
1

On the Performance of Content Delivery under
Competition in a Stochastic Unstructured

Peer-to-Peer Network
Yuh-Ming Chiu and Do Young Eun

Department of Electrical and Computer Engineering
North Carolina State University, Raleigh, NC

{ychiu, dyeun}@ncsu.edu

Abstract—Peer-to-peer (P2P) network is widely used for transferring large files nowadays. Measurement results show that most
downloading peers are patient as the average download session is usually very long. It is sometimes even longer than downloading
from a dedicated server using a modem. Existing results in the literature indicate that the stochastic fluctuation and the heterogeneity in
the service capacity of each peer are two of the major reasons that make the average download time far longer than expected. In those
studies, it has been often assumed that there is only one downloading peer in the network, ignoring the interaction and competition
among peers.
In this paper, we investigate the impact of the interaction and competition among peers on downloading performance under stochastic,
heterogeneous, unstructured P2P settings, thereby greatly extending the existing results on stochastic P2P networks made only under
a single downloading peer in the network. To analyze the average download time in a P2P network with multiple competing downloading
peers, we first introduce the notion of system utilization tailored to a P2P network. We investigate the relationship between the average
download time, system utilization and the level of competition among downloading peers in a stochastic P2P network. We then derive an
achievable lower bound on the average download time and propose algorithms to give the peers the minimum average download time.
Our result can much improve the download performance compared to earlier results in the literature. The performance of the different
algorithms is compared under NS-2 simulations. Our results also provide theoretical explanation to the inconsistency of performance
improvement by using parallel connections (parallel connections sometimes do not outperform a single connection) observed in some
measurement studies.

Index Terms—Computer network performance, P2P networks

✦

1 INTRODUCTION

Peer-to-peer (P2P) technologies, such as BitTorrent [2],
Gnutella [3], or Kaaza [4], have been widely used for
file transfer over the Internet. In those applications, file
download time is one of the most important performance
metrics. Theoretically, a P2P network can make its users
download faster compared to a traditional client-server
network because a P2P network is inherently scalable.
Each node in a P2P network can act both as a server and
a client simultaneously. As a result, the aggregate system
service capacity increases with the number of download-
ing nodes (demand) in a P2P network [5]. It is widely
believed that only the physical access bandwidth of each
downloading peer can limit the download performance.

However, measurement studies show rather counter-
intuitive results. It is shown in [6], [7] that downloading
a 100MB file from a Gnutella or Kaaza network generally
takes hours often up to a week. Considering the fact
that earlier P2P studies predicted that the download per-
formance is only limited by each peer’s physical access
bandwidth and most people nowadays have broadband

A preliminary version of this work appeared in [1].
This work was supported in part by NSF CAREER Award CNS-0545893

access, the typical download time for a 100MB file
should be less than an hour if the prediction is correct.
The gap between prediction and measured performance
motivated us to investigate more about the file download
process in a P2P system.

Most people believe that the existence of free-riders is
the main reason that degrades the performance of a P2P
network. Accordingly, many incentive algorithms have
been developed so as to encourage peers to contribute
to the network [8], [9], [10], [11], [12], [13]. However,
even if all peers in the network are altruistic, we are
still far away from enjoying the performance predicted
by [5], [14]. Results in [15] suggest that both the stochastic
temporal fluctuation and the heterogeneity in service
capacity of each peer can make the average download
time significantly longer than expected, even when all
peers in the network are willing to share. Although some
other earlier studies have also noticed the impact of
stochastic fluctuation and the heterogeneity in service
capacity of each peer, those studies often have more
limited viewpoints. For example, the authors in [16]
consider only the stochastic fluctuation in service capac-
ity of each peer but they do not consider the network
heterogeneity. On the other hand, the authors in [17],

2

[18] try to develop an optimal peer selection method
that exploits the heterogeneity of the network but do
not consider the temporal fluctuation in service capacity
of each peer.

More important, all the results in [15], [16], [17], [18]
have been established under the assumption that there is
only one downloading peer in the network. This is critical,
since in a real P2P network there will be multiple peers
uploading and downloading at the same time and a
peer’s service capacity will be shared by its competing
peers. In other words, the downloading peers will have
to compete for the limited resource each single source
peer can offer. In this setting, the download performance
is determined not only by the stochastic fluctuation and
heterogeneity in service capacity that each peer offers;
how each peer makes its peer selection choice under such
a competitive environment is also very important.

In this paper, we jointly consider all the factors pre-
sented in [15], [16], [17], [18] and the impact of inter-
action/competition among the downloading peers. In
order to capture this impact of interactions among the
downloading peers, we first introduce the notion of
system utilization – defined as the average fraction of the
aggregated system capacity that is actually consumed by
all the downloading peers, which is heavily dependent
upon the peer selection decision. With the introduction
of system utilization, we show how the average “share”
of system capacity a downloading peer receives is not
always equal to the aggregated capacity of the source
peers divided by the number of downloading peers,
even if each source peer distributes its capacity evenly
among its connected downloading peers. Further, we
extend the results in [15] that the average file download
time is often greater than the file size divided by the
average received capacity of each downloading peer in
our much more complex network setting. We derive
an achievable lower bound on the average download
time based on the average network capacity, the system
utilization, and the level of competition in the network.

It was shown in [15] that switching a single connection
“periodically” among possible source peers “uniformly
at random” can reduce the average download time to
some extent. In this paper, in a network with multiple
downloading peers, we show that the algorithm in [15]
is far from being optimal, but can still be used as the
first step toward developing an optimal peer selection
strategy. We modify the notion of periodic switching
and start by letting each downloading peer generate a
random number of parallel connections periodically instead
of having just one single connection all the time. Each
downloading peer chooses its source peers according to
some probability. We can then formulate the probability
assignment problem as a convex optimization problem
and compute the optimal connection probabilities in a
centralized fashion. Our solution is applicable to much
wider ranges of network scenarios with stochastic fluc-
tuation and heterogeneity under peer competitions, to
which none of the approaches in [15], [16], [17], [18]

applies.
While the aforementioned centralized algorithm to

solve for the optimal peer selection probability is im-
practical in a fully distributed P2P network, the al-
gorithm will serve its purpose as a benchmark with
optimal performance. We then propose a heuristic dis-
tributed algorithm that only depends upon the network
performance metric observed by each downloading peer.
Through realistic network simulations using NS-2 [19],
we compare the performance of different peer selection
strategies. We use the performance of periodic uniform
peer selection derived from [15] as the baseline for
performance comparison. Our NS-2 simulation results
show that both the optimal centralized algorithm and
the proposed distributed algorithm outperforms the pe-
riodic uniform peer selection in all cases. Our centralize
algorithm can even reduce the average download time
by 50% compared to periodic uniform peer selection.
In addition, our results in this paper also provide the-
oretical explanation for the observations in [20], [21]
that using parallel connections does not always give
users better performance than using a single connection.
We present conditions under which parallel connections
is helpful and provide a guideline for determining a
suitable number of parallel connections.

The paper is organized as follows. In Section 2, we
present our system model. In Section 3, we introduce
a performance metric – system utilization, which is
determined by the interaction between downloading
peers, and derive the relationship between the average
download time and the system utilization. In Section 4,
we present a centralized optimal peer selection algo-
rithm that maximizes the system utilization for bench-
mark purpose and a simple distributed algorithms. In
Section 5, We present the simulation results and we
conclude in Section 6.

2 SYSTEM MODEL

In a P2P network, all peers can be categorized into
two groups for a given file of interest: the peers who
are uploading data to other peers (source peers) and
those who are downloading from others (downloading
peers). We denote the set of source peers and the set
of downloading peers by S and D, respectively. Each
peer can either be in one of the two sets, S or D, or in
both. For example, a free-rider is in D only and a peer
who contributes to the network without downloading
anything from other peers is in S only. In most cases, a
peer is counted in both sets D and S. We use indices i
and j to represent the peers in sets D and S throughout
the paper, respectively.

We model the network as a discrete time system with
the length of a unit time-slot set to ∆. Considering
a P2P network as a discrete time system is widely
used in performance analysis of P2P networks in the
literature [5], [22]. Thus the duration of each slot is
[(t− 1)∆, t∆) , t ∈ N. For analytical simplicity, ∆ is

3

normalized to 1 and each time slot can then be simply
indexed by t. There are two major data dissemination
models, push-based and pull-based, often used in the
literature to describe P2P systems. In a push-based sys-
tem, the source peers control when and what to send
to the downloading peers [23], [24]. The downloading
peers can make as many data or connection requests as
they want and then wait passively for the source peers to
service them. On the other hand, the downloading peers
in a pull-based system have the power to decide when
and what to download from the source peers [25]. A
piece of data is transferred immediately from the source
peers to the downloading peers upon requests. Since
each downloading peer is interested in improving its
own downloading performance, it is intuitive to give the
downloading peers more control in its own download
process. Hence we view our network as a pull-based
system. Since the downloading peers can select its source
peers actively, we denote the subset Si(t) ⊆ S be the set
of source peers that peer i connects to at time slot t.

