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Abstract—We study how the so-called Rao-Blackwellization,

which is a variance reduction technique via “conditioning” for

Monte Carlo methods, can be judiciously applied for graph sam-

pling through neighborhood exploration. Despite its popularity

for Monte Carlo methods, it is little known for Markov chain

Monte Carlo methods and has never been discussed for random

walk-based graph sampling. We first propose two forms of Rao-

Blackwellization that can be used as a swap-in replacement for

virtually all (reversible) random-walk graph sampling methods,

and prove that the ‘Rao-Blackwellized’ estimators reduce the

(asymptotic) variances of their original estimators yet maintain

their inherent unbiasedness. The variance reduction can translate

into lowering the number of samples required to achieve a desired

sampling accuracy. However, the sampling cost for neighborhood

exploration, if required, may outweigh such improvement, even

leading to higher total amortized cost. Considering this, we

provide a generalization of Rao-Blackwellization, which allows

one to choose a suitable extent of obtaining Rao-Blackwellized

samples in order to achieve a right balance between sampling

cost and accuracy. We finally provide simulation results via real-

world datasets that confirm our theoretical findings.

I. INTRODUCTION

Graph sampling via random walk crawling has been an

effective means for sampling large complex networks, ranging

from unstructured peer-to-peer networks to online social net-

works, to estimate network statistics such as degree distribu-

tion and clustering coefficient, and social-network properties,

e.g., the fraction of users with some common property/interest

and their relationships. In particular, the random walk-based

graph sampling has been known as the sole vital solution

for sampling online social networks, which can only be done

via their public yet restrictive interfaces, only allowing local

neighborhood queries [1], [2]. Such interface limitation clearly

prevents from obtaining “independent” samples directly from

networks or incurs very high cost using rejection sampling

(to guess a user ID space) even if possible. In addition, it

has been more preferable over the traditional graph-traversal

algorithms for sampling, as it has many desirable properties

with statistical guarantees [1]–[3] inherited from the popular

Markov chain Monte Carlo (MCMC) techniques.

In an early stage of research in this area, the so-called

Metropolis-Hastings random walk and reweighted random

walk (or simple random walk with reweighting) methods [1]–

[4], which now become off-the-shelf algorithms and used

as baseline methods, were commonly used and extensively
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evaluated for their feasibility studies. Since then, the research

has been diversified. One branch of studies is to “speed up”

random walks, aiming at improving the estimation accuracy of

random-walk samplers, or equivalently, lowering the number

of samples needed to achieve a desired accuracy guarantee,

by effectively overcoming the slow-diffusion problem of main

random walks of the two popular methods. For instance, the

work in [5] proposes weighted random walks having a (known)

bias toward more relevant nodes, which is then corrected by

a usual reweighting procedure. Our earlier work in [6] intro-

duces the benefit of non-reversible Markov chains to create

more ‘directional’ walks. On the other hand, while a target

sampling function f is often up to designers or developers as

a design choice and can be virtually anything, another branch

of research is on how to carefully design such a function so

as to uncover important network properties that are not just

nodal and edge properties but more complicated topological

properties. For instance, there have been recent studies that

go beyond the nodal or edge properties and propose new

estimators (with new f ) to estimate subgraph patterns such

as network motifs and graphlets [7], [8].

In this paper, we take an orthogonal yet uncharted angle.

In contrast to the previous studies, we demonstrate that for

a given sampling function f , it is always possible to find its

related function that, in turn, improves the accuracy of the

original estimator while maintaining its inherent unbiasedness.

Our rationale behind the improvement is to exploit the neigh-

borhood information of each node visited into the estimation,

without modifying the trajectories of random-walk samplers.

In a similar vein, there are a few recent studies, which take

advantage of knowing the neighbors’ information to improve

the accuracy of their estimators [9], [10] or literally speed up

random walks from the perspective of the hitting and cover

times [11], [12]. However, the former studies require either

“independent” samples [9] or a specific estimator running on

top of simple random walk with reweighting [10], thereby

limiting their applicability. The latter studies have no direct

implication for unbiased graph sampling [11], [12].

Formally speaking, we study how the so-called Rao-

Blackwellization [13] – a variance reduction technique for

Monte Carlo methods (requiring independent samples), can be

applied for random walk-based graph sampling. The underly-

ing idea is, instead of using an empirical average of samples,

to make use of averaging the samples’ associated conditional

expected values. The variance reduction then follows from the

fact that “conditioning” reduces the variance while keeping

the same expected value. While it is little known for MCMC

methods [14], [15] and has never been discussed for graph



sampling, we propose two forms of Rao-Blackwellization

tailored for graph sampling for the first time in the literature,

utilizing the transition probabilities of the random-walk sam-

plers along with neighborhood information for conditioning.

We also prove that our ‘Rao-Blackwellized’ estimators achieve

smaller (asymptotic) variance while maintaining their inherent

unbiasedness even with correlated samples returned from the

underlying random-walk samplers. Our Rao-Blackwellized

estimators are general enough and can be applied as a quick

swap-in replacement for virtually all (reversible) random-walk

graph sampling methods.

To translate our theoretical findings into usable algorithms

in practice, we further consider a likely scenario where neigh-

borhood exploration incurs higher cost for sampling than the

baseline method, for which our Rao-Blackwellized estima-

tors would result in fewer samples starting from the same

total sampling budget. To address this issue, we generalize

the two forms of Rao-Blackwellization so that random-walk

samplers can make an independent decision on the use of

Rao-Blackwellization at each node visited, and then prove

their unbiasedness and provide variance analysis for the gen-

eralization. We show that, contrary to common belief, there

exists a scenario in which partially utilizing the neighborhood

information via Rao-Blackwellization can yield worse perfor-

mance than not using the neighborhood information at all.

