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Abstract—Inter-meeting time between mobile nodes is one of
the key metrics in a Mobile Ad-hoc Network (MANET) and
central to the end-to-end delay of forwarding algorithms. Ik
is typically assumed to be exponentially distributed in may
performance studies of MANET or numerically shown to be ex-
ponentially distributed under most existing mobility models in the
literature. However, recent empirical results show othervise: the
inter-meeting time distribution in fact follows a power-law. This
outright discrepancy potentially undermines our understanding
of the performance tradeoffs in MANET obtained under the
exponential distribution of the inter-meeting time, and thus calls
for further study on the power-law inter-meeting time including
its fundamental cause, mobility modeling, and its effect. i this
paper, we rigorously prove that afinite domain, on which most
of the current mobility models are defined, plays an importarn
role in creating the exponential tail of the inter-meeting ime.
We also prove that by simply removing the boundary in a
simple two-dimensional isotropic random walk model, we are
able to obtain the empirically observed power-law decay ofte
inter-meeting time. We then discuss the relationship betwen
the size of the boundary and the relevant timescale of the
network scenario under consideration. Our results thus preide
guidelines on the mobility modeling with power-law inter-meeting
time distribution, new protocols including packet forwarding
algorithms, as well as their performance analysis.

Index Terms—mobile ad-hoc network, inter-meeting time dis-
tribution, exponential vs. power-law, bounded domain, tine and
space scaling.

|. INTRODUCTION

Do Young Eun

communications. Larger inter-meeting time leads to laegel-
to-end delay.

There have been several studies on the characteristics of
the inter-meeting time in the literature. For example, atgh
in [7], [6] assume that the inter-meeting time is expondiytia
distributed so as to make their analysis tractable. Thigraps
tion is supported by numerical simulations [9], [6] based on
random waypoint mobility model (RWP) [10], [11]. Further,
there have been also some theoretical results showing that
the first and second moments of the inter-meeting time are
bounded above [9], [8] under Brownian motion model on a
sphere [12].

However, recent empirical results on the inter-meetingetim
via real, extensive mobility traces [2], [3], [4] in fact i@te
that the tail behavior of the inter-meeting time is far from
being exponential, but is close to a power-law [2], [4]. For
example, in [4], four distinct sets of data are used to amalyz
the inter-meeting time. Two of them test WiFi networks (&rg
area) containing thousands of nodes over three or four rsonth
(UCSD [13], Dartmouth [3]); another two use a Bluetooth
network [4] containing hundreds of nodes in an office/lab
environment (small area) over several days. All of these
invariably show that the distribution of the inter-meetinmge
T follows a power-law over a wide range of timescale, i.e.,
P{T > t} ~ t— for some constant > 0. More strikingly,
there it was also shown that the power-law exponenis

Capacity and delay are two main factors in assessing th@ically less than 1, making even the first moment of the
performance of MANETS. In order to successfully transfépter-meeting time infinite. This is in sharp contrast tota
data from a mobile node to another, the mobile node needg@§ults in the current literature where an exponentialrinte

first wait until it ‘sees’ other mobile node (until it gets ide

meeting time distribution is either assumed or numerically

the transmission range of the other node) for data-relay, ayerified through various current mobility models.

then will be able to relay the data during the period it mairga

The above discrepancy between the recent empirical data

the connection with the other node. The former metric isechll 2nd the theoretical/simulation results based on curreniliyo

the inter-meeting timeof the two nodes [2], [3], [4], and the Models has motivated several studies in the literatureinf2]
latter is called thecontact time[4]. These two metrics are Vestigates the effect of power-law inter-meeting timerdist
critical in determining the delay and capacity of the netwyor tion on the system performance (capacity and delay) and call

as well as choosing various scheduling/forwarding alparg.

