/(1−ρ) is increasing in ρ ∈ [0, 1), P{TI >
t} is also increasing in ρ and we are done.

Theorem 1 says that the ‘head’ of the inter-meeting time
distribution becomes heavier as the degree of correlation in-
creases. While we provide rigorous proof via 1-D model,
the same observation holds for 2-D as can be seen from Fig-
ure 3, where larger p (thus stronger tendency to keep the
same direction) leads to heavier head of the inter-meeting
time distribution P{TI > t} until τ0.
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Figure 3: Effect of correlations of the mobility model

on the ccdf of inter-meeting time. CRW on 2-D grid

(200 × 200) defined in Section 2.1 is used. p = 0.5, 0.7, 0.9

cases are simulated with q = r = (1 − p)/3. (a) P{TI > t}
in a log-log scale; (b) P{TI > t} in a linear-linear scale.

In a broader context, Theorem 1 also implies that the head
of the inter-meeting time becomes stochastically larger [16]
as the tendency of moving straight becomes stronger. Fig-
ure 2(a) reveals that this is indeed the case: larger mean
step-length in IRW models makes P{TI >t} larger for t<τ0.

5. INVARIANCE PROPERTY OF CONTACT-
BASED METRICS

In this section we show the invariance property of contact-
based metrics including the inter-meeting, contact, and inter-
hitting time. In particular, the mean of these contact-based
metrics does not depend on the degree of correlation ρ.

Consider three independent mobile nodes A, B and C
following CRW in a bounded domain starting from their
stationary distribution, i.e., uniform over the bounded do-
main. In contrast to the previous section, we now consider
a bounded domain and the inter-meeting time distribution
over all time t. For 1-D CRW on a ring, we assume N is
odd to avoid trivial situation where two nodes never meet
if they start from adjacent sites. For the same reason, we
also assume

√
N is odd when 2-D CRW on

√
N ×

√
N finite

square grid torus is under consideration.
To set the stage for the invariance results, consider a sta-

tionary 0−1 valued process {Yt} (t = 0, 1, 2, . . .) with its sta-
tionary probability measure P. Define recurrence times [2]
{nl}l≥1 of the state 1 for {Yt} as follows:

T1 � min{t ≥ 0 : Yt = 1},
Tk � min{t > Tk−1 : Yt = 1} (k ≥ 2),

nl � Tl+1 − Tl. (22)

Here, Tk denotes the kth occurrence time instance of state
1. For example, for a sequence {Yt} = {110010 . . .}, T1 =
0, T2 = 1, T3 = 4 and so on. Accordingly, the recurrence
times are n1 = 1 and n2 = 3. In this definition, n1 = 1
denotes that the first recurrence time to state 1 is 1. This
is somewhat different from what we commonly define the
recurrence to state 1, which is usually the return to state



1 conditioning on starting from state 1 and subsequently
getting out of state 1. For example, n2 = T3 − T2 in the
above example means the return to state 1 at time t = 4
conditioning on starting from state 1 at time t = 1 and
subsequently getting out of state 1 at time t = 2.

The following will be used in the proof of our main result.

Theorem 2. [2] For a stationary 0− 1 process {Yt} (t =
0, 1, 2, . . .) with

lim
n→∞

P{Y0 = 0, Y1 = 0, . . . , Yn = 0} = 0, (23)

the average recurrence time n1 conditioning on Y0 = 1 and
Y1 = 0 satisfies

E{n1|Y0 = 1, Y1 = 0} = 1 +
1 − P{Y = 1}

P{Y = 1} − P{Y0 =1, Y1=1} ,

where Y denotes a random variable with distribution P.