We also explain how different sampling methods, providing

varying qualities of samples yet with different costs, can be

compared on the same ground, and introduce a refined form of

the variance, re-scaled by a penalty for higher cost per sample

(or a benefit for lower cost per sample). Our generalization and

the refined form for the asymptotic variance allow one to seek

for a more balanced tradeoff between better quality of Rao-

Blackwellized samples and higher sampling cost. We finally

provide simulation results obtained over real-world network

datasets to support our analysis.

II. PRELIMINARIES

We provide a mathematical background for random-walk

graph sampling methods and review a variance reduction tech-

nique for Monte Carlo methods called Rao-Blackwellization to

set the stage for the subsequent exposition.

A. Markov Chain Theory for Graph Sampling

Consider a connected, undirected and non-bipartite graph

G = (N , E) to model a (social) network for sampling, with

a set of nodes (users) N = {1, 2, ..., n} and a set of edges

E (indicating neighboring relationships between users). The

graph G is assumed to have no self-loops and no multiple

edges. Let N(i) = {j ∈N : (i, j)∈E} be a set of neighbors

of node i with degree d(i) = |N(i)|. The main operation of

random-walk graph sampling methods is to launch a “random-

walk” agent or multiple agents to crawl G in order to collect

its representative samples and, in turn, unbiasedly estimate its

nodal or network statistics.

Consider a discrete-time random walk (or Markov chain)

{Xt∈N}t≥0 on G, representing a sequence of nodes visited

by the sampling agent according to transition probabilities

P (i, j) = P[Xt+1 = j|Xt = i], which form a transition

matrix P. We assume that {Xt} is an ergodic (i.e., irreducible

and aperiodic) chain with its unique stationary distribution

π=[π(1), π(2), . . . , π(n)]. Similar to MCMC, the basic idea

of graph sampling via random-walk crawling is approximating

or estimating an expectation, for a target function f : N → R,

Eu [f(X)] =
∑

i∈N

f(i)
1

n

by an empirical average (or sample mean)

µ̂t(f) =
1

t

t
∑

k=1

f(Xk) (1)

over a realization (or sample path) of the random walk (sam-

pling agent) X1, X2, . . . , Xt having π = u as its stationary

distribution, where u=[1/n, 1/n, . . . , 1/n]. The most famous

method of this type is the Metropolis-Hastings random walk

method [1], [2], [4], [6] which is an application of the

Metropolis-Hastings algorithm [16], [17]. Regarding the target

function f , if the goal of sampling is to estimate the average

degree of nodes in G, one can use a function f(i) = d(i),
leading to the target quantity Eu [d(X)] = 2|E|/n. Also

when estimating a fraction of nodes belonging to a certain

‘membership’ class A, an indicator function f(i) = IA(i)
can be used with noting that Eu [IA(X)] = P[i ∈ A], where

IA(i)=1 if i∈A and IA(i)=0 if i 6∈A.

If the stationary distribution π is, however, not uniform, a

weighted average (or a ratio estimator) is used instead of (1)

as follows.∗

µ̂t(ψ)

µ̂t(w)
=

∑t
k=1 w(Xk)f(Xk)
∑t

k=1 w(Xk)
, (2)

where ‘importance’ weights w(i), i ∈ N , are generally given

by w(i) = 1/π(i) or w(i) = c/π(i) with some constant c be-

cause they only need to be evaluated up to a multiplicative con-

stant. For simplicity, we define a function ψ : N →R to denote

the entrywise product of f and w, i.e., ψ(i)=w(i)f(i), i ∈ N .

Note that such proper weights are necessary to correct a bias

introduced from the non-unform stationary distribution. The

so-called reweighted random walk or simple random walk

with reweighting [1], [2], [4], [6] is a popular example of this

kind, with w(i)=1/d(i). In fact, any unbiased graph sampling

methods adopting ‘non-uniform’ random walks belong to this

class.

We below explain two important theorems for graph sam-

pling, namely ergodic theorem and central limit theorem for

Markov chains. The former has been a fundamental basis for

the “asymptotic unbiasedness” of the estimator µ̂t(f) in (1)

or µ̂t(ψ)/µ̂t(w) in (2), while the latter has recently become

popular in the graph sampling literature to mathematically (not

just through numerical simulations) evaluate the quality or

efficiency of the estimator [6], [8], [18], [21].

∗It is sometimes referred to as the Hansen-Hurwitz estimator [1], [2], [5],
[18], and is also called respondent-driven sampling in other disciplines [19],
[20]. It is basically a form of MCMC importance sampling.



For an ergodic chain {Xt} with its stationary distribution π,

the ergodic theorem [22] says that, for any bounded function

f : N → R,

lim
t→∞

µ̂t(f) = Eπ [f(X)] =
∑

i∈N

f(i)π(i) a.s. (3)

for any initial distribution on X0. This implies that if π =
u, µ̂t(f) is asymptotically unbiased for our target quantity

Eu [f(X)] (for unbiased graph sampling) as t→ ∞. Other-

wise, the ratio estimator µ̂t(ψ)/µ̂t(w) can be used instead

and gives an unbiased estimate of Eu [f(X)].

Moreover, the central limit theorem [23], [24] says that for

any bounded function f and any initial distribution on X0,

√
t (µ̂t(f)− Eπ [f(X)])

d−→ N(0, σ2) as t→ ∞, (4)

where N(0, σ2) is a normal (or Gaussian) random variable

with zero mean and variance σ2, and
d−→ denotes convergence

in distribution. Here the asymptotic variance σ2 is given by

σ2 = lim
t→∞

t · Var[µ̂t(f)] = γ0 + 2

∞
∑

k=1

γk, (5)

where γ0 = Varπ[f(X0)] is the marginal variance of f(X0)
with respect to π and γk=Covπ[f(X0), f(Xk)] is the lag-k
autocovariance of the stationary sequence {f(Xt)}. Note that

the central limit theorem can also be similarly applied for the

ratio estimator µ̂t(ψ)/µ̂t(w) [6], [20], which shall be used in

our analysis later. The asymptotic variance highly depends on

the function f and the transition matrix P of the chain, so we

use σ2(f,P) instead of σ2 for the rest of this paper. Similarly

we use γk(f) instead of γk for all k ≥ 0 to signify their

dependence on f . On the contrary, for notational simplicity,

we use Eπ(f) for Eπ [f(X)], unless otherwise necessary.