Note that peers i and j are actively connected if
and only if the connection between i and j is carrying
data traffic in our definition. For each connection, it is
well known that the available bandwidth fluctuates over
time [26], [27] due to the workloads of both end points
or the network congestion status. Recent studies have
shown that most peers in a P2P network utilize broad-
band connections. Since either cable or DSL lines offer
asymmetrical bandwidth and the upstream bandwidth
is usually much smaller than downstream bandwidth,
it is reasonable to assume that the bottleneck lies in the
service capacity of the source peers. Let Cj(t) denote
the total service capacity a source j can offer at time slot t.
We assume that all downloading peers connecting to the
same source peer will share the source’s service capacity
equally, i.e., if there are currently M downloading peers
connecting to source j, each downloading peer will get
a data rate of Cj(t)/M during time slot t.

Define an indicator function

Iij(t) =

{

1, j ∈ Si(t)
0, otherwise

showing whether downloading peer i connects to source
j at time t. Then,

∑

i∈D Iij(t) is the number of down-
loading peers that are connected to source j at time t.
The data rate that the downloading peer i receives from
source j at time t becomes

Rij(t) =
Iij(t)

∑

i∈D Iij(t)
Cj(t).

The aggregated capacity, Ri(t), that a downloading peer
i receives from the entire network during time slot t will
then be

Ri(t) ,
∑

j∈Si(t)

Rij(t) =
∑

j∈S

Iij(t)
∑

i∈D Iij(t)
Cj(t), (1)

The second equality in (1) comes from the fact that
Iij(t) = 0 for j 6∈ Si(t), i.e., sources not connected to
downloading peer i will not contribute to Ri(t).

To simplify the analysis, we first impose the following
assumptions.

(A1) Different downloading peers make their own
choices independent of other peers.

(A2) There is no restriction on the number of connec-
tions a source peer can have, i.e., all connection
attempts of a downloading peer always succeed.
However, we limit the average number of parallel
connections a downloading peer can open to L.

(A3) A downloading peer i selects each source peer j
with some probability, pij , i.e. the connection deci-
sion Iij(t) is generated from pij . The connection
probability pij and the fluctuation in Cj(t) of a
source peer j are independent.

We have (A1) because it is unlikely that each down-
loading peer will broadcast its own peer selection strat-
egy to its neighbors unless the set of downloading peers
conspire together.

We have (A2) to reduce capacity over-saturation of
the source peers. Capacity over-saturation occurs when
a source peer has too many active connections simul-
taneously. The capacity offered over each connection
becomes extremely low. The performance bottleneck in
terms of receive capacity (from a downloading peer’s
point of view) is the capacity over-saturated source
peers. It is intuitive to limit the number of parallel con-
nections each source peer can have to eliminate capacity
over-saturation. It can be done in two ways. We can
either put such limitation on the source peers or the
downloading peers. To see how limiting the number
of parallel connection each downloading peer can have
helps to prevent capacity over-saturation from happen-
ing, let’s consider the following simple example. Sup-
pose that there are N = 100 source peers and M = 200
downloading peers. Each downloading peer is limited to
have one connection. Each downloading peer selects its
source peer uniformly at random. The number of parallel
connections each source peer will have is then a binomial
random variable with n = M , p = 1/N = 0.01. Therefore,
each source peer will have M/N = 2 parallel connections
on average with variance of 1.98. In other words, it is
very unlikely for a source peer to have 5 or more parallel
connections. In the above case, we demonstrate clearly
that we can prevent capacity over-saturation by limiting
the number of parallel connections a downloading peer
can have.

We have (A3) because selecting source peers using
probability is in general better than selecting source
peers deterministically based on some system metrics.
We define deterministic peer selection as a download-
ing peer making its connection decisions based on
some measured network statistics. The decision is al-
ways connect/disconnect if the measured statistics is
greater/smaller than some threshold. To demonstrate
the idea of deterministic peer selection, let’s consider
the following example. Suppose that there are 3 source
peers and a downloading peer. The downloading peer

4

can have two parallel connections simultaneously. The
capacity of source 1, 2, and 3 are denoted by C1(t), C2(t),
and C3(t), respectively. The table below shows the ca-
pacity fluctuation of each peer. We can either make
our connection decision base on the average capacity
(assume it is known) of each source peer or on the
received capacity in the previous time slot.

t=1 2 3 4 5 6 . . .
C1(t) 4 1 4 1 4 1 . . .
C2(t) 3 3 3 3 3 3 . . .
C3(t) 1 2 1 2 1 2 . . .

If we use the received capacity in the previous slot
as the decision threshold. One possible strategy is to
disconnect from the source peer that offers the lowest
capacity and then make new connections to the source
peer that is not utilized in the previous slot. The boldface
numbers in the above table represents the capacity a
downloading peer receives from the its two connections
over time under such strategy. In this case, the average
received capacity is less than 4. However, if we connect
to the two source peers that offer higher average capacity
(peers 1 and 2). The average received capacity is 4.

In the above example, we can see that selecting peers
according to their average capacity is better. It is possible
that the approach of making decisions utilizing the most
recent measurement is better in some cases but we lack
the systematic analysis of selecting peers based on the
most recent measurements in the literature. Hence, the
most common approach adopted in the literature is
selecting source peers based on their average capacity.
However, making deterministic peer selection based on
the average capacity of the source peers is not as good
as using a uniform random variable to choose a source
peer as shown in [15]. Hence we adopt the notion of
using probability to choose source peers.

3 DOWNLOAD TIME ANALYSIS

3.1 System Utilization

We first define the system utilization of a P2P net-
work because it is important in determining the average
download time. Let the service capacity of source j ∈ S
be stationary with E{Cj(t)} = cj . We have the following:

Definition 1. The system utilization is

ρ ,
E
{
∑

i∈DRi(t)
}

E

{

∑

j∈SCj(t)
} =

∑

i∈D

∑

j∈S E {Rij(t)}
∑

j∈S cj
(2)

which is the ratio between the aggregated average service
capacity of the entire network and the aggregated average
capacity actually consumed by all the downloading peers.

In any network, from an administrator’s point of view,
the system would perform the best if the “utilization”
of the system is maximized. In other words, when the
system is under-utilized, i.e. some source capacity being

wasted, downloading peers can increase their perfor-
mance by utilizing those unused resources and thus
reduce their download time.

To make our analysis more tractable, let’s assume
that each downloading peer has the same probability of
connecting to a source j, i.e.,

P{Iij(t) = 1} = P{j ∈ Si(t)} = pj , ∀ i ∈ D. (3)

Note that pj (j ∈ S) is not a probability distribution since
E{
∑

j∈S Iij(t)} =
∑

j∈S pj is the average number of
connections of downloading peer i, which can be larger
than 1 for multiple connections (i.e., parallel download-
ing). In other words, Iij(t) is not independent over j as
they are constrained by the number of connections of
a downloading peer (usually up to some constant). We
note however that Iij(t) is i.i.d. over i (i ∈ D) under
(A1) and (3).

We now have the following.

Proposition 1. Under (3), we have

ρ =

∑

j∈S

[

1− (1− pj)
|D|
]

cj
∑

j∈S cj
. (4)

Proof: See Appendix A

To better understand the meaning of the system uti-
lization ρ in (4), let’s consider a simple system with
two source peers and two downloading peers where
the capacities of two source peers are identical. Suppose
that each downloading peer connects to each source
with probability pj = E{Iij} = 0.5, but under the
constraint that Ii1(t) + Ii2(t) = 1, i = 1, 2, i.e., each
downloading peer maintains a connection to exactly one
of the two sources at any time. Then, from (4), we have
ρ = (1 − (1 − 0.5)2) = 0.75. This is indeed true as
there are only two possible cases – (i) two downloading
peers connect to different sources (ρ = 1), or (ii) two
downloading peers connect to the same source (ρ = 0.5),
each of which takes place with the same probability.

From Proposition 1, we see that ρ = 1 only when
pj = P{Iij(t) = 1} = 1 for all j. This suggests that each
downloading peer should connect to all possible source
peers in the network from purely the system utilization
point of view. However, in reality, a downloading peer
may have many potential source peers and it is imprac-
tical to connect to all of them simultaneously, hence we
usually have pj < 1.

3.2 Achievable Minimum Average Download Time

Before we show how we can derive the relation between
the average download time and the system utilization,
we first need a formal definition for the file download
time.

Definition 2. Let C(t) denote the service capacity that a
downloading peer “receives” from the network at time t (t =
1, 2, . . .). The file download time T is the first time that the

5

size of the accumulated received data exceeds the file size F .
In other words, we have the following equation:

T = min

{

T > 0
∣

∣

∣

T
∑

t=1

C(t) ≥ F

}

(5)

The random variable T is the first hitting time of
the cumulative process

∑T
t=1 C(t) to reach level F . If

{C(t), t ∈ N} are independent and identically distributed
(i.i.d.), then by assuming an equality in (5), we obtain
from Wald’s equation [28] that

F = E

{

T
∑

t=1

C(t)

}

= E{C(t)}E{T }. (6)

The expected download time, measured in slots, then
becomes E{T } = F/E{C(t)}, which has been widely
used in the literature.