Remark 2. Kac’s recurrence theorem [14, 10] relates the
average of n1 conditioning on {Y0 = 1}, i.e., {T1 = 0}, to
the probability of a specific event, e.g., Yt = 1. In particular,
Kac’s recurrence theorem gives E{n1|Y0 = 1} = 1/P{Y =
1}. Here, E{n1|Y0 = 1}=E{T2 − T1|Y0 = 1}=E{T2|Y0 = 1}.
In other words, 1/P{Y =1} is the expected time interval be-
tween two adjacent recurrences of state 1. Theorem 2 refor-
mulates Kac’s Recurrence Theorem by relating the average of
nl to the probability of events {Yt =1} and {Yt =1, Yt+1=1}.
Specifically, Theorem 2 gives E{n1|Y0 = 1, Y1 = 0}, the ex-
pected time interval between two recurrences of state 1 given
that Yt first gets out of state 1 (and subsequently moves into
state 0 before returning to 1 again). Note that if the state 1
is always of ‘short’ duration in {Yt}, i.e., there is no con-
secutive 1 in the sequence, P{Y0 = 1, Y1 = 1} = 0, and thus
E{n1|Y0 =1, Y1 =0}=1/P{Y =1}. In this case, Theorem 2
reduced to the original Kac’s recurrence theorem. �

We now present the main result in this section.

Theorem 3. Let A,B be two independent mobile nodes
following 1-D CRW on a ring with N sites (N odd), and
C be a static node sitting on an arbitrary site on this ring.
Let (i) TH be the inter-hitting time of node A to C; (ii) TI

be the inter-meeting time of nodes A and B; (iii) TC be the
contact time of nodes A and B. Then, the average of TH ,
TI and TC are all invariant with respect to the correlation
coefficient ρ ∈ (−1, 1). Specifically,

E{TH} = N − 1, (24)

E{TI} = 2(N − 1), (25)

E{TC} = 2. (26)

Remark 3. For a simple random walk on 1-D ring, i.e.,
ρ = 0, [15] shows (24)8 and (25). N is assumed to be even
in [15] while we require it to be odd. This is because in [15]
two nodes start from the same site, while in our case two
nodes start from anywhere and the inter-meeting time starts
once they meet (which is guaranteed only under odd N). We
here emphasize that our Theorem 3 holds for CRW with any
degree of correlation ρ while [15] only considers a simple

8The average hitting time given in [15] is N , since [15] in-
cludes the last time slot when node A hits C in the definition
of the hitting time, while we do not. Hence, there is a dif-
ference of 1 between their result and (24).

random walk. It is also interesting to note that stronger
correlations, i.e., larger ρ, lead to heavier head of the inter-
meeting time as shown in Section 4, but at the same time
Theorem 3 says that correlations do not affect the mean of
the inter-meeting time defined on a bounded domain. �

Proof. Without loss of generality, assume nodes A, B, C
start from their stationary distribution, i.e., uniform over the
domain [3]. Let A(t), B(t) ∈ {1, 2, . . . , N} be the position
of nodes A and B at time t (t = 0, 1, 2, . . .). Since node C
is static, we use C(0) to denote its position.

Inter-hitting time TH: Define Zt as

Zt = 1{A(t)=C(0)}. (27)

Since {A(t)} is stationary, the sequence {Zt} is also station-
ary. In order to apply Theorem 2, we need to show that Zt

satisfies (23). To see this, note that while the CRW A(t)

itself is not Markov for ρ �= 0.5, ΓA(t) � {A(t), X(t)} (aug-
mented with the direction X(t) of the CRW A(t)) becomes
a Markov chain with T = {1−, 1+, 2−, 2+, . . . , N−, N+} as
the state space, where m−, m+ means that node is at site
m with direction −1, +1, respectively. Since this chain is
aperiodic and irreducible and has finite states (2N), it is
also ergodic. Thus, the chain {ΓA(t)} will visit any set of
state infinitely often, including {C(0)−, C(0)+}, which as-
serts that the condition in (23) is satisfied.

Now, define {Tk}k≥1 and recurrence times {nl}l≥1 for se-
quence {Zt} by replacing Y with Z in (22). Then, condi-
tioning on Z0 = 1 and Z1 = 0, n1 − 1 gives the inter-hitting
time TH of node A to C. Thus, from Theorem 2,

E{TH} =
1 − P{Z = 1}

P{Z = 1} − P{Z0 = 1, Z1 = 1} ,

where Z is a random variable with the same distribution as
Zt. Observe that (i) P{Z = 1} = 1/N since C(0) is ran-
domly chosen from N sites (each site has equal probability
1/N) and (ii) P{Z0 = 1, Z1 = 1} = P{Z1 = 1|Z0 = 1}P{Z0 =
1} = 0 since once node A meets C, A leaves site C(0) at the
next time slot. Therefore, (24) follows.