From the accuracy point of view, the smaller the variability

(or variance) of an unbiased estimator, the better its accuracy

(or efficiency). The variance reduction can have a large effect

on the number of samples that need to be taken to obtain a

desired accuracy guarantee. While asymptotic variance is the

(rescaled) variance of an estimator in the limit, which allows

one to mathematically evaluate the accuracy of the estimator,

the asymptotic variance has also been a good indicator for

the performance with finite samples. Thus, we consider the

asymptotic variance as a main performance metric in this

work, and focus on devising a very general method that can be

used as a swap-in replacement for a large class of random-walk

graph sampling methods in order to reduce their (asymptotic)

variances while maintaining their inherent unbiasedness.

B. Rao-Blackwellization for Monte Carlo methods

Rao-Blackwellization is a generic approach to reducing

the variance of a Monte Carlo estimator, which is to use

“conditioning” [13], [25]. We first collect two simple facts re-

garding the conditioning. For two (possibly correlated) random

variables X and Y , it is well known that E[E[X |Y ]]=E[X ],
where E[X |Y ] is the conditional expectation of X given Y ,

which is itself a random variable (a function of Y ) [26]. In

addition, the conditional variance formula [26] says

Var[X ] = Var[E[X |Y ]] + E[Var[X |Y ]]

implying that

Var[X ] ≥ Var[E[X |Y ]], (6)

from E[Var[X |Y ]] ≥ 0, since a variance is always non-

negative. In words, by conditioning we can always reduce the

variance while keeping the same expected value.

Suppose now that our target distribution is a joint distri-

bution π of two variables (X,Y ) and we are interested in

estimating the expectation of a function f of one variable X ,

i.e., Eπ[f(X)]. If i.i.d. samples X1, X2, . . . , Xt are drawn

directly from the marginal distribution of X , then a straight-

forward estimator is

µ̄1
t(f) =

1

t

t
∑

k=1

f(Xk).

Now consider the following Rao-Blackwellized estimator with

i.i.d. samples Y1, Y2, . . . , Yt drawn from the marginal distri-

bution of Y :

µ̄2
t(f) =

1

t

t
∑

k=1

E[f(X)|Yk].

Clearly, both are unbiased, because E[µ̄1
t(f)]=Eπ [f(X)] and

E[µ̄2
t(f)] = Eπ[E[f(X)|Y ]] = Eπ[f(X)].

However, the variance of µ̄2
t(f) can only be lower, i.e.,

Var[µ̄1
t(f)]=

Varπ[f(X)]

t
≥ Varπ[E[f(X)|Y ]]

t
=Var[µ̄2

t(f)],

since we assume (for now) that {Xk} are i.i.d. and the

inequality is from (6). This procedure is often referred to as

Rao-Blackwellization [13], [25]. As long as the conditional

expectation E[X |Y ] is available analytically and Y is easy

to sample, one can enjoy the Rao-Blackwellization, which

reduces the variance of an unbiased estimator while keeping

its unbiasedness.

III. APPLYING RAO-BLACKWELLIZATION FOR GRAPH

SAMPLING

The Rao-Blackwellization technique has widely been used

as an effective variance-reduction technique for Monte Carlo

methods (e.g., [13] and references thereafter) and even applied

for sampling of search engine quality metrics [27], which all

require “independent” samples. It is, however, little known for

MCMC methods, or effectively for “correlated” samples, and

in this regard, a few studies have only been done in Statistics,

along which it was shown that the transition probabilities of

Markov chains (so correlated samples) can be used for the

conditioning of Rao-Blackwellization [14], [15]. In order to

apply their finding to graph sampling, however, the stationary

distribution of random walk samplers needs be uniform, clearly

limiting its applicability.

Thus, we below show how the Rao-Blackwellization can

be generally applied for graph sampling even when the sta-

tionary distribution of random walk samplers is non-uniform,



which is much more popular in the existing graph sampling

methods [1], [2], [5]–[7], [28]. In particular, we prove the

asymptotic unbiasedness and smaller asymptotic variance of

the Rao-Blackwellized estimators. This improvement can still

be achieved in practice, since the transition probabilities of an

underlying random walk (or Markov chain) are used for con-

ditioning and such knowledge is obtainable via neighborhood

exploration [11], [12] or when neighborhood information is

available [9], [10].

A. Uniform Stationary Distribution

Consider a sampling agent that moves over G according

to the transition matrix P of an ergodic, reversible† Markov

chain {Xt}t≥0, where Xt is the location of the agent at time t.
We first consider the case of a uniform stationary distribution

π=u. For any bounded target function f , we define another

function Pf : N → R such that

Pf(i) = E[f(Xk+1)|Xk= i] =
∑

j∈N

P (i, j)f(j), i ∈ N . (7)

Here we use the notation Pf in order to indicate that it can

be interpreted as an n-dimensional (column) vector which is

the product of an n×n matrix P and an n-dimensional vector

f . From the definition of Pf , we can then see that

Eπ[Pf(Xk)] = Eπ [E[f(Xk+1)|Xk]] = Eπ[f(X)], (8)

since both Xk and Xk+1 have the same distribution π in the

stationary regime.

We consider the following Rao-Blackwellized estimator of

Eπ[f(X)], which was first introduced in [14], [15].