However, the equality in (6) does not generally hold.
Recall that the service capacity of each source peer can
be different and can fluctuate over time. First, suppose
that a downloading peer is only able to make a single
connection and waits patiently for its session to complete.
It was shown in [15] that the temporal correlation in
the fluctuation of service capacity can make the average
download time over any connection longer. In other
words, if a downloading peer selects its source peer by a
random variable J ∈ [1, . . . , |S|], the average download
time Tj , given that J = j, usually have the following
relationship: E{Tj} ≥ F/E{Cj(t)}, where equality is
achieved only if each of Cj(t), ∀j ∈ S is independent or
weakly correlated over t.

Even if the equality in (6) holds for whichever connec-
tion the downloading peer chooses, the heterogeneity
of the network (different service capacities offered by
different source peers) also makes the average down-
load time longer. Suppose now E{Tj} = F/E{Cj(t)}
for each j. Then, observe from Jensen’s inequality that

EJ

{

F
E{CJ(t)|J}

}

≥ F
EJ{E{CJ (t)|J}}

where the equality is

achieved when E{Cj(t)} = E{Ck(t)}, ∀j, k ∈ S.
Hence, combining the effect of both temporal correla-

tion and network heterogeneity, we arrive to

E{T } = EJ {E {TJ |J}}

≥ EJ

{

F

E {CJ (t)|J}

}

≥
F

EJ {E{CJ(t)|J}}
, (7)

where the first inequality comes from the temporal
correlation in the fluctuation of the capacity of each
source peer and the second inequality comes from the
network heterogeneity. Note that (7) is for the case in
which the network has only one downloading peer and
it only utilizes a single connection. We now investigate
the performance of the case in which the network has
multiple downloading peers in competition, each of
which utilizes parallel connections to multiple source
peers at the same time.

Assume that each downloading peer i can now
have an average of L parallel connections, i.e.

E{
∑

j∈S Iij(t)} = L, and all downloading peers follow
the “connect-and-wait” strategy for each of the connec-
tions. We have the following.

Theorem 1. Let ~c = {cj}, j = 1, . . . , |S| represent the vector
of average capacities of the source peers. Then

E{Ti} ≥
F

A(~c)

ν

ρ
(8)

where

ν =
|D|

|S|
and A(~c) ,

1

|S|

∑

j∈S

cj . (9)

We define the parameter ν as the competition level, which is
the average number of downloading peers each source peer

has to service. Note that ν/A(~c) =
(

∑

j∈S cj

)

/|D| can

be interpreted as the commonly perceived average “share”
of system capacity that each downloading receives from the
network .

Proof: Assume that a file of size F is divided into
|Si| pieces because the downloading peer utilizes parallel
connections to download from the source set Si. Let Fij

denotes the size of the piece that the downloading peer
i requests from source peer j. Since we are considering
the specific downloading peer i, so we suppress the
subscript i in Fij . Clearly, we have

∑

j∈Si
Fj = F, where

0 ≤ Fj ≤ F. Note that pj is independent of j and let Tij

denotes the time required to complete transferring piece
Fj from j, as defined in (5), and we have

E{Ti} = E

{

max
j∈Si

Tij

}

= ESi

{

E

{

max
j∈Si

Tij

∣

∣

∣Si

}

}

≥ ESi

{

max
j∈Si

E{Tij | Si}

}

= ESi

{

max
j∈Si

E{Tij}

}

, (10)

where ESi
is the expectation over the random set Si, and

the last equality follows from the fact that Si is randomly
generated at t = 0, i.e., Tij and Si are independent.

For each piece of a file that peer i downloads from peer
j, we generally have Tij ≥ Fj/E{Rij(t)} [15]. Substitute
E{Rij(t)} with the result in (27) and we have

E{Tij} ≥
Fj

E{Rij(t)}
= |D|

Fj

µjcj
,

where we let µj =
{

1− (1− pj)
|D|
}

. Here, we can view

µj as the probability that source peer j is utilized in any

random time slot since (1− pj)
|D|

represents the proba-
bility that source peer j is connected to no downloading
peers. Further, we can also view µj as the fraction of time
it is contributing to the system. As the result µjcj is then
the average capacity that a source j can contribute to the
system. Hence, equation (10) implies

E{Ti} ≥ |D|ESi

{

max
j∈Si

Fj

µjcj

}

. (11)

For any give set Si, we know that Fj = F ·
µjcj/

∑

j∈Si
µjcj is a solution to the following optimiza-

6

tion problem:

min

{

max
j∈Si

{

Fj

µjcj

}}

, s.t.
∑

j∈Si

Fj = F, Fj ≥ 0.

Thus, assume that Fj is allocated proportional to µjcj
and

∑

j∈Si
Fj = F , we have

max
j∈Si

{

Fj

µjcj

}

=
F

∑

j∈Si
µjcj

. (12)

Further, note that Iij(0) = 1{j∈Si} in the “connect-and-
wait” strategy for each connection and we have

ESi

{

∑

j∈Si

µjcj

}

= E

{

∑

j∈S

µjcjIij(0)
}

=
∑

j∈S

µjcjP{Iij(0) = 1} =
∑

j∈S

µjcjpj ≤ ρA(~c)|S|. (13)

Recall from (4) that ρ
∑

j∈S cj =
∑

j∈S µjcj and pj ≤ 1,
we have the inequality in (13). From (11), (12) and (13),
observe that

E{Ti} ≥ |D|ESi

{

max
j∈Si

Fj

µjcj

}

= |D|ESi

{

F
∑

j∈Si
µjcj

}

≥
F |D|

ESi
{
∑

j∈Si
µjcj}

≥
F |D|

ρA(~c)|S|
=

F

A(~c)

ν

ρ
. (14)

This completes the proof.
The function A(~c) is the average system service capacity

from the perspective of a downloading peer. Note that
the results in [15] that E{T } ≥ F/A(~c) is now just
“a special case” of Theorem 1. The schemes described
in [15] is the case when |D| = L = 1 and pj = 1/|S|,
which corresponds to ρ = 1/|S| from (4). Therefore,
ν/ρ = 1 in (8), and we have the result in [15].

From the derivation of Theorem 1, we can see that
the naive “connect-and-wait” strategy needs to satisfy
several conditions in order to achieve the minimum
possible average download time, i.e. the equality in (8).
First, the size for each piece downloaded from differ-
ent sources must be determined at the beginning of a
session such that Fj is proportional to µjcj , i.e Fj =
F · (µjcj/

∑

j∈Si
µjcj). In reality, it is hard to measure

both cj and µj accurately, and hence it is difficult to
pre-allocate Fj . Even if we were able to allocate each
Fj precisely proportional to µjcj , the possible temporal
correlation of fluctuation in the service capacity of each
source peer will result in a strict inequality in (11) and
so does the heterogeneity in the average capacity with
different source peers for the inequality in (14). The
naive ”connect-and-wait” strategy for each of the parallel
connections is thus unlikely to achieve an equality in (8),
and therefore we need to consider different algorithms
to achieve such equality if at all possible.

4 ACHIEVING THE MINIMUM AVERAGE DOWN-
LOAD TIME

Theorem 1 shows the minimum possible average down-
load time in a stochastic P2P network. In this section,

we first show that there exists a way to achieve the
equality in (8) under all conditions. We then propose a
centralized algorithm that maximizes the system utiliza-
tion ρ, thereby further minimizing the (now achievable)
minimum average download time (see (8)). Finally, we
propose some possible distributed algorithm implemen-
tations that may achieve near optimal performance.

4.1 Dynamic Peer Selection

As our first step towards developing an algorithm that
minimizes the average download time, we show switch-
ing peers periodically, i.e. a downloading peer i changes
its source set Si(t) after each t, can achieve the equality in
(8). As opposed to the “connect-and-wait” strategy that
the set of source peers remains “static” after a session
begins, switching peer periodically causes the set of
source peer to change dynamically during a download
session. We will use the term dynamic peer selection
and periodic switching interchangeably in the following
sections. In our network setting, the source set Si(t) of
each downloading peer i can change both in its elements
and its size over time. Each downloading peer can have
connection preference for one source peer over another.
The capacity of each source peer is shared among the
downloading peers connected to it to model the compe-
tition.

Under our time-varying dynamic source peer selection
scheme, Si(t) (t = 1, 2, . . .) is a sequence of random sets
rather than a constant set randomly generated at t = 0
as the Si(t) in Theorem 1. The service capacity that a
downloading peer i receives from the entire network,
Ri(t), then becomes the sum of random variables over a
random set. Here, we do not enforce a strict limit on the
number of parallel connections in each time slot. Rather,
we assume that the average number is limited to L, i.e.
E{
∑

j∈S Iij(t)} =
∑

j∈S pj = L. To show that we can
have an equality in (8), we need to first show that the
temporal correlation in received service capacity of each
downloading peer is much reduced by our time-varying
dynamic peer selection.