Inter-meeting time TI : The proof is quite similar to
the case of inter-hitting time as above. First, define Wt =
1{A(t)=B(t)}. From the stationarity of A(t) and B(t) and
from their independence, Wt is also stationary. To check
the condition in (23), similarly as before, construct a chain

Σ(t) � {ΓA(t),ΓB(t)} with state space T × T (total (2N)2

states). From the independence of ΓA(t) and ΓB(t) and
since odd N ensures the chain is aperiodic, it follows that
Σ(t) is also ergodic. Thus, following the same arguments in
the proof for inter-hitting time, we can show that Wt also
satisfies the condition in (23). Now, we have

E{TI} =
1 − P{A(0)=B(0)}

P{A(0)=B(0)}−P{A(0)=B(0),A(1)=B(1)} . (28)

Note that P{A(0) = B(0)} = 1/N (since A(0) and B(0) are
independent and uniform over N sites). Further, since the
direction of a node (A or B) is ±1 with equal probability
under the stationary distribution, it follows that P{A(1) =
B(1) | A(0) = B(0)} = 1/2 and thus (25) holds.

Contact time: Set Vt = 1 − Wt. Then, the average
contact time can be calculated as a ‘dual’ of the average



inter-meeting time in (28).

E{TC} =
1 − P{A(0) �=B(0)}

P{A(0) �=B(0)} − P{A(0) �=B(0),A(1) �=B(1)}

=
1 − (N−1)/N

(N−1)/N − (N−1)/N × (1 − 1/(2N−2))
= 2. (29)

In (29), P{A(1) = B(1)|A(0) �= B(0)} = 1/(2N − 2) since
conditioning on A(0) �= B(0), A(1) = B(1) is true only if
there is one and only one site between A(0) and B(0) (with
probability 2/(N − 1) and both nodes A, B jump to it at
time t = 1 (with probability 1/4).

Much in the same way as in Theorem 3, we can show the
invariance property for a set of 2-D CRW models as follows,
whose proof is omitted for brevity.

Proposition 1. For 2-D CRW model with p+q+2r = 1,
the average of TH , TI and TC are all invariant with respect
to p, q and r. Specifically,

E{TH} = N − 1, E{TI} = 4(N − 1)/3, E{TC} = 2.

Recall that the main ingredient for the proof of Theorem 3
is to construct stationary sequence {Zt}, {Wt}, {Vt} from
A(t),B(t) and show that they all satisfy the condition in
(23). Suppose now that all the mobile nodes are indepen-
dent and have stationary distribution for their positions. Let
Φ(t) = {A(t),B1(t), . . . , BN (t)} be the collection of all the
positions of mobile nodes in the steady-state. Then, since
f(Φ(t)) is also stationary for any measurable function f , we
can readily extend the invariance property as in Theorem 3
to at least the following two more general cases:

General inter-contact to set Θ: For t ≥ 0, define W any
t =

1{A(t)∈NΘ(t)}}, where NΘ(t) is the contact set of an arbitrary
set of node Θ = {Bi, i ∈ I} at time t defined in (1).

General SINR interference model: For t ≥ 0, define W SINR
t =

1{B(t)∈NA(t)}, where NA(t) is the contact set of node A at
time t under SINR interference model in (2).

Now, recall from the end of Remark 2 that if the duration
of contact is short enough when compared to the typical du-
ration of inter-contact,9 the average statistics of the above
general contact-based metric can be computed only from the
stationary distribution of the mobile nodes, independently
of their detailed mobility structure or the degree of correla-
tions. Since there are many mobility models whose station-
ary distributions are identical (e.g., RD or IRW with general
step-length distribution), our observation suggests that we
can enjoy a great deal of simplification as long as the av-
erage statistics are concerned. However, there is a caveat;
the system must be in stationary regime before we compute
those average statistics. Take a sparse network with large
domain for example, then unless the initial positions of all
the mobile nodes are close to their stationary distributions,
it may take very long for them to converge their stationary
distribution10 and it could be that we want packets to be
forwarded/routed to other nodes before the convergence to
stationary regime occurs. Our observation of this invariance
property thus suggests an interesting relationship between
the role of stationarity of the system (or the assumption that
system is in the steady-state) and the first-order statistics
of contact-based metrics.