µ̂t(Pf) =
1

t

t
∑

k=1

Pf(Xk). (9)

It follows from the ergodic theorem for Markov chains in (3)

with a function f replaced by Pf that µ̂t(Pf) is asymptoti-

cally unbiased, i.e.,

lim
t→∞

µ̂t(Pf) = Eπ[Pf(Xk)] = Eπ[f(X)] a.s., (10)

where the second equality is from (8).

We next discuss how efficient the Rao-Blackwellized es-

timator µ̂t(Pf) would be by comparing its variance to that

of the original estimator µ̂t(f). We first look at the marginal

variance or ‘quality’ of each of correlated samples used in the

estimator, assuming that samples are marginally drawn from π

while possibly correlated, and show that the marginal variance

under the Rao-Blackwellized estimator can only be smaller, as

was the case of i.i.d. samples in Section II-B.

To proceed, we collect notations and simple facts in the

theory of ergodic, reversible Markov chains [22]. For functions

f, g : N → R, define their scalar product with respect to π as

〈f, g〉π=
∑

i∈N f(i)g(i)π(i). For a reversible chain {Xt} and

functions f, g, we have the so-called ‘self-adjoint’ property

〈f,Pg〉π=
∑

i∈N

f(i)(Pg)(i)π(i)=
∑

i∈N

f(i)
∑

j∈N

P (i, j)g(j)π(i)

†A Markov chain is said to be reversible with respect to π, if it satisfies
the reversibility condition, i.e., π(i)P (i, j)=π(j)P (j, i) for all i, j ∈ N .

=
∑

j∈N

∑

i∈N

P (j, i)f(i)g(j)π(j) = 〈Pf, g〉π (11)

where the second last equality is from the reversibility. Itera-

tively applying the self-adjoint property yields

〈Pm1f,Pm2g〉π=〈Pm1+m2f, g〉π=〈f,Pm1+m2g〉π (12)

for any positive integers m1,m2, where P
m is the m-step

transition matrix (or the m-th power of the transition matrix).

We then have the following. Due to space constraint, we refer

to our technical report [29] for all the proofs in this paper.

Lemma 1: Varπ[Pf(Xk)] ≤ Varπ[f(X)] for any f . ✷

While the marginal variance of each sample in the Rao-

Blackwellized estimator is lower, its smaller asymptotic vari-

ance is not guaranteed due to the (often complicated) covari-

ance structure of {f(Xt)}, which differs significantly from the

case of i.i.d. samples. Thanks to the result in [15], however,

the form of Rao-Blackwellization in (9) indeed brings an

improvement in the asymptotic variance. Let σ2(f,P) and

σ2(Pf,P) be the asymptotic variances of the estimators µ̂t(f)
and µ̂t(Pf), respectively. We below restate the result in [15].

Theorem 1: For any function f , σ2(Pf,P)≤σ2(f,P), and

the amount of reduction is given by

σ2(f,P)− σ2(Pf,P) = Varπ[f(X0) +Pf(X0)]

= γ0(f) + 2γ1(f) + γ2(f) ≥ 0. ✷

As an example, consider the Metropolis-Hastings random

walk (MHRW) method, having π=u. For a MHRW sampler,

assuming the current node i, one of its neighbors is proposed

as the next node to move to, with probability Q(i, j)=1/d(i).
This proposed transition is accepted with probability A(i, j)=
min{1, d(i)/d(j)}, and rejected with 1−A(i, j) in which case

the agent stays at node i. Thus, the transition probabilities are

given by

P (i, j) =

{

min{1/d(i), 1/d(j)}, if j ∈ N(i)

0, if j 6∈ N(i) and j 6= i,

with P (i, i)=1−∑j 6=i P (i, j). The resulting chain is reversible

with respect to π=u. Therefore, the Rao-Blackwellization can

be done with the estimator µ̂t(Pf), as long as neighborhood

information such as the degrees of neighbors and the values

of f at the neighbors is available when visiting node i.
The theoretical guarantees provided by Theorem 1 clearly

allow one to benefit from ‘Rao-Blackwellizing’ the MHRW

estimator.‡ It has, however, been shown in many studies [1],

[2], [4], [6] that the estimates obtained by the so-called

reweighted random walk (RRW) method are consistently more

accurate than the MHRW method, so it has been recommended

over the MHRW method for practical purposes [2], [4]. Then

a natural follow-up question is “How can we apply such Rao-

Blackwellization to the RRW estimator, or more generally, any

(reversible) random-walk estimators requiring the correction

‡It it worth noting that Theorem 1 holds for any stationary distribution
π [15]. With the estimator µ̂t(Pf) in (9), its (direct) applicability is, however,
only limited to the case of π=u for unbiased graph sampling.



of a bias from π 6= u?”. We below tackle this challenging

question. As an affirmative answer, we first propose a Rao-

Blackwellized ratio estimator as a modification of the pure

ratio estimator in (2) for the first time in the literature, and

prove that our proposed estimator indeed guarantees asymp-

totic unbiasedness yet smaller asymptotic variance than the

one in (2).

B. Non-Uniform Stationary Distribution

We turn our attention to the boarder yet important case

of π 6= u, for which it is unknown how to obtain a Rao-

Blackwellized estimate of Eu(f), not Eπ(f). To this end, for

any bounded target function f , we propose the following Rao-

Blackwellized ratio estimator of Eu(f):

µ̂t(Pψ)

µ̂t(Pw)
=

∑t
k=1 Pψ(Xk)

∑t
k=1 Pw(Xk)

=

∑t
k=1

∑

j∈N(Xk)
P (Xk, j)w(j)f(j)

∑t
k=1

∑

j∈N(Xk)
P (Xk, j)w(j)

, (13)

with weights w(i) = c/π(i) for some constant c > 0. Recall

that ψ(i) = w(i)f(i). Let σ2
w
(Pf,P) and σ2

w
(f,P) be the

asymptotic variances of µ̂t(Pψ)/µ̂t(Pw) and µ̂t(ψ)/µ̂t(w),
respectively. We below state our main result on the Rao-

Blackwellized ratio estimator of Eu(f).