Note that the correlation function of a stationary ran-
dom process X(t) is defined by

φX(τ) =
Cov(X(t), X(t+ τ))

Var(X(t))

and we have the following.

Theorem 2. For any given downloading peer i, Let X(t) and
Y (t) denote the Ri(t) under the “connect-and-wait” and the
dynamic peer selection, respectively. In general, we have

φY (τ) ≤ max
j∈S

{pj}φX(τ). (15)

For the special case of uniform (blind) selection, i.e pj =
L/|S|, we have the following inequality:

φY (τ) ≤
L

|S|
φX(τ). (16)

Proof: See Appendix B.

7

Note that [15] considers only the case of blind selection
with L = 1. Theorem 2 is in a much general form and
shows that the temporal fluctuation in each downloading
peer’s received capacity is either uncorrelated or weakly
correlated over time so that Wald’s equation (6) holds
true as long as maxj{pj} is not too large.

Now, suppose that maxj{pj} is properly selected to
be some suitable value, say, 0.5. The correlation in the
received capacity from the network is at least reduced by
50% compared to “connect-and-wait” strategy from (15).
Hence, the receive capacity Ri(t) for downloading peer
i will be weakly correlated over time. Replacing C(t) in
(6) directly by Ri(t) in (1) gives

E{Ti} =
F

E{Ri(t)}
=

F

E

{

∑

j∈S
Iij(t)

∑

i∈D Iij(t)
Cj(t)

}

=
F |D|

∑

j∈S

{

1− (1− pj)
|D|
}

cj
·
A(~c)

A(~c)
(17)

=

(

F

A(~c)

)(

|D|

|S|

)

ρ−1 =
F

A(~c)

ν

ρ
. (18)

Equation (17) is a direct application of (27) and (18) is
the result of rearranging the terms in (17). Equation (18)
clearly shows that the equality in (8) is achieved by using
dynamic peer selection.

We argue that maxj∈S{pj} is most likely to be strictly
less than 1 in practice. If maxj∈S{pj} = 1, it means
that the downloading peers will connect to some source
peers permanently throughout their entire download
sessions. Note that the service capacity of a source
peer fluctuates over time. A permanent connection will
prevent the downloading peer from switching to some
other potential source peers that can offer better capacity
at the times when the service capacity of the currently
connected source peer plummets.

Further, note that limiting the value of maxj{pj} also
implies limiting the average number of parallel connec-
tions a downloading peer can use, i.e.

∑

j∈S pj = L ≤
|S| · maxj∈S{pj}. Although it is a common belief that
it is always better to open more parallel connections if
a downloading peer wants to complete its download
session quicker, such idea is generally not true as will
be discussed in Section 4.2. If we are to connect to all
possible source peers in the network, we lose the benefit
of switching peers (correlation reduction) and hence the
average download time will be much larger than the
RHS of (8). Further, the measurement results in [20], [21]
also show that all downloading peers utilizing parallel
connections often do not give better performance than all
peers using a single connection. The authors of [20], [21]
suggest that the number of parallel connections should
be limited. Theorem 2 actually agrees with this claim.
In the next section, we will investigate the impact of
utilizing parallel connections in more detail.

4.2 Impact of Parallel Connections

Here, we assume that each downloading peer changes its
connections periodically using selecting peers uniformly

at random, i.e. pj = p = L/|S|, ∀j ∈ S. The average num-
ber of parallel connections used by each downloading
peer L is chosen to be some small number so that that
equation (18) holds, and we plot the relation between
the average download time E{T }, system utilization ρ,
and the level of competition ν for different average
number of parallel connections L according to (18) as
Figure 1(a) and (b). The network has a fixed number
of 40 source peers and the capacity of each source
ranges from 1MB/min to 20MB/min with an increment
of 0.5MB/min. The number of downloading peers varies
from 1 to 200, hence ν ∈ [0.025, 5].

0 1 2 3 4 5
0

1

2

3

4

5

ν

N
or

m
al

iz
ed

 E
{T

}

L=1
L=3
L=5

(a) E{T} vs ν.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

ν

ρ

L=1
L=3
L=5

(b) ρ vs. ν

Fig. 1. The relation between the average download time
E{T }, system utilization ρ, and the level of competition
ν for different average number of parallel connections
L. E{T} is normalized over F/A(~c) and E{X} denotes the
expectation of a random variable X.

By closely examine both Figure 1(a) and 1(b), we argue
that the fundamental effect of parallel downloading is
to increase the system utilization rather than directly
reducing the average download time. Figure 1(a) shows
that the benefit that downloading peers gain form utiliz-
ing parallel connections varies under different network
settings. The common belief that parallel connections
can help to reduce the average download time is true
only when the competition in the network is very low.
For example, when ν ≤ 2, we see that utilizing par-
allel connections indeed gives better performance over
using a single connection in Figure 1(a). The reason is
that parallel connections can much increase the system
utilization. Taking ν = 1 as an example, Figure 1(b)
shows that the system utilization is increased from 60%
to around 95% by increasing L from 1 to 3. On the
other hand, there is no noticeable performance difference
between using a single connection and using parallel
connections when ν ≥ 2. The system performance in
this region actually corresponds to the results in [20],
[21] that large scale deployment of parallel connections
does not always give better performance. Once again,
if we refer to Figure 1(b), we can see that there is not
much room to increase system utilization when ν is large
regardless the value of L.

Even when the system is operating at the under-
utilized region, utilizing more parallel connections may
not guarantee better performance. First, each additional
connection does not reduce the average download time
by the same amount. Consider the case when |S| � |D|L,

8

and we have the following approximation

ρ = 1−

(

1−
L

|S|

)|D|

≈ 1−

(

1− L
|D|

|S|

)

= Lν.

Equation (18) approximately becomes F/(A(~c)L) and
the average download time is inversely proportional to
L. Second, the negative impact of temporal correlation
may compromise the benefit we gain from using parallel
connections. Consider the case when ν ≈ 0.5 in Figure 1,
we may be able to reduce the average download time a
little more by increasing the average number of parallel
connections from 5 to 10 or more. However, increasing
L implies that we will have less correlation reduction,
and it was shown in [15] that different levels of tem-
poral correlation in received capacity could increase the
average download time up to 25% or more. Therefore,
combining the effect of both parallel connections and
temporal correlation, a large L may give the download-
ing peers worse performance compared with a small L.
In summary, the average number of parallel connections
should be limited to some small number.

4.3 Maximizing System Utilization

From the previous section, we demonstrate that chang-
ing the set of source peers dynamically over time can
always achieve equality in (8) under the condition
that both the average number of parallel connections
L and the connection probability to each source peer
maxj∈S{pj} are limited. Given that we always have (8),
what is the minimum average download time? Note that
the variables, F,A(~c), and ν in (18) are determined once
the P2P network is formed. Downloading peers are not
able to change these parameters. On the other hand, the
system utilization ρ in (18) is partially determined by the
peer selection probabilities (See (4)). Hence, in what fol-
lows, we consider how to assign selection probabilities
to source peers in order to achieve optimal performance
(minimal average download time).

Specifically, we assume that it is possible to measure or
obtain the accurate values of E{Cj(T)} = cj for each of
the source peer j in the network. Following the notion in
Section 3.2, we let each peer have an average of L parallel
connections, i.e. E{

∑

j∈S Iij(t)} =
∑

j∈S pj = L < |S|.
From (8), minimizing the average download time is
equivalent to maximizing the system utilization ρ. From
(4), we can formulate our problem as follows:

max

∑

j∈S

[

1− (1− pj)
|D|
]

cj
∑

j∈S cj
(19)

s.t
∑

j∈S

pj = L, 0 ≤ pj ≤ 1 (20)

Since
(

1− (1− pj)
|D|
)

is strictly concave in pj , the
problem in (19)–(20) is a convex optimization problem.
We can apply any standard convex programming tech-
nique [29] to solve the problem. First, without the loss
of generality, assume that the vector ~c = [cj , j ∈ S] is

sorted in a decreasing order, i.e, c1 ≥ c2 ≥ c3 · · · . Then,
the optimal solution {p∗j} is

p∗j =











1− K∗−L
∑

K∗

j=1

(

1
cj

) 1
(|D|−1)

(

1
cj

)
1

(|D|−1)

, j ≤ K∗

0, j > K∗

(21)

Here, K∗ is the maximum K such that µ(K)
|D| < cK

C(K) ,

where C(n) =
∑n

j=1 cj and µ(n) is defined as

µ(n) =
|D|

C(n)







n− L
∑n

j=1

(

1
cj

)1/(|D|−1)







(|D|−1)

. (22)

For any given D,S, L, (21)–(22) gives the optimal peer
selection probabilities for any choice of {cj}, j ∈ S. In a
typical P2P network with tens to hundreds of uploading
and downloading peers, we argue by an example in the
next section that maxj∈S{p

∗
j} is most likely to be some

small number so that we in general have a significant
amount of correlation reduction from Theorem 2, and
we always have (18). Further, {p∗j} maximizes the system
utilization ρ in (18), and the minimum possible average
download time is achieved.