for new mobility models to produce power-law inter-meeting

In particular, the inter-meeting time of two nodes is a majdtme; [14] studies the effect of infrastructure and mulbiph
Component of the end-to-end de|ay in MANET [5], [6]’ [7],transm|53|0n on networks with pOWer'IaW |nter'meet|ngd|m
[8], as it denotes how long it takes to encounter the oth@Rd calls for new forwarding algorithm to effectively uti
mobile node to have any chance to relay/forward the data f@?mmunication opportunities such as the existence of low-
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delay multi-hop path; [15] proposes a method to generate
power-law inter-meeting time using one dimensional random
walk model. Most recently, [16] has found that although the
inter-meeting time distribution follows a power-law over a

wide range of time scale, there exists a characteristic,time



on the order of about half a day, beyond which the intetimescale of interest and their effect on the inter-meeting
meeting time distribution decays exponentially. While stne time distribution, the heterogeneous modeling approashrtt
works provide some answers to the characteristics andteffpower-law like inter-meeting time distribution, as well as
of power-law inter-meeting time, the following questioiilst the effect of nodes’ pause time on their inter-meeting time
remains\What is the fundamental reason for this discrepahcydistribution. Simulation results are provided to suppout o
The answer to this question is very importabiecause the theoretical analysis and discussion.
disclosure of the fundamental reasons will provide esaknti The rest of the paper is organized as follows. Section Il
guidelines on all related studies in MANETs — modeling diirst presents related work on empirical observation of the
power-law inter-meeting time, analysis of its effect [214], power-law inter-meeting time distribution, and then pdms
capacity-delay trade-offs [7], [8], [12], and the designdanseveral definitions and technical results to be used lateinon
performance analysis of relaying algorithms [7], [2]. Section Ill, we prove that mobility models with finite boumga

In this paper, we first show that tHite boundary(with always yield exponential inter-meeting time distributiah
respect to the timescale of interest) is one of the key aspeleiast in an asymptotic sense. In Section IV, we show that
that give rise to the universal appearance of the exporentizobility models in an unbounded space necessarily produce
inter-meeting time distribution in the literature. Indeatost power-law decay of the inter-meeting time. In Section V, we
all the current mobility models have boundaries or “end-offrovide some discussion on the relationship between ttee siz
the-world”. For example, in the definition of RWP [10], [11],0f the boundary and timescale of interest, and their effect o
the boundary is necessary because whenever the node chatfgednter-meeting time. Also, we discuss the heterogeneous
direction and/or speed, it selects the destination ‘unifgt modeling approach and the effect of pause time on the
over some bounded simulation area. As for random directigrter-meeting time distribution. Some simulation resute
mobility model (RDM) [17] andi.i.d. mobility model [11], presented in Section VI to support our theoretical findings
a boundary is incorporated into their definitions. Similarl and discussion on time/space scaling. We finally conclude in
for random walk mobility model (RWM) [18] or Brownian Section VII.
motion on a sphere [12], the boundary is also enforced as
all the mobile nodes are constrained to move on a sphere or II. PRELIMINARIES
inside a boundary. Here thmundarymay be of different types
including ‘reflective’ or ‘wrapping’ as defined in [11], wHic : i o o
converts a 2-D rectangular area into a torus-shaped area. _ | "€ power-law behavior of the inter-meeting time distribu-

In particular, we rigorously prove that the tail of the interion Nas been reported through various data sets underatiffe

meeting time between two independent mobile nddiesays scenarios. In this section, we provide brief summary on how

at least exponentially fagor any RWP model and for any those data sets have been collected and interpreted in the
RWM (or RDM) as long as the boundary is finite i e context of the inter-meeting time distribution, while nefeg

the mobility model is defined on a bounded domain. OLEP [4], [2], [14] for more details.

assumptions are quite general in that they are satisfied pyOSt data sets available for inter-meeting time study in the
nearly all the current mobility models in the literature. rouliterature can be classified into access point (AP) based or

results readily show the finiteness of all the moments Gfuétooth-based ones. AP-based data sets [13], [3] keep tra

the inter-meeting time (much stronger than the finiteness % e time instants at which a mobile node gets associated

only the first and second moments as shown in [9]), afyth an AP and typically record activities (AP logs) of a

provide analytical support on the simulation-based stidie large number of mobile nodes for a long period of time. Two

the inter-meeting time under the current mobility modelthwi nodes are assumed to ‘mee_t’ only if b‘?th of therr_1 are_ in the
boundaries [9], [6]. range of the same AP. In view of the inter-meeting time of