9This is a reasonable assumption in sparse MANET with
low-density mobile nodes or delay tolerant networks.

10This is called mixing time in the Markov process litera-
ture [10].

IRW (10) IRW (50) IRW (100) RD

(200m)2 456/83 443/80 448/78 451/80

(500m)2 2103/357 2115/345 2111/362 2123/366

(1000m)2 8375/1557 8403/1501 8241/1526 8401/1453

Table 1: Avg. inter-meeting/inter-any-contact time

(Boolean)

Table 1 shows the average inter-meeting/inter-any-contact
time in seconds under the same mobility models used in
Figure 2 defined over three different domain sizes. We use
Boolean model for contact as defined in (1) with commu-
nication range set to d = 50m. In addition to the set of
IRW models with different mean step-lengths, we have also
run RD model (see Section 2.1) to represent very strong
degree of correlation in the mobility pattern, since under
RD model a mobile node always goes straight until it hits
the boundary. For inter-meeting time, we consider a pair of
mobile nodes. For inter-any-contact time, we consider the
inter-contact of a given mobile node A to a set of five given
mobile nodes {Bi} (i = 1, 2, . . . , 5). Table 1 clearly shows
that, under a given domain size, the average inter-meeting
and inter-any-contact time do not depend on mobility pat-
terns with different degrees of correlation, as expected from
Theorem 3.

SNR(dB) IRW (10) IRW (50) IRW (100) RD
0 11.9/514.6 12.4/552.3 12.3/537.1 12.1/522.8
10 21.5/303.0 21.1/327.4 21.4/322.4 20.8/302.4
20 35.0/190.1 33.2/207.5 34.8/192.1 33.1/187.5

Table 2: Avg. contact/inter-meeting time (SINR)

Table 2 shows the average contact/inter-meeting time of
a pair of nodes in seconds under the same mobility models
as in Table 1. We now use SINR interference model for
contact as defined in (2), with parameters α = −4, β =
5(≈ 7dB). Domain size is set to 400m × 400m throughout.
We define SNR = P/N0 as the value measured at distance
d0 = 15m.11 We vary the signal-to-noise ratio such that
SNR ∈ {0, 10, 20}dB. As expected from our Theorem 3 and
its extension, the average contact and inter-meeting time
remain invariant with respect to the mobility patterns with
different degrees of correlation.

Remark 4. [23] shows through direct computation that
the average inter-meeting time of IRW model under Boolean
contact model does not depend on its step-length distribu-
tion. In contrast, in this paper, we consider CRW to explic-
itly capture the degree of correlations in the mobility patterns
and rigorously prove the invariance property for not only the
inter-meeting time of a given pair, but a set of very general
contact-based metrics such as contact time and inter-any-
contact time. Note that our results apply equally to Boolean
as well as SINR interference model for contact, which is
made possible by utilizing the powerful family of Kac’s recur-
rence theorem. Finally, as mentioned earlier, we note that
IRW models with longer mean step-lengths can be interpreted
as models with stronger correlations in the mobility pattern
(stronger tendency to preserve the same direction). In view
of this, Tables 1 and 2 confirm that our invariance results
hold true for a broader class of mobility models whenever
the concept of correlations in the mobility patterns can be
applied. �

11d0 varies according to the communication channel quality
requirement.



6. DISCUSSION
Having discovered a number of stochastic properties of

contact-based metrics under general mobility models, we
now turn our attention to their implication on the perfor-
mance of network protocols over mobile nodes. First, recall
that the invariance property of average statistics for contact-
based metrics holds when the system is in stationary regime.
Suppose that the system is already in the steady-state, e.g.,
the initial positions of mobile nodes are drawn from their
stationary distributions. Then, the following question nat-
urally arises: will the invariance property lead to the same
(or similar) system performance?