By careful investigation of the expression in (21)–(22),
we can identify the optimal peer selection probabilities in
some very special network settings. First, if the network
is homogeneous, i.e. all source peers offer the same
average service capacity (cj = c for all j ∈ S), then

µ(n)/|D| = 1
n

(

n−L
n

)(|D|−1)
< 1/n for any n. In this case,

K∗ = |S| and (21) becomes

pj = 1−

(

|S| − L

|S|
(

1
c

)1/(|D|−1)

)

(

1

c

)1/(|D|−1)

=
L

|S|
.

Hence, uniform random selection among all possible
source peers is the best strategy in a homogeneous
environment. Second, recall that |D| is the number of
competing downloading peers in the network. If |D| is
large, i.e. |D| → ∞, then we have

lim
|D|→∞

(

1

cj

)1/(|D|−1)

= 1

in (21), regardless of the value of cj > 0. Thus, again, we
have pj ≈ L/|S|, i.e., uniform random selection. Note
that this uniform random peer selection achieves near-
optimal performance only under very special network con-
figurations that we just described above, namely, either
homogeneous network or a very large number of down-
loading peers. In all other scenarios such as intermedi-
ate number of downloading peers under heterogeneous
environment, assigning connection probabilities for each
source peer according to (21)–(22) clearly give far better
performance in general. In what follows, we illustrate
how the optimal connection probabilities change as the
network setting varies.

9

4.4 Optimal Peer Selection Example

Suppose that we have a network with 40 source peers.
The source peers are paired into 20 groups. The two
source peers in each group have the same average
service capacity, while the average service capacity of
the group ranges from 1MB/min to 20MB/min in in-
crements of 1MB/min. We set the average number of
parallel connections L = 3 and vary the number of
downloading peers |D| to calculate the optimal vector
of connection probabilities using (21)–(22).

5101520
0

0.05

0.1

0.15

0.2

0.25

Service Capacity (MB)

C
on

ne
ct

io
n

P
ro

ba
bi

lit
y

|D|=5
|D|=10
|D|=20
|D|=40
|D|=60
Unform

Fig. 2. The optimal connection probabilities to source
peers (from (21)) offering different service capacities.

Figure 2 shows the computed optimal connection
probabilities for 20 different groups, indexed with their
average service capacities from 20MB/min to 1MB/min.
All the lines in the figure display a common trend:
assigning higher probabilities to source peers offering
higher average capacities. Note that the maxj{pj} is
still very small even in a very heterogeneous network
(we have service capacity of source peers ranging from
1MB/min to 20MB/min). Clearly, Figure 2 shows that
the probability of connecting to peers offering the av-
erage capacity of 20MB/min should increase as |D|
decreases. When there is no competition in the network,
it is intuitive that a downloading peer should always
choose the fastest source peers as [17], [18] suggested.
However, how should the peer selection probability
change if there exists competition in the network? Fig-
ure 2 also shows that the optimal connection vector tends
to be “flatter” as the number of concurrent downloading
peers |D| gets larger, and it approaches to that of uni-
form random selection when |D| goes to infinity, as we
have discussed in Section 4.3. Although both the single
downloading peer case and infinite downloading peer
case are well studied, note that our algorithm finds the
optimal vector of connection probabilities between these
two extremes under stochastic and heterogeneous en-
vironments. Further performance comparison between
the optimal peer selection and other selection algorithms
will be presented in Section 5.

4.5 Distributed Adaptive Peer Selection Strategy

Note that the centralized peer selection algorithm dis-
cussed in the previous section requires the information
about the “average” service capacity of each source peer
and the number of downloading peers in the network.
Such requirement suggests that we need a centralized
authority to calculate the optimal connection probability
for each downloading peers. Further, broadcasting the
optimal solution to all downloading peers introduces
much communication overhead. In a system like a P2P
network, a distributed algorithm for calculating the con-
nection probability would be more desirable because
a distributed algorithm reduces the cost of building a
centralized infrastructure and the cost of communication
overhead. In this section, we show that we can have a
distribution algorithm that achieves near optimal perfor-
mance with only very little communication overhead.
In other words, each downloading peer can calculate
its own vector of connection probabilities using online
measurements.

Our distributed algorithm is a modification of the cen-
tralized algorithm in Section 4.3. The global parameters
in (21)–(22) are to be replaced by each downloading
peer’s own estimates. In other words, each downloading
peer estimates the values of cj and |D| from its own
measurements during its download session. Both cj and
|D| can be inferred by the information about the number
of downloading peers that are actively connected to a
source peer.

Let χj(t) =
∑

i∈D Iij(t) denote the number of down-
loading peer connected to source peer j at time t.
Suppose that each downloading peer is now able to
obtain the information about χj(t) when it connects to
source peer j. We emphasize that the source peers do not
broadcast the process χj(t) to all downloading peers in
every time slot t. Instead, the downloading peers ask for
the value of χj(t) only when they decide to connect to
source peer j at t. Such actions introduce very little (if
any) communication overhead. Let χij(t) = χj(t) · Iij(t)
be the total number of downloading peers sharing the
capacity of source peer j, seen by the downloading peer
i. A downloading peer i can then estimate the average
capacity of source peer j by

ĉij =

∑T
t=1 Rij(t)χij(t)
∑T

t=1 Iij(t)

=

∑T
t=1

(

Iij(t)
∑

i∈D Iij(t)
Cj(t)

)

((
∑

i∈D Iij(t)
)

Iij(t)
)

∑T
t=1 Iij(t)

=

∑T
t=1 Iij(t)Cj(t)
∑T

t=1 Iij(t)

Clearly, ĉij is an unbiased estimator for cj = E{Cj(t)}.
We argue heuristically that χij(t) can be used for

estimating the number of downloading peers in the
network as well. Recall that each downloading peer
has an average of L parallel connections, hence the

10

average total number of connections is |D|L. Note that

χ̂ij =
∑T

t=1 χij(t)
∑

T
t=1 Iij(t)

is the estimate for E{
∑

i∈D Iij(t)},

which is the average number of downloading peers
connected to source peer j, from the downloading peer
i’s point of view. Summing up the average number of
downloading peers connected to source peer j gives the
total average number of connections in the network, i.e.,
|D|L. Thus, each downloading peer i can use

∑

j∈S χ̂ij

to estimate the number of all downloading peers ˆ|D| in
the network. Then, the downloading peers can use their
estimated system parameters to calculate the connection
probability to each source peer by replacing cj and |D|

in (21) and (22) with ĉij and ˆ|D| .
Note that all the calculation so far is based on each

peer’s own observation from the network. Since no
observation can be made without connection, we assume
that pij ≥ ε > 0, where ε is a very small number to
ensure that each downloading peer is able to observe
and estimate the global information rather than sim-
ply ignores some source peers completely. Algorithm 1
summarizes our distributed algorithm for connection
probability assignment.

Algorithm 1 Distributed Connection Prob. Assignment

1: Sij :=
∑T

t=1 Iij(t) with initial value 0
2: In each time slot T :
3: Rij(T) :=received capacity from a source j.
4: χij(T) :=observed number of peers connected to j.
5: while !(file complete) do
6: if ∃ Sij = 0 then
7: Connect to L source peer from {j|Sij = 0} uni-

formly. Let G denotes the selected set.
8: else
9: ˆ|D|i =

∑

j
χ̂ij

L

10: Calculate pij using ˆ|D|i, ĉij according to (21) and
(22) with L in (20) replaced by L′ = L− |S|ε

11: pij = pij + ε
12: Connect to source peer j with probability pij .

Let G denotes the set of connected source peers.
13: end if
14: Sij := Sij + 1 ∀j ∈ G.

15: ĉij :=
(Sij−1)ĉij+Rij(T)·χij(T)

Sij
∀j ∈ G.

16: χ̂ij :=
(Sij−1)χ̂ij+χij(T)

Sij
∀j ∈ G.

17: end while

In Algorithm 1, Sij holds the number of times that
a downloading peer i connects to a source j. Only two
variables Rij(T) and χij(T) are needed from each source
j in time slot T to carry out the connection probability
assignment. Here, we briefly explain the key steps of
Algorithm 1 in each time slot. From line 6 and 7, we first
connect to L source peers that have not been connected
(Sij = 0) at a time to get a global estimates on the
parameters for the network as quick as possible. When
Sij > 0, ∀j, a downloading peer i can then calculate the
connection probability for each source peer j from lines 9

to 12 using (21) and (22) with the estimated parameters.
Lines 14 – 16 are the steps to update each downloading
peer i’s estimated parameters, namely ĉij and χ̂ij . We
have to emphasize again that the estimates of both ĉij
and χ̂ij cost almost no communication overhead because
they are updated only when i decides to connect to
j. In summary, our Algorithm 1 is simple and fully
distributed. In Section 5, we show the performance of
Algorithm 1 via NS-2 simulations.