Our theoretical results imply that the finite boundary witI’inObIIe nodes, Some ihaccuracies are mgwtable in these AP-
respect to the timescale of interest, among others, is t}H%sed data sets since (i) two nodes within the range of each

key determining factor of the exponential decay in the i-ntegther_ mayf nhot .be within _the range olfdtge same A_‘P' .e., the
meeting time distribution. Moreover, we prove that remgvin uration of the inter-meeting time could be overestimated,

the boundary from 2-D RWM readily gives the power-lav&”) two nodes within the range of the same AP may be out
of their communication ranges as well, i.e., the inter-rimgget

distribution of the inter-meeting timéWe also discuss the

relationship between the size of the boundary and the nelevime could also be underestimated. )
On the other hand, Bluetooth-based data sets record time

instants at which a node is in contact with other nodes, along

1Even with the recent claim in [16] saying that the tail of mteeeting time : : :
distribution is still exponential after the charactedstime around 12 hours, with the ID of the node in contact [4]’ [2]’ [14]' While the

note that the delay of interest in most of the network scesas within this nNumber of nodes and the duration of the activities are tyigica
time scale over which the inter-meeting time distributiomibits power-law  smaller than those of AP-based orieBJuetooth-based data

behavior [2], [16]. . . . . : . .
2Mobile nodes may be dependent if they belong to the same pgrouprOVlde more accurate information on the inter meetingetim

and follow similar paths, or belong to different groups whosathways
rarely overlap. The inter-meeting time in such cases mayslasy different 4For example, the UCSD data set [13] includes more than 19Gstrals
characteristics, which is beyond the scope of this paper. contacts collected from 273 participating devices over a§sd while the

3Similar suggestion has been made in [15] via 1-D random weltiile our  Infocom 2005 Blluetooth-based data set includes about @stimds contacts
example in Section IV is in 2-D. collected from 41 dedicated iMote devices over 3 days.

A. Empirical Observation of Power-law




as they are free of any reference to APs and directly keepDefinition 3: Let P be a collection of positive random
track of contact/inter-contact events. Nevertheless|lil@- variables whose complementary distribution decaydeast
based and Bluetooth-based data sets, the power-law behagiponentially fast. Specifically, we writ& € P if there exists
of the inter-meeting time has been shown to persists over fra constant > 0 such that

several hours up to even days. 1
lim sup n logP{X >t} < —¢<0. 3)
t—o0

B. Assumption and Definitions Note that (3) impliesP{X > ¢t} < exp(—ct + o(t)) where

In this section we collect basic assumptions, notations ap /t — 0 ast — oo. Or, equivalently,P{X > ¢} =

several definitions of the metric of interest that will be ahseexp(_c[l +o(t)/t]t) < Ke="t for someK >0, ¢ > 0, and
throughout the paper. We also provide some basic propertigs a sufficiently larget (such thafo(t) /| < ¢, wheree is a
associated with those definitions and notations. constant in(0, 1) and we can choosé = ¢(1 — ¢)), indicating

We consider two mobile nodes A and B, each of whicthat the tail of.X' decays at least exponentially fast. With this
moves according to some mobility model § C R”. The gefinition, we immediately obtain the following propertibsat
domain () (the entire ‘world’ for the mobile nodes) can bey pe useful later.
bounded or unbounded depending on our choice of mobili .
models in sequel. Lef\(t), B(t) € § be the position of the ({ii\)stgnf;i € P, thenaX +bY" € P for any positive
node A and B at time, respectively. We will assume that(z) 7 o
and B(t) are independent unless otherwise specified. As off2) If X € P, then X, € P, where X, has the equilibrium

main interest lies in the statistics of the inter-meetimgetiof ~ distribution of X, i.e.,

two nodes, we find the following definition useful. z p 4
Definition 1: Let {S(¢) € Q}+>0 be a collection of subsets Fow) = P{Xe <o} = /0 PAX > u} du/E{X}. (4)

of Q. The first passage time (FPT)» of A(¢) to {S(¢)} is

defined as Property P1 can be seen by noting that for any (possibly
TR 2 %gg {t: A(t) € S(t)}. dependent) random variablés andY’,
given thatA(0) ¢ S(0). 0 P{aX +bY >t} <P{X >t/(2a)} + P{Y > ¢/(2b)}. (5)