The answer to this question is yes when the inter-meeting
time is exponentially distributed, or equivalently, when the
regenerative period τ0 is very small, which is the case for
RWP and RD models. More precisely, for a class of mobil-
ity models whose τ is small enough, the invariance result
tells us that their inter-meeting time distributions are all
the same, which will lead to similar network performance.
This is also supported by results in [11, 22, 13, 25, 21], in
that the average inter-meeting time critically determines the
performance of forwarding algorithms.

However, when the inter-meeting time distribution severely
deviates from exponential,12 which is the case in reality as
shown in [7, 15], the ‘head’ of the distribution starts to kick
in with non-negligible τ0. In particular, our results in Sec-
tions 4 and 5 suggest that stronger correlations lead to heav-
ier head of the ccdf of the inter-meeting time, which must
be offset by lighter tail so as to maintain the same average13

from invariance property for any given domain size. This
corresponds to a less dangerous ordering [16]:

Definition 2. X is said to be less dangerous than Y if:
(i) E{X} ≤ E{Y }, and (ii) their CCDF P{X > t} and
P{Y > t} have a unique intersection t0 ∈ R such that P{X >
t} ≥ P{Y > t} for all t < t0 and P{X > t} ≤ P{Y > t} for
all t ≥ t0. �

For example, in view of the invariance result, Figure 2(a)
shows that the inter-meeting time of IRM with exponen-
tial step-length distribution of mean 100m (say, TI100) is
less dangerous than the inter-meeting time of IRM with ex-
ponential step-length distribution of mean 10m (say, TI10).
Figure 3(a) also shows that there exists a dangerous order-
ing for CRW models as well. Our next step is to employ the
following property [16]:

Proposition 2. If X is less dangerous than Y and E{X} =
E{Y }, then X ≤cv Y , i.e., E{ϕ(X)} ≤ E{ϕ(Y )} for all con-
vex function ϕ. �

Thus, from our invariance property, we have TI100 ≤cv

TI10. The convex ordering relationship can be used to facili-
tate system performance analysis. For example, consider the
first passage time (FPT) (or the residual/remaining inter-
meeting time) defined in (5). FPT is an important mobility
metric to evaluate the system performance [7, 15, 1]. As a
simple illustration, consider a single packet from a source
that is being broadcast to all other N nodes in the network
(similar to the epidemic routing [24, 25] but without recov-
ery process). Let t1 and t2 (t1 < t2) be the time instants
at which the number of ‘infected’ nodes (those that have al-
ready received a copy of the packet) becomes N1 and N1+1,

12We mean the whole shape of the distribution, not just the
tail, since the tail of the inter-meeting has been shown to be
always exponential [15, 5].

13Note that E{TI} =
∫ ∞
0

P{TI > t}dt.

respectively. Thus, t2 − t1 is the amount of time it takes to
increase the number of infected nodes by 1. It is also the
residual inter-contact time of the set of infected nodes B at
time t1 to the set of uninfected nodes B̄ at the same time
instant, i.e., t2 − t1 is the minimum residual inter-contact
time of a sequence of residual inter-contact times between
one node, say, A ∈ B and another node C ∈ B̄. Such two
nodes A and C may or may not have met before t1. How-
ever, when we look at their residual inter-contact time at
t1, as long as the initial positions of all nodes are indepen-
dent, t1 is a randomly accessed time instant. In other words,
t2 − t1 precisely becomes the first passage time to a set of
nodes, whose statistics are governed by the equilibrium dis-
tribution as in (5). Although this argument does not apply
precisely when there are many packets being transmitted at
the same time, we expect that FPT still plays a major role14

in the performance study of network protocol under various
configurations, as long as transmissions of different packets
do not heavily interfere with each other.15

20 40 60 80
0

20

40

60

Number of nodes

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

 (
%

)

 

 

exp(10)
exp(50)
exp(100)

0 50 100 150 200
0

20

40

60

Number of nodes

M
e

ss
a

g
e

 d
e

liv
e

ry
 r

a
tio

 (
%

)

 

 

exp(10)
exp(50)
exp(100)

(a) 500m × 500m (b) 2000m × 2000m

Figure 4: Effect of correlation in mobility patterns on

system performance. Simulation setting is the same as

Figure 2(a) and Table 1 with 500m×500m domain (a) and

2000m × 2000m domain (b). A fixed amount of data (1800

packts) are transmitted using epidemic routing protocol.