4.6 Summary

Before we present our simulation result, we summarize
the analytical results we have obtained so far. The service
capacity of each source peer j ∈ S is denoted by a
random process Cj(t). Each of the downloading peer
connects to source peer j with probability pj . Table
4.6 shows the summary of our result on the average
download time of the network.

File size F

Avg. Capacity A(~c) = 1
|S|

∑

j cj , cj = E{Cj(t)}

Utilization ρ =

∑

j∈S

[

1−(1−pj)
|D|

]

cj
∑

j∈S cj

Competition Factor ν =
|D|
|S|

Min. Avg. Time F
A(~c)

ν
ρ

TABLE 1
System parameters and performance metrics

To achieve the minimum average download time
F

A(~c)
ν
ρ , each peer has to make connection decisions in

each time slot. At the beginning of each time slot,
the downloading peer decides whether to connect to
a source peer j by flipping a coin with probability
of getting a head (making a connection) pj . We have
calculated the optimal connection probability p∗j for each
source peer j. Suppose the each source peer is indexed
by its average service capacity cj in descending order,
then

p∗j =











1− K∗−L
∑

K∗

j=1

(

1
cj

) 1
(|D|−1)

(

1
cj

)
1

(|D|−1)

, j ≤ K∗

0, j > K∗

The value K∗ is the cut-off index and it is defined as

K∗ = max

{

K
∣

∣

∣

µ(K)

|D|
<

cK
C(K)

}

,

where

C(n) =

n
∑

j=1

cj , µ(n) =
|D|

C(n)







n− L
∑n

j=1

(

1
cj

)1/(|D|−1)







(|D|−1)

5 SIMULATIONS

In this section, we use NS-2 simulations to compare
the performance of peer selection strategies in a P2P
network. A simple illustration of our network setting is

11

depicted in Figure 3. The internet cloud consists of many
inter-connected nodes including backbone routers and
edge routers. We assume that the Internet backbone has
high bandwidth and does not introduce any congestion,
implying that the main bottleneck is the access link of
each peer. Such assumption enables us to run simula-
tions using a star-shaped network topology in which the
internet backbone is replaced by a single network node
that has infinite capacity and zero delay. Although our
goal is to improve the download performance, whether
our algorithm is ISP-friendly is an interesting future
topic. Some new work has started to consider the impact
of peer selection on cross-ISP traffic [30], [31]. The access
links of peers have different bandwidth limits and are
connected to the “super” node representing the internet
backbone. To reflect a general network setting for the
access bandwidth, we configure 10% of the total 50
peers to have 10Mbps upstream (from peer node to the
center node) capacity limit, 20% to have 5Mbps, 40%
to have 1Mbps and the rest to have 100Kbps. These
groups represent situations in typical LAN, high speed
cable/DSL, low speed cable/DSL, and modem connec-
tions, respectively. We set 10Mbps as the downstream
capacity limit so that the transmission bottleneck will
most likely be at the source peers. The total number
of network nodes is 51 (one center node and 50 peers
participating in content transfer).

5101520
0

0.05

0.1

0.15

0.2

0.25

Service Capacity (MB)

C
on

ne
ct

io
n

P
ro

ba
bi

lit
y

|D|=5
|D|=10
|D|=20
|D|=40
|D|=60
Unform

Fig. 3. The illustration of the network used in our NS-2
simulation. We assume that the Internet backbone does
not introduce any congestion. The upstream access link
of each peer is bandwidth limited.

Note that each node’s upstream bandwidth is not only
shared among other peers connected to it but also by
some other network applications as in real world case.
We model those non-P2P traffic by using the on/off
Pareto traffic generators in NS-2. We set both the average
“on” and “off” periods to be 10 minutes. When a traffic
source is in the “on” state, it generates a constant bit-rate
traffic at 90% of the full upstream capacity. Hence, the
long term upstream average capacity for P2P traffic will

be 55% of the access link bandwidth limit. The P2P file
transfer traffic is carried over the TCP connection in NS-
2. Note that in our NS-2 simulations, the actual capacity
fluctuation in each of connections of a peer is governed
by not only those asymmetric physical bandwidth limits,
but also the actual TCP congestion control algorithm, the
number of concurrent connections to the source peer,
and the random Pareto on/off background traffic, i.e.,
it is stochastic in time and heterogeneous over space.
As we have stated in the beginning of the paper, we
are only interested in the peer selection algorithm itself
rather than the problem of free-riders. All peers can
serve as source peers, hence |S| = 50. The number of
downloading peers ranges from 10 to 50. Here, we set
the number of average parallel connections L = 2.

First, we show the performance difference between
the simple “connect-and-wait” strategy and dynamic
peer selection with no connection preference (uniform
selection). Under the “connect-and-wait” strategy, the
file is divided into 2 pieces of equal size. Under dy-
namic peer selections, we set the basic data transfer
unit (chunk) to be 16KB and each time slot is set to be
1 minute. We choose these two strategies for separate
comparison purposes because “periodic uniform peer se-
lection” alone already makes drastic improvement over
the “connect-and-wait” strategy. We then compare the
performance between periodic uniform peer selection
and other algorithms to demonstrate the effectiveness
of the optimal strategies more clearly. We first set the
file size F=50MB for the ease of presenting our results.
We have also run simulations using larger file sizes and
observed the same result. (“connect-and-wait” strategy
always performs worst)

Fig. 4. The average download time for periodic uniform
peer selection and “connect-and-wait” strategy. There are
50 nodes and no free-riders, hence |S| = 50. The number
of downloading peers varies from 10 to 50.

Figure 4 shows the results for our first scenario.
The line marked with “uniform” is the result of the
periodic uniform selection, and the line marked with
“permanent” is the result for the “connect-and-wait”
strategy. In all cases, we can see at least 50% reduction
in average download time by using periodic uniform

12

peer selection. In some extreme cases, take |D| = 50 as
an example, the average download time for “connect-
and-wait” strategy is almost 4 times longer than the
periodic uniform selection. The result is exactly what
we anticipated from our discussion in Section 3. Next,
we show that under the dynamic peer selection schemes
(non-uniform), the average download time can be fur-
ther shortened by selecting peers using the optimal
connection probabilities. The duration of each time slot
is still 1 minute. We compare the performance between
the uniform strategy (periodic uniform peer selection),
the centralized optimal selection strategy in (21)–(22) and
the distributed strategy (Algorithm 1) in Section 4.5. We
change the file size to 200MB, which is typical for some
video clips that contribute to long sessions so as to reflect
a more general and realistic case.

10 20 30 40 50

500

1000

1500

|D|

A
vg

. D
ow

nl
oa

d
T

im
e

(S
ec

)

Uniform
Permanent

Fig. 5. The average download time for three dynamic
peer selection strategies: periodic uniform peer selection
(Uniform), the centralized optimal strategy in (21)–(22)
(Optimal), and the distributed strategy in Algorithm 1
(Distributed).

Figure 5 shows the average download time along with
its confidence interval for three different dynamic peer
selection strategies. It is clear that both the centralize
optimal strategy and the distributed strategy offer a per-
formance boost over the simple uniform peer selection.
(Note that this simple uniform selection is still much
better than the usual connect-and-wait strategy as shown
in Figure 4.) To further demonstrate the effectiveness
of our strategies over uniform peer selection, we plot
the reduction in the average download time of both
centralized and distributed strategies over uniform peer
selection in Figure 6.

It is clear that the optimal strategy can further reduce
about 50% of the average download time compared with
the periodic uniform selection strategy over most range
of values of |D|. We see that our simple distributed
algorithm (developed from the centralized optimal strat-
egy) can still reduce the average download time by 10%
to 15%. Clearly, there is a performance gap between
the distributed algorithm and the centralized optimal
strategy. This is inevitable due to the estimation errors

10 20 30 40 50

0.5

0.6

0.7

0.8

0.9

1

of Downloading Peers (|D|)

%
 O

ve
r

U
ni

fo
rm

 S
el

ec
tio

n

Optimal
Distributed

Fig. 6. The reduction in the average download time for
different peer selection strategies over the uniform peer
selection. The value in Y-axis is the fraction of the average
download time of non-uniform selection algorithms over
the average download time of uniform peer selection.

in our simple distributed algorithm. First, each peer esti-
mates the level of competition of the entire network only
through partial information and there will always be
difference between ‘local view’ and global information.
Second, the estimate ĉij may not be close to the real value
of cj . As we can see from Figure 5, the average download
time for the distributed algorithm ranges from 1500 to
2000 seconds, which means that a downloading peer can
make 25 to 35 connection switches during its session.
Each peer will thus make around 60 observations of the
system (L = 2). However, such number of observations
is still not enough to obtain an accurate estimate for
cj , especially under highly stochastic and heterogeneous
environment as in our setting. We point out these two
factors to illustrate the possibility that the performance
of the distributed algorithm can be further improved by
increasing the accuracy of estimation of system variables,
which can be made totally decoupled from our consid-
eration of stochastic heterogeneous P2P networks under
competition.