Theorem 2: For any function f and weights w(i)= c/π(i)
with a constant c>0, µ̂t(Pψ)/µ̂t(Pw) is asymptotically un-

biased for Eu(f) and σ2
w
(Pf,P) ≤ σ2

w
(f,P). Furthermore,

the amount of variance reduction is given by

σ2
w
(f,P)−σ2

w
(Pf,P) = Varπ[h(X0)+Ph(X0)] ≥ 0, (14)

where the function h : N → R is defined as

h(i) = [ψ(i)− w(i)Eu(f)]/(cn), i ∈ N . (15)

As an example of the ‘non-uniform’ random-walk sampling

methods, consider the reweighted random walk (RRW) method

that uses a simple random walk (SRW) for moving over G,

followed by a post-hoc reweighting procedure [1], [2], [4], [6].

For a SRW sampler, at the current node i, the next node is

chosen uniformly at random among i’s neighbors. The result-

ing Markov chain is reversible with stationary probabilities

π(i) = d(i)/(2|E|). To correct the bias toward high-degree

nodes, the RRW method is essentially using the ratio estimator

in (2) with weights w(i) = 1/d(i). Therefore, our proposed

Rao-Blackwellized estimator for the RRW method becomes

µ̂t(Pψ)

µ̂t(Pw)
=

∑t
k=1

∑

j∈N(Xk)
[f(j)/d(j)]/d(Xk)

∑t
k=1

∑

j∈N(Xk)
[1/d(j)]/d(Xk)

, (16)

which is guaranteed to be asymptotically unbiased and have

smaller asymptotic variance than the original one due to

Theorem 2. This improvement again can be achieved by

exploiting neighborhood information, as was the case for ‘Rao-

Blackwellizing’ the MHRW method.

It is interesting to note that the estimator in [10] happens

to be the same as the one in (16) with f(i) = IA(i) for

some label A. While their estimator is fundamentally different

and uses different reported values for sampling, after the

reweighting procedure, its final form coincides with (16).§

Thus, the estimator in [10] can now be formally interpreted

under our Rao-Blackwellization framework. In particular, as

a byproduct of our Theorem 2, the estimator in [10] is also

guaranteed to have smaller (asymptotic) variance, which was

not shown in [10].

We also emphasize that our proposed Rao-Blackwellization

procedure and its resulting theoretical guarantees (Theorem

2) are not limited to only the RRW method, but can directly

be applied to virtually all ‘non-uniform’ random-walk-based

methods (e.g., [5], [7], [28]), each of which employs a re-

versible random walk (Markov chain) along with a reweighting

procedure, correcting a bias from its non-uniform stationary

distribution. Even more importantly, our results can equally

work for the so-called respondent-driven sampling (or more

broadly MCMC importance sampling) and its applications in

different disciplines (e.g., [19], [20]), although our focus here

is limited to unbiased graph sampling.

We have discussed two forms of Rao-Blackwellization (for

uniform and non-uniform π), which are applicable for a very

large class of random-walk graph sampling methods, with

theoretical guarantees on their first-/second-order behaviors.

An essential prerequisite here is that neighborhood information

can be readily available at each node [9], [10] or the cost of

neighborhood exploration can be ignored [11], [12] for Rao-

Blackwellization, in which case the resulting variance reduc-

tion translates into lowering the number of samples to achieve

a desired sampling accuracy. However, if such neighborhood

information is no longer freely available and/or if one has

to manually explore all the neighbors at every node visited

for Rao-Blackwellization, then it can incur high computational

and/or query cost to obtain one sample. Such an increase in

cost per sample may offset the reduction in the number of

samples (or in the asymptotic variance), even leading to higher

total amortized cost. Therefore, Rao-Blackwellization should

be utilized judiciously.

The problem can boil down to choosing whether to keep

performing Rao-Blackwellization or not throughout for sam-

pling, considering the sampling costs. However, since such a

hard selection between two options greatly limits our design

choices, a natural extension would be to generalize the two

forms of Rao-Blackwellization so that the sampler can make

an independent decision on the use of Rao-Blackwellization

at each node visited. By doing so, one can control the level of

neighborhood exploration or the amount of Rao-Blackwellized

samples to manage the total expenditure of sampling costs with

the hope to still enjoy the benefit of neighboring information.

§To see this a bit further, consider the numerator of each estimator. As
mentioned in [10], their estimator originally follows from the one in [9] for
independent samples, which has noting to do with Rao-Blackwellization, and
uses a sampled value at node i given by

∑
j∈N(i) f(j)/d(j), followed by

reweighting with w(i)=1/d(i). In contrast, our sampled value at node i is
simply Pψ(i), which is an average of its neighbors’ (already re-weighted)
values

∑
j∈N(i) w(j)f(j).



IV. NEIGHBORHOOD EXPLORATION: FROM THEORY TO

PRACTICE

We introduce a generalization of Rao-Blackwellization and

show its mathematical properties, including the asymptotic

unbiasedness and non-trivial variance performance. We also

discuss how different instances of this generalization, gener-

ating varying qualities of samples with different costs, can

be compared on the same ground by taking into account the

sampling costs into the variance computation, so that a ‘right’

instance of the generalization can be selected under more

practical cost constraint.