We use ns-2 with different number of nodes, and measure

the message delivery ratio at 600 seconds in (a) and 6000

seconds in (b).

To numerically support the aforementioned argument, we
present ns-2 simulation results in Figure 4(a) and (b) for
the message delivery ratio of epidemic routing protocol [24]
under a set of IRW mobility models as in Figure 2(a). The
domain size is set to 500m × 500m (a) and 2000m × 2000m
(b). Clearly, different degrees of correlation lead to very
different network performance. In this figure, 600 and 6000
seconds are chosen such that the message delivery ratios of
one mobility pattern (here we choose exp(100)) in (a) and
(b) at the chosen time instants are the same. Note that the
difference in network performance is amplified with larger
domain size.

While the average inter-meeting time is invariant as seen
in Table 1, the average FPT could be adopted to predict
the performance ordering shown in Figure 4. Specifically,
consider the FPT of TI100 and TI10 and denote them as
TF100 and TF10, respectively. Since TI100 ≤cv TI10, we have
E{T 2

I100} ≤ E{T 2
I10} by taking ϕ(·) = (·)2, which gives

E{TF100} =
E{T 2

I100}
2E{TI100}

≤ E{T 2
I10}

2E{TI10}
= E{TF10},

14Note that if the inter-meeting time is exponentially dis-
tributed, so is the FPT with the same mean.

15e.g., when incoming traffic density is low, which is typical
for MANET.



from (5) and the invariance property. In other words, mo-
bility pattern with stronger correlation produces smaller av-
erage FPT (or smaller variance of the inter-meeting time),
which could be translated into larger message delivery ratio.

7. CONCLUSION
In this paper we studied the effect of correlation in mo-

bility patterns on the inter-meeting time distribution. We
quantified the time scale for transition in inter-meeting time
distribution with respect to both domain sizes and correla-
tion in mobility patterns. We then studied the head part
of inter-meeting time and proved that stronger correlation
in mobility patterns leads to heavier head of inter-meeting
time. Further, we derived invariance property for contact-
based metrics such as inter-meeting time, contact time and
inter-any-contact time under both Boolean and SINR inter-
ference models. Numerical findings support our theoreti-
cal analysis and also suggest a convex ordering relationship
between inter-meeting time distributions produced by mo-
bility patterns with different degrees of correlation. We ex-
pect that our study of stochastic properties of contact-based
metrics under general mobility models will provide a first
step toward detailed performance analysis of various rout-
ing/forwarding algorithms and shed light on better design
of network protocols under realistic mobility patterns.

Appendix: Proof of Lemma 1
Due to the space limit, we provide sketch of the proof here:
(i) the first two equalities can be shown from r(−1, t, t) =
r(1, 0, t) by (7) and the definition of R(i, z, φ) in (12). For
the third equality, write out R(i, z, z) and exchange the or-
der of double summation (m and t) and then note that∑t

m=0 r(i, m, t) = 1.
To show (15), since S(0) = 0, for t ≥ 1, if Wt = 0, in all

t steps, the node is always on the negative side. Hence, its
first step X1 must be −1. Consequently,

r(1, 0, t) = P{Wt =0, X1 =−1|X0 =1}
= P{Wt =0|X0 =1, X1 =−1} · q.

Similarly r(1, t, t) = P{Wt = t|X0 = 1, X1 = 1} · p. By sym-
metry, we have

P{Wt =0|X0 =1, X1 =−1} = P{Wt = t|X0 =1, X1 =1}.

Since r(−1, t, t) = r(1, 0, t), for t ≥ 1,

p · r(−1, t, t) = q · r(1, t, t). (30)

Note that when t = 0, r(−1, t, t) = r(1, t, t) = 1. Then,
R(−1, z, 0)− 1 =

∑∞
m=1 r(−1, m,m)zm and R(1, z, 0)− 1 =∑∞

m=1 r(1, m, m)zm. From (30), this immediately lead to
p [R(−1, z, 0) − 1] = q [R(1, z, 0) − 1]. Lastly, from p = (1 +
ρ)/2 and q = (1 − ρ)/2, (15) follows.
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