6 CONCLUSION AND FUTURE WORK

In this paper, we jointly consider many factors that have
impact on the average download time, which are often
considered separately in the literature, and derive an op-
timal peer selection strategy that greatly improves con-
tent delivery performance in a stochastic heterogeneous
P2P network. Specifically, we address some of the often
neglected issues, namely, the competition for resource
among multiple concurrent downloading peers, jointly
with the spatial heterogeneity and temporal correlation
in service capacities of the source peers. We derive the
relationship between the average download time and
system performance metrics such as system utilization
and level of competition, and develop our optimal peer
selection strategies based on this relationship.

13

We are also able to explain the fundamental impact of
using parallel connections in stochastic P2P networks. In
our work, we have discovered that downloading peers
may not improve its performance (shortens average
download time) by opening more parallel connections,
sometimes it is even harmful to open many concur-
rent connections in a stochastic network. The system
is saturated (achieves near 100% utilization) even with
each downloading peer opening a very small number
of parallel connections, say 3 or 5 (refer to Figure 1(b)).
Our algorithm suggests that the downloading peers
should not always connect the the source peer with the
highest average service capacity. In fact, downloading
peers should select its source peers probabilistically to
distribute the system load to achieve the optimal system
performance. We also show that a simple heuristic dis-
tributed algorithm derived from our centralized one can
greatly improve performance over the uniform random
peer selection, with almost no computational overhead.

In addition to file transfer applications, our algorithm
may find application in streaming services. In most
streaming services, a data buffer is required to allow
smooth playback of the stream. How fast the data buffer
is filled is very important. For example, the startup delay
is exactly the time required to fill the buffer for the first
time.

Certainly, we have to make some necessary assump-
tions in our model to make the analysis tractable. We
did not consider many factors that also has significant
impact on the system performance such as the effec-
tiveness incentive algorithms, the efficiency of query
mechanism, or the impact of network churn, just to name
a few. For example, flood based query mechanism tend
to give faster response to the querier as where the file
is located. However, these mechanism generates a lot of
query messages over the network. On the other hand,
random walk based query messages reduces the over
all query traffic but tends to have slower response. In
file transfer or streaming applications, a session consists
of both the time required for query and the actual file
transfer. Of course, when considering the performance
of a P2P network, both have to be considered. The
reason for use to consider the actual file transfer time
is because the query time is often much shorter than
the actual file transfer [32]. Our result serves an lower
bound for the file download time. An interesting and
challenging future research topic would be to investigate
how close we can get to this lower bound when we also
consider other factors such as the effectiveness incentive
algorithms, the efficiency of query mechanism, or the
impact of network churn.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: From definition in (2), we have

E{Rij(t)} = E

{

Iij(t)
∑

i∈D Iij(t)
Cj(t)

}

= E

{

Iij(t)
∑

i∈D Iij(t)

}

E {Cj(t)} (23)

= E

{

1

1 +
∑

k 6=i,k∈D Ikj(t)

∣

∣

∣Iij(t) = 1

}

pjcj (24)

= E

{

1

1 +
∑

k 6=i,k∈D Ikj(t)

}

pjcj . (25)

Note that (23) comes from (A3), i.e., {Iij(t), ∀i} and Cj(t)
are independent. We have (24) by using Bayes’ rule and
E{Cj(t)} = cj . Equation (25) comes from the previous
observation that, for each j, {Iij , i 6= k} and Ikj are
independent.

Let X =
∑

k 6=i,k∈D Ikj(t). Then, since Iij(t) are i.i.d.
over i, it follows that X is a binomial random variable
with parameter (|D|−1, pj).

1 Then, for X ∼ b(N, p), note
that

E

{

1

1 +X

}

=

N
∑

i=0

(

1

1 + i

)(

N

i

)

pi(1 − p)N−i

=
1

(1 +N)p

N
∑

i=0

(

N + 1

i+ 1

)

pi+1(1− p)(N+1)−(i+1)

=
1

(1 +N)p

(

1− (1− p)N+1
)

. (26)

From (25) and (26), we get

E{Rij(t)} =
1

|D|

[

1− (1− pj)
|D|
]

cj . (27)

By substituting (27) into (2), we obtain (4).

APPENDIX B
PROOF OF THEOREM 2

Proof: Let’s define a new processes C′
j(t) = Cj(t) −

E{Cj(t)}, then we have the following from the definition
(1) that

{

X(t) =
∑

j∈S
Iij(0)

∑

i∈D Iij(0)
(C′

j(t) + cj)

Y (t) =
∑

j∈S
Iij(t)

∑

i∈D Iij(t)
(C′

j(t) + cj)

Note that the processes X(t) and Y (t) are stationary
and they both have the same mean and variance. We
can compare φX(τ) and φY (τ) by simply comparing
Cov(X(t), X(t′)) and Cov(Y (t), Y (t′)), where t′ = t + τ .
Let’s define ΦX(τ) = Cov(X(t), X(t′)) and ΦY (τ) =
Cov(Y (t), Y (t′)) for notational simplicity.

We use the following property of the covariance of
random variables:

Cov





∑

j

Xj ,
∑

j

Yj



 =
∑

j

∑

k

Cov(Xj , Yk). (28)

1. For a binomial random variable X with parameter (N, p), (we
write X ∼ b(N, p)), we have

P(X = i) =
(n

i

)

pi(1 − p)N−i, i = 0, 1, . . . , N.

14

First, for any given downloading peer i, let

Aj(t) :=
Iij(t)

∑

i∈D Iij(t)
,

and we have the following by applying (28)

Cov(
∑

j∈S

Aj(t)Cj ,
∑

k∈S

Ak(t
′)Ck(t

′))

=
∑

j∈S

∑

k∈S

Cov(Aj(t)Cj(t), Ak(t
′)Ck(t

′)). (29)

Note that each single term in (29) is

Cov(Aj(t)Cj(t), Ak(t
′)Ck(t

′))

= Cov(Aj(t)(C
′
j(t) + cj), Ak(t

′)(C′
k(t

′) + ck))

= E{Aj(t)(C
′
j(t) + cj)Ak(t

′)(C′
k(t

′) + ck)}

− E{Aj(t)(C
′
j(t) + cj)}E{Ak(t

′)(C′
k(t

′) + ck)}

= E{Aj(t)C
′
j(t)Ak(t

′)C′
k(t

′)}

− E{Aj(t)C
′
j(t)}E{Ak(t

′)C′
k(t

′)}

+ cjE{C
′
k(t

′)} (E{Aj(t)Ak(t
′)} − E{Aj(t)}E{Ak(t

′)})

+ ckE{C
′
j(t)} (E{Aj(t)Ak(t

′)} − E{Aj(t)}E{Ak(t
′)})

+ cjck(E{Aj(t)Ak(t
′)− E{Aj(t)}E{Ak(t

′)}})

= Cov(Aj(t)C
′
j(t), Ak(t

′)C′
k(t

′))

+ cjckCov(Aj(t), Ak(t
′)) (30)

For the process Y (t), the first term in (30) can be further
simplified into

Cov(Aj(t)C
′
j(t), Ak(t

′)C′
k(t

′))

= E{Aj(t)C
′
j(t)Ak(t

′)C′
k(t

′)}

− E{Aj(t)C
′
j(t)}E{Ak(t

′)C′
k(t

′)}

= E{Aj(t)}E{Ak(t
′)}E{C′

j(t)C
′
k(t

′)},

from the independence of Aj(t), Ak(t
′) and Cj(t). Let

E{Aj(t)} = pjE{1/(1 + Zj(t))} = pjE{Wj(t)} where
Zj(t) =

∑

i∈D Iij(t). From (A1), the process Zj(t) is
i.i.d. and so is Wj(t), we drop the time index t for
notational simplicity, i.e. E{Wj} = E{Wj(t)}. Recall that
Aj(t) and Aj(t

′) are independent for t′ 6= t, the second
term in (30) for Y (t) is zero. Further, Cj(t) and Ck(t

′)
are independent for all j 6= k, and (29) for the random
process Y (t) now becomes

ΦY (τ) = Cov(Y (t), Y (t′))

=
∑

j∈S

E{Aj(t)}E{Aj(t
′)}Cov(C′

j(t), C
′
j(t

′))

=
∑

j∈S

p2j(E{Wj})
2
(

E{C′
j(t)C

′
j(t

′)}
)

(31)

Now, consider the process X(t), after manipulating the

terms, (29) becomes

ΦX(τ) = Cov(X(t), X(t′))

=
∑

j∈S

Cov(Aj(0)C
′
j(t), Aj(0)C

′
j(t

′))

+
∑

j∈S

c2jCov(Aj(0), Aj(0))

=
∑

j∈S

pjE{W
2
j }E{C

′
j(t)C

′
j(t

′)}+
∑

j∈S

c2jVar(Aj(0)), (32)

where Var(X) denotes the variance of a random variable
X .