A. Mathematical Model

As before, consider that a random-walk sampler crawls over

G according to the transition matrix P of an ergodic, reversible

chain {Xt} with its stationary distribution π. As a general-

ization of Rao-Blackwellization, when arriving at node i, the

random-walk sampler can perform the ‘Rao-Blackwellized’

sampling, i.e., obtaining Pf(i), with probability q(i), and the

original sampling, i.e., obtaining f(i), with probability 1−q(i).
While the trajectory of the sampler remains the same, the

sampler can now make an independent decision of randomly

choosing a node sample from either Pf(i) or f(i) at each

node i visited. This generalization greatly extends our design

choices, with different location-dependent probabilities q(i).
For any bounded target function f , define a related function

f̃ : N × {0, 1} → R such that

f̃(i, 0) = f(i), and f̃(i, 1) = Pf(i), i ∈ N .

To capture the location-dependent sampling, given the current

position Xt = i of the sampler, we define by Yt an inde-

pendent Bernoulli random variable, taking the value 1 with

probability q(i) and the value 0 with 1−q(i). Then, letting

q=[q(1), q(2), . . . , q(n)], we consider the following estimator

with a joint sequence {(Xk, Yk)}t≥0.

µ̂t(f, q) =
1

t

t
∑

k=1

f̃(Xk, Yk), (17)

where we use µ̂t(f, q) to indicate its dependence on the choice

of q. Note that the definition of the estimator here is for Eπ(f)
with general π. This will remain the same for the uniform

π =u, while its related ratio estimator will be used for any

non-uniform π as shall be shown later. Before going into the

details, we have the following.

Theorem 3: In order for µ̂t(f, q) to be an asymptotically

unbiased estimator of Eπ(f) for any function f , q has to be

constant, i.e., q(i) = q for all i. ✷

This result is somewhat counter-intuitive. At first glance,

one might expect the asymptotic unbiasedness for any q, as

the (marginal) expectation of Pf with respect to π is the same

as that of f as seen from (8), and what we are doing would

seem to be just a random mixture of two marginally unbiased

values. The subtle point to note here is that the unbiasedness

for Pf or f is only after taking weighted sum with π, and

unless q is constant, the resulting expected value of µ̂t(f, q),

in the limit, with general q is no longer the same as Eπ(f)
and quickly becomes out of control. For this reason, since we

are mainly interested in (asymptotically) unbiased estimators,

we hereafter focus on the constant case q(i) = q for all i.

B. Asymptotic Unbiasedness and Variance Performance

Since the estimator form is different depending on whether

the stationary distribution π is uniform or not, we separate

the cases for ease of exposition. We first consider the case

of a uniform stationary distribution π =u, which is the one

for the MHRW method. As a special case, if q = 1, then

the estimator in (17) becomes µ̂t(f, 1) = µ̂t(Pf), which is

the case performing Rao-Blackwellization throughout at every

node visited. Similarly for q = 0, the estimator becomes

µ̂t(f, 0)= µ̂t(f), which is the original estimator before apply-

ing Rao-Blackwellization. Let σ2(f,P, q) be the asymptotic

variance of µ̂t(f, q). We then have the following.

Theorem 4: For any function f and any q ∈ [0, 1], µ̂t(f, q) is

an asymptotically unbiased estimator of Eπ(f). Its asymptotic

variance is given by

σ2(f,P, q) = σ2(f,P)(1−q) + σ2(Pf,P)q

− 2 [γ1(f)− γ2(f)] q(1−q), (18)

where γk(f)=Covπ[f(X0), f(Xk)]. ✷

We next consider the case of any non-uniform π, covering a

much broader class of random-walk graph sampling methods,

and obtain a similar result to Theorem 4. Only difference here

is the need of a ratio estimator to correct a bias from the non-

uniform π, although it is non-trivial to prove its mathematical

properties. Similar to the function f̃ above, for any bounded

f , we define a weight function w̃ : N ×{0, 1} → R such that

w̃(i, 0) = w(i), and w̃(i, 1) = Pw(i), i ∈ N ,

and also another function ψ̃ : N × {0, 1} → R such that

ψ̃(i, 0) = ψ(i) = w(i)f(i), and

ψ̃(i, 1) = Pψ(i) =
∑

j∈N

P (i, j)w(j)f(j), i ∈ N ,

with weights w(i)=c/π(i) for some constant c > 0. We then

consider the following ratio estimator of Eu(f):

µ̂t(ψ, q)

µ̂t(w, q)
=

∑t
k=1 ψ̃(Xk, Yk)

∑t
k=1 w̃(Xk, Yk)

. (19)

Here we can recover the degenerate cases by setting q=0 or

q=1. Letting σ2
w
(f,P, q) be its asymptotic variance, we have

the following.

Theorem 5: For any function f and any q, µ̂t(ψ, q)/µ̂t(w, q)
is asymptotically unbiased for Eu(f). Its asymptotic variance

is also given by

σ2
w
(f,P, q) = σ2(h,P)(1−q) + σ2(Ph,P)q

− 2 [γ1(h)− γ2(h)] q(1−q), (20)

where h is in (15) and γk(h)=Covπ[h(X0), h(Xk)]. ✷



Theorems 4 and 5 show that the estimators in (17) and

(19) both produce asymptotically unbiased samples with their

asymptotic variances expressed as a quadratic function of q. As

shown in Lemma 1, Rao-Blackwellization always makes the

quality (or marginal variance) of every sample better than that

of the usual sample. Even with the non-trivial autocovariance

structures of {f(Xt)} and {Pf(Xt)}, we have shown in

Theorems 1 and 2 that the same ordering relationship also

holds for the whole estimator with correlated samples. Thus,

it is quite natural to expect that the more we incorporate Rao-

Blackwellized samples with higher values of q, the resulting

asymptotic variance would be always decreasing. Our next

result, however, shows this is not always true.