Assumption 1:Two mobile nodes can communicate withP2 follows since
each other whenever they are within a distancedpfthe 1 © K
transmission range of the mobile node. O P{X. >t} < m/t Ke™%dr = JE{X et
Remark 1: Assumption 1 is reasonable if the density 0;

the mobile nodes is not high and the interference from oth]é)r;" iufg:le?ﬂ}/(flirg?t,fgvrhz:)emtgeKﬂrit Bne{;t;jalcl/ty;(z)ldfsrosgce

mobile nod(_as are negligible. Th|s.|s espemally the case efinition 3. Further,X € P ensures that all the moments
sparse mobile networks or delay/disruption tolerant netao L : . L
of X are finite, thus its moment generating function is well-

(DTNSs) [19], [14], [4]. In case of high level of density of | _. . 0x
mobile nodes, our assumption might be rather optimistic arqgﬁned, he.Ji{e""} < oo for somed > 0.

would lead to underestimation of the actual inter-meetimg f

since two nodes may not be able to communicate due to!ll. | NTER-MEETING TIME WITH EXPONENTIAL TAIL
interference even when they are nearby. Still, even for such |n this section we are interested in mobility models with
highly populated MANET, our subsequent analysis can also fiite boundaries, i.e.) € R? is bounded, and rigorously
applied to different mobile ‘groups’ whose density is uspial prove that mobility models such as random waypoint mobility

much lower than that of mobile nodes. models (RWP) and random walk models (RWM), defined
Definition 2: The inter-meeting tim&’; of nodes A and B on a bounded domaife necessarily result in an asymptotic
is defined as exponential tail of the inter-meeting time. We will congide
a . the case of unbounded (e.g.,Q2 = R?) later in Section IV.
Tr = mff{t: | A(t) - B)l| < d}, 1)
given that||A(0) — B(0)|| = d and ||A(0") — B(0")|| > d. A. RWP Models
Here, || - | is the Euclidian norm in 2-D. . In RWP model [20], a node first selects a random waypoint
Define by (t) a set of points that can be reached by nodg; s destination uniformly in a convex bounded regfon
B at timet. Specifically, and a speed’ uniformly from [vmin, Vmaz] (0 < Vmin <
Ne(t) 2 {seQ:|s— B@)| < d}. @) Umag ), @nd then moves to its destination at its chosen speed.

After it reaches the destination, it pauses for a random amou
Then, the inter-meeting time becomes the FPTAGf) t0  of time and then selects a new destination and speed, and
{N&(1)}, given thatA(0) € Np(0) and A(07) € N5(07).  repeat the whole procedure independently. Denote the time
As we will be interested in the behavior of the tail of thenstant at which a node pauses and chooses a new destination
inter-meeting time diStribUtion, itis advantageous toaduce asjoint time and the path of a node Consisting of a Straight
the following definition. line segment as onleg [20]. The speed of node A is chosen



uniformly from [v2. v4 1. Let 74 be the duration of the wherec = —(logp)/¢ >0 from0 < p < 1 and0 < ¢ < 0.

n'" pause time of A. Similarly we define® for node B. This completes the proof. |
We first consider the traditional RWP model where all the Remark 2:Pr0position 1 can be |mmed|ate|y extended to

pause times are zero and mathematically prove that the intgfe case of non-zero pause time as long as it is bounded above.
meeting time decays at least exponentially fast. Later i tht maX{Tijf} < M < oo, we just need to redefine the
section, we generalize the result to include the case of ngBnewal interval ag’ = ¢ + 2M in the above proof.

zero random (possibly infinite) pause time. Throughout the RWP with Random Pause Time:We now consider RWP
section we assume that nodes A and B are in_de_pen_dent, %%tdels with non-zero random pal.Jse time. 1et, V3 and

we do allow that the speed and pause time distributions aTrg’TB be the speed and pause time of two independent

different for different nodes. nodes A and B, respectively. Similarly as before, we define