We can show from (32) and (31) that

φX(τ)

φY (τ)
=

ΦX(τ)

ΦY (τ)

=

∑

j∈S pjE{W
2
j }E{C

′
j(t)C

′
j(t

′)}
∑

j∈S p2j(E{Wj})2E{C′
j(t)C

′
j(t

′)}

+

∑

j∈S c2jVar(Aj(0))
∑

j∈S p2j(E{Wj})2E{C′
j(t)C

′
j(t

′)}
(33)

≥
1

maxj{pj}
(34)

The inequality in (34) comes from
∑

j∈S p2j ≤

maxj{pj}
∑

j∈S pj and
(

E{W 2
j }
)2

≤ E{W 2
j } in the first

term of (33), and the second term in (33) is always non-
negative. Thus we complete the proof.

REFERENCES

[1] Y. M. Chiu and D. Y. Eun, “On the performance of download
strategies in a p2p like network,” in IEEE Globecom, Washington,
DC, Nov 2007.

[2] B. Cohen, BitTorrent Protocol Specification. [Online]. Available:
http://www.bittorrent.org/protocol.html

[3] The Annotated Gnutella Protocol Specification v0.4, The
Gnutella Developer Forum. [Online]. Available: http://rfc-
gnutella.sourceforge.net/developer/stable/index.html

[4] E. Sharman Networks, Kazaa, Kazaa. [Online]. Available:
http://www.kazaa.com/us/help/new p2p.htm

[5] X. Yang and G. de Veciana, “Service capacity of peer to peer
networks,” in Proceedings of IEEE Infocom, Mar. 2004.

[6] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “A measurement
study of peer-to-peer file sharing systems,” in Proceegins of ACM
Multimedia Computing and Networking (MMCN), 2002.

[7] K. P. Gummadi, R. J. Dunn, and S. Saroiu, “Measurement, mod-
eling, and analysis of a peer-to-peer file sharing workload,” in
Proceedings of ACM Symposium on Operating Systems Principles
(SOSP), 2003.

[8] B. Cohen, “Incentives build robustness in bittorrent,” in
Proceedings of the First Workshop on the Economics of Peer-
to-Peer Systems, Berkeley, CA, Jun. 2003. [Online]. Available:
http://citeseer.ist.psu.edu/cohen03incentives.html

[9] S. Jun and M. Ahamad, “Incentives in bittorrent induce free
riding,” in ACM SIGCOMM workshop on Economics of peer-to-peer
systems, Philadelphia, Pennsylvania, Aug. 2005.

[10] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “Do incentives build robustness in bittorrent?”
in USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI), Cambridge,MA, Apr. 2007.

[11] K. Eger and U. Killat, “Fair resource allocation in peer-to-peer
networks,” Computer Communications, vol. 30, no. 16, pp. 3046–
3054, Jun. 2007.

[12] T. Locher, S. Schmid, and R. Wattenhofer, “Rescuing tit-for-tat
with source coding,” in IEEE International Conference on Peer-to-
Peer Computing (P2P’07). Washington, DC, USA: IEEE Computer
Society, 2007, pp. 3–10.

15

[13] K. Eger and U. Killat, “Bandwidth trading in bittorrent-like
p2p networks for content distribution,” Computer Communications,
vol. 31, no. 2, pp. 201–211, 2008.

[14] D. Qiu and R. Srikant, “Modelling and performance analysis
of bittorrent-like peer-to-peer networks,” in Proceedings of ACM
Sigcomm, Aug. 2004.

[15] Y. M. Chiu and D. Y. Eun, “Minimizing file download time
in stochastic peer-to-peer networks,” IEEE/ACM Transactions on
Networking, vol. 16, no. 2, pp. 253–266, Apr. 2008.

[16] D. S. Bernstein, Z. Feng, and B. N. Levine, “Adaptive peer
selection,” in Proceedings of International Workshop on Peer-to-Peer
Systems (IPTPS), Berkeley, CA, Feb. 2003.

[17] M. Adler, R. Kumar, K. Ross, D. Rubenstein, D. Turner, and
D. D. Yao, “Optimal peer selection in a free-market peer-resource
economy,” in Workshop on Economics of Peer-to-Peer Systems, Cam-
bridge, MA, Jun. 2004.

[18] ——, “Optimal peer selection for p2p downloading and stream-
ing,” in Proceedings of IEEE Infocom, Miami, FL, Mar. 2005.

[19] “The network simulator ns-2,” http://www.isi.edu/nsnam/ns/.
[20] C. Gkantsidis, M. Ammar, and E. Zegura, “On the effect of large-

scale deployment of parallel downloading,” in Proceedings of IEEE
Workshop on Internet Applications (WIAPP), Jun. 2003.

[21] S. Koo, C. Rosenberg, and D. Xu, “Analysis of parallel download-
ing for large file distribution,” in Proceedings of IEEE International
Workshop on Future Trends in Distributed Computing Systems (FT-
DCS), May 2003.

[22] M. Lin, B. Fan, J. C. S. Lui, and D. M. Chiu, “Stochastic analysis of
file-swarming systems,” Performance Evaluation, vol. 64, no. 9-12,
pp. 856–875, 2007.

[23] T. Bonald, L. Massoulié, F. Mathieu, D. Perino, and A. Twigg,
“Epidemic live streaming: optimal performance trade-offs,” in
Proceedings of ACM Sigmetrics. New York, NY, USA: ACM, 2008,
pp. 325–336.

[24] Y. Qiao, F. E. Bustamante, P. A. Dinda, S. Birrer, and D. Lu, “Im-
proving peer-to-peer performance through server-side schedul-
ing,” ACM Trans. Comput. Syst., vol. 26, no. 4, pp. 1–30, 2008.

[25] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the
power of pull-based streaming protocol: Can we do better?”
Selected Areas in Communications, IEEE Journal on, vol. 25, no. 9,
pp. 1678–1694, December 2007.

[26] N. Hu and P. Steenkiste, “Evaluation and characterization of
available bandwidth probing techniques,” IEEE Journal on Selected
Areas in Communications, vol. 21, no. 6, pp. 879–894, Aug. 2003.

[27] M. Jain and C. Dovrolis, “End-to-end estimation of the available
bandwidth variation range,” in Proceedings of ACM Sigmetrics, Jun.
2005.

[28] S. M. Ross, Stochastic Processes, 2nd ed. New York: John Wiley
& Son, 1996.

[29] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA:
Athena Scientific, 1995.

[30] D. R. Choffnes and F. E. Bustamante, “Taming the torrent: a
practical approach to reducing cross-isp traffic in peer-to-peer
systems,” in ACM SIGCOMM, vol. 38, no. 4. New York, NY,
USA: ACM, 2008, pp. 363–374.

[31] H. Xie, Y. R. Yang, A. Krishnamurthy, and A. S. Y. Liu, “P4p:
Provider portal for applications,” in ACM SIGCOMM. New York,
NY, USA: ACM, 2008.

[32] Intel, “Peer-to-peer content distribution: Using client
pc resources to store and distribute content
in the enterprise,” Intel, Tech. Rep., September
2003. [Online]. Available: http://www.intel.com/it/digital-
enterprise/peer-peer-content-distribution.pdf

Yuh-Ming Chiu received his B.S. degree from
the Department of Communication Engineering,
National Chiao Tung University, Taiwan, and
M.S. degree from the Department of Electrical
Engineering, National Tsing Hua University, Tai-
wan, in 1997 and 2000, respectively. He re-
ceived his Ph.D. degree in Electrical and Com-
puter Engineering from North Carolina State
University, Raleigh, NC, in 2009. He is cur-
rently a senior software engineer at Yahoo! His
research interests include queueing analysis,

peer-to-peer networks, and distributed systems.

Do Young Eun received his B.S. and M.S.
degree in Electrical Engineering from Korea
Advanced Institute of Science and Technology
(KAIST), Taejon, Korea, in 1995 and 1997, re-
spectively, and Ph.D. degree from Purdue Uni-
versity, West Lafayette, IN, in 2003. Since Au-
gust 2003, he has been with the Department of
Electrical and Computer Engineering at North
Carolina State University, Raleigh, NC, where he
currently an associate professor. His research
interests include network modeling and perfor-

mance analysis, mobile ad-hoc/sensor networks, mobility modeling,
congestion control, resource allocation. He is a member of Technical
Program Committee of various conferences including IEEE INFOCOM,
ICC, Globecom, ACM MobiHoc, ICDCS, IEEE IPCCC, and ICCCN. He
received the Best Paper Awards in the IEEE ICCCN 2005 and IEEE
IPCCC 2006, and the National Science Foundation CAREER Award
2006. He supervised and co-authored a paper that received the Best
Student Paper Award in ACM MobiCom 2007.