Corollary 1: In the setting of Theorem 4, if

max{γ1(f), γ0(f)+4γ1(f)} ≥ γ2(f) (21)

then σ2(f,P, q) is monotonically decreasing in q ∈ [0, 1] from

σ2(f,P, 0) = σ2(f,P) down to σ2(f,P, 1) = σ2(Pf,P).
Otherwise, there exists q∗ ∈ (0, 1) such that σ2(f,P, q∗) >
σ2(f,P). The same goes for Theorem 5 with f replaced by

h in (15). ✷

The condition in (21) is satisfied if γk(f) (lag-k auto-

covariance of f(Xt)) is monotonically decreasing in k. This

will be the case for any f if all the eigenvalues of P are

non-negative [13], as typically seen in the so-called lazy

random walk [30] or likely in the MHRW methods with self-

transitions. In this case, as expected, the more we incorporate

the neighborhood information into the sampler via the Rao-

Blackwellization, the smaller the asymptotic variance of the

obtained samples, albeit with potentially higher costs.

When the condition in (21) is not satisfied, however,

Corollary 1 says the Rao-Blackwellization via neighborhood

exploration, even if there is no additional cost for this op-

eration, could be harmful and even produce worse samples

than the pure random-walk sampling method without using any

neighborhood information at all in the first place. This will be

more likely the situation when there are negative eigenvalues

for P, inducing negative γ1(f) and γ0(f)+4γ1(f)< γ2(f).
This issue is further compounded by the fact that it often costs

more to obtain Rao-blackwellized samples, as we show next.

C. Comparing Sampling Methods From Practical Standpoint

We here illustrate how to fairly compare different sampling

methods, producing varying qualities of samples but with

different costs, on the same ground. Consider our original

estimator µ̂t(f) for estimating Eπ(f). Observe that the “mean

square error” of the estimator can be written as

E

[

(µ̂t(f)−Eπ(f))
2
]

= Var[µ̂t(f)] + (E[µ̂t(f)]−Eπ(f))
2 ,

where Var[µ̂t(f)]=E

[

(µ̂t(f)−E[µ̂t(f)])
2
]

. On one hand, it

is known that the squared bias (E[µ̂t(f)]−Eπ(f))
2

is of size

O(t−2) [31]. This becomes negligible when the chain is close

to its stationary distribution, which is often the case for large

t (more precisely, after the ‘mixing time’ of the chain [30]).

It is obviously zero from the beginning for stationary chains.

On the other hand, from the central limit theorem for Markov

chains in (4), we know that Var[µ̂t(f)] is of size O(t−1) and

the asymptotic variance is σ2(f,P)= limt→∞ t · Var[µ̂t(f)].
Thus, for sufficiently large t, we have [31]

Var[µ̂t(f)] ≈ σ2(f,P)/t, (22)

thereby implying that for sufficiently large t, the mean square

error of the estimator is crucially influenced by the variance

Var[µ̂t(f)] of the estimator, which is again approximated by

σ2(f,P)/t. From this perspective, smaller asymptotic variance

indicates that the estimator requires fewer samples to reach a

desired accuracy even for the case of finite samples.

Now we are ready to discuss how to incorporate the sam-

pling costs into the evaluation of estimation accuracy. Consider

the original estimator µ̂t(f) and its Rao-Blackwellized version

µ̂t(Pf) both obtained by a MHRW sampler for an illustration

purpose. From (22) and Theorem 1, we have

Var[µ̂t(f)] ≈ σ2(f,P)/t ≥ σ2(Pf,P)/t ≈ Var[µ̂t(Pf)].

Despite this variance reduction, the Rao-Blackwellized esti-

mator may use more costly samples, as the sampler may have

to manually explore all the neighbors at every node visited for

Rao-Blackwellization.

To see its impact on the actual variance performance, we

suppose that µ̂t(f) uses a unit cost per sample, while µ̂t(Pf)
requires κ times more cost per sample on average. For a fair

comparison, the total expenditure for sampling should remain

the same for both cases. Thus, if µ̂t(f) uses t samples, its

corresponding Rao-Blackwellized version should be based on

t/κ samples, i.e., µ̂t/κ(Pf). Therefore, their variances become

Var[µ̂t(f)] ≈ σ2(f,P)/t,

Var[µ̂t/κ(Pf)] ≈ σ2(Pf,P)/(t/κ) = κ · σ2(Pf,P)/t

≈ κ ·Var[µ̂t(Pf)],

respectively. We can see that depending on the actual amount

of cost κ per sample, the amount of variance reduction by

Rao-Blackwellization can be completely offset, even leading

to higher variance in the end. This demonstrates that higher

sampling cost per sample is penalized and correctly reflected

in the variance computation.

Repeating the same argument as above, we can deduce

that the following refined variance of our generalized, Rao-

Blackwellized estimator can be used for comparison with

different values of q:

κ(q) ·Var[µ̂t(f, q)] ≈ κ(q) · σ2(f,P, q)/t. (23)

A similar form of the refined variance can also be made for

the generalized, Rao-Blackwellized ratio estimator (for any

non-uniform π), or even for different sampling methods that

produce varying qualities of samples yet with different costs.

It is worth noting that the refined-variance form allows us to

keep the same number t of samples used, which simplifies the

comparison, as κ(q) is explicitly introduced and can be used as

a penalty for higher cost per sample. Here we use κ(q) instead
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Fig. 1. The MSE results of RB-MHRW(q) and RB-RRW(q) when changing the probability q.

of κ to reflect that the sampling cost κ(q) would be a function

of q and most likely be increasing in q, as the amount of

neighborhood exploration, if required, increases with larger q.

Therefore, in conjunction with our findings from Corollary 1,

Rao-Blackwellization via neighborhood exploration surely of-

fers a great improvement in the (asymptotic) variance if its

associated cost is negligible; however, it should be used with

great care if otherwise. ¶

V. SIMULATION RESULTS

In this section, we present simulation results to support

our theoretical findings. To this end, we consider two real-

world network datasets. One is AS graph, an undirected graph

of autonomous systems composed of 6474 nodes and 13233

edges, and the other is Digg graph, which is a social graph of

the social news aggregator Digg’s users, with 270,535 nodes

and 1,731,658 edges. For our simulation, we use an undirected

version of this graph. To ensure graph connectivity, we use the

largest connected component of each graph.