RWP with Zero Pause Time:First, consider the zero pausey sequence of ‘renewal’ intervals for node A as
time case. Letr = 78 = 0 for all n = 1,2,.... Then we

n

have the following result. TA &
Proposition 1: There exists constamt> 0 such that

D
+ 4T, forn=1,2,...,

whereD<cc is the diameter of). In words, T/ is the longest

—ct
PATr >t} <e™, time it takes for node A to finish two legs including two pause

for all sufficiently larget. [ times. Then, as before, for ea@lf, {A(s); s < t} and{A(u+
Proof: Let D < oo be the ‘diameter ofQ or the Tn)iu >t} are independent. SincgV;,n > 1} arei.i.d.
maximum length of a line segment (leg) §h Let (so are{r;!,n > 1}), it follows that {T;},n > 1} are also
i.i.d. Similarly defineT'? for node B.
¢ =2D/min{v},,, vp,} > 0, Define X (t) £ (A(t), B(t)) € Q2 and assume that the

system is in the steady-state with its stationary distidout
Then, along the same line in the proof of Proposition 1, we
ave for someé) < p < 1,

which is well defined since,,;, > 0 and D < oo. Note
that ¢ is the longest time it takes for both nodes to finish tw
legs. In other words, during the time interval @fboth nodes
must have jumped at least twice. Heng¢ezan be interpreted P{T; >t} < Pl 9)
as arenewalinterval for nodes A and B since for arty>

0, {A(s);s < t} and {A(u + ¢);u > t} are independent
(similarly for node B), i.e., afteC seconds, nodes A and B
completely forget where they wereseconds ago [20]. {X(t;),i=1,2,...,|T:|} are independent  (10)

Let 4 andnp be the stationary node distributions of A and

B, respectively, and lef (t) = (A(t), B(t)) € Q2. Without The difficulty here lies in the fact that, in contrast to
loss of generality, we assume that the initial distributimn Proposition 1, there is no finit¢such thatX () and.X (¢ +)

X (1) is chosen as its stationary distribution, x 7. One become independent. In addition, evefif forms a ‘renewal

B .
immediate consequence is that the joint node distributibn $fduence for(z) (Z;,” for B(1)), this does not mean that ()
A and B becomes stationary, i.&{A(t) € Sy, B(t) € Ss} = is also ‘renewing’ on any such sequence. For instance, after

74(S1)75(Ss) for all t > 0 and Sy, Sz Q. ‘renewal’ of node A, it could be that the pause time of node
Let & = {[|A(t) — B@)| > d’} be the event that two B is exceptionally long so that the node A still has to renew
nodes f’;\re ‘out-of-range’ at time. From the stationarity itself possibly an infinite number of times before it ‘sees’ a

assumptionP{&;} does not depend oh Since the stationary renewar: offnﬁde B. il dom ind

node distribution of the RWP is non-zero on any point of I_n W at follows, we wi . construct a random index SEt
Q [20], for any givenB(t) = B € Q, we see that there existss"’g'sfylng (10). For_ nqtatl_onal SmeI'C't'eBS’ vxze uge! Band
a positive constanf (may depend onrl and the shape dR?) T* to denote ”!? d_|str|bu_t|on dr” andATn T Band T 1o
such thatr 4 (N5 (1)) > f > 0 whereN(t) is from (2). Thus, denote the equilibrium distribution ¢f* and7* (see (4)),

by taking average again with respectitg, we have respectively, whenever no‘ amb|gu,|ty arises. )
Sett = 0 as one of the ‘renewal’ point of node B. We will

P{&I<1—-f2p<1. (6) inductively construct a sequence &f,, n = 1,2,..., where
eachZ,, is a sum of non-overlapping?. Define

where |S| is the cardinality of a sef and index setl; =
{t1,...,t7,;} C (0,t] has the following property:

Observe that for the inter-meeting tinig, we have N
— At Sf = Z Zk