As test cases, we consider the estimation of the average de-

gree of each graph with a target sampling function f(i)=d(i),
and also the average clustering coefficient [1], [2], [21] with

a target function f(i) set to be a fraction of the number of

connections among neighbors of i to the maximum possible

connections among them, whose formal definition can be

found in [21]. To measure the estimation accuracy, we use

the “mean square error (MSE)” of each estimator, which is

given by E[(x̂−x)2], where x̂ represents the estimated value

and x is the ground-truth value. As explained above, the

MSE of an estimator can be approximated by its asymptotic

variance divided by the number of samples used, as long as

the number of samples is not that small. We can thus verify

our theoretical findings through the evaluation of the MSE

performance. In every simulation, an initial position of each

random walk is drawn from its stationary distribution. Each

data point reported here is obtained from 105 independent

simulations. Due to space constraint, we here only provide

representative simulation results.

In Figure 1, we compare the performance of our gen-

eralized, Rao-Blackwellized estimators for the MHRW and

¶There always exists optimal q⋆ ∈ [0, 1] to minimize the refined asymp-
totic variance, achieving the right balance between sampling cost and accuracy.
The exact value of q⋆ clearly depends on the cost model for κ, the target
function f and the underlying chain P (or the graph topology), among others.
The development of a precise cost model is beyond the scope of this paper.

RRW methods under the same number of samples, which

corresponds to the case that neighborhood information is

available [9], [10] or neighborhood exploration can easily be

done [11], [12]. Since our generalization is parameterized by

probability q in performing the Rao-Blackwellized sampling

at each node visited, we denote, by RB-MHRW(q) and RB-

RRW(q), our Rao-Blackwellized estimators for the MHRW

and RRW methods, respectively. Note that RB-MHRW(0) is

the pure MHRW method and RB-MHRW(1) is the full use of

Rao-Blackwellization. Similarly for RB-RRW(q).

In Figure 1(a), we report the MSE results of RB-MHRW(q)

and RB-RRW(q) in estimating the average degree of AS graph

with 5000 and 10000 samples, when varying the value of q.

The left y-axis is for MSE of RB-MHRW(q) and the right

y-axis is for that of RB-RRW(q). We can see that the MSE

performance of RB-MHRW(q) exhibits a decreasing behavior

in q, culminating at q=1, for both 5000 and 10000 samples.

Here the larger the number of samples, the lower the MSE,

which is well expected due to the (asymptotic) unbiasedness.

However, for RB-RRW(q), there is no such a decreasing

behavior, although RB-RRW(1) is always better than RB-

RRW(0) as expected. This is the cautionary case as pointed

out by Corollary 1.

Similarly, in Figure 1(b) and Figure 1(c), we report the

MSE results of RB-MHRW(q) and RB-RRW(q) for estimating

the average clustering coefficient of AS graph with 5000
samples and the average degree of Digg graph with 106

samples, respectively. The MSE of RB-RRW(q) is generally

decreasing in q, with the best performance at q = 1. On

the contrary, the Rao-Blackwellization only provides a little

improvement for the MHRW method. This trend is opposite

to that of Figure 1(a). Therefore, we can see that the amount

of improvement by Rao-Blackwellization and the benefit of its

partial use can highly depend on the target function f and the

underlying chain P (or the graph topology), among others.

In Figure 2, we present the MSE results of RB-MHRW(q)

and RB-RRW(q) for estimating the average degree of AS

graph under the consideration of sampling costs. While a

precise cost model is not yet available in the literature, we

use the following cost model. With a given sampling budget

(in the number of samples), we deduct a unit cost (simply

one sample) per sample for a usual sampling operation, while

deducting a non-unit cost, defined as max{1, αd(i)} with

a control variable α, per sample for a Rao-Blackwellized
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Fig. 2. The impact of sampling costs on the MSEs of RB-MHRW(q) and
RB-RRW(q) for estimating the average degree of AS graph, with different
choices of q.

operation at node i. This model reflects that obtaining Rao-

Blackwellized samples from higher-degree nodes is more

penalized. The MSE results are obtained with a budget of

5000 samples for different choices of α and varying q. Each

result labeled with ‘Cost(α)’ indicates the one under a given

α. ‘No Cost’ indicates the MSE result when the unit cost is

deducted from the budget regardless of whether to perform the

Rao-Blackwellized sampling. As expected from our discussion

in IV-C, when we increase the sampling cost for each neigh-

borhood exploration with increasing α, the amount of variance

reduction by Rao-Blackwellization becomes completely offset,

eventually leading to higher variance. We can also see that

such an impact is intensified for RB-RRW(q), because the

underlying random walk is SRW having a more bias toward

high-degree nodes in the stationary regime. Since the decision

for the Rao-Blackwellized sampling with q can only be done

independently over i due to Theorem 3, the bias toward high-

degree nodes increases the chance of the Rao-Blackwellized

sampling at the high-degree nodes, incurring more sampling

costs.

VI. CONCLUSION

We have studied, under our proposed Rao-Blackwellization

framework, how much benefit one can achieve by knowing

neighborhood information or performing neighbor exploration

for random walk-based graph sampling. We have first shown

two general forms of Rao-Blackwellization, which can be

applied for a very large class of sampling methods, and proven

that they always bring an improvement in the variance while

maintaining the unbiasedness. We have further provided its

non-trivial generalization and related mathematical proprieties.

In particular, our results have pointed out possible danger

of exploiting neighborhood information if done without care,

which is in stark contrast to common belief. However, we

also advocate the use of neighborhood information via Rao-

Blackwellization, if its associated cost is negligible or such

information is freely available.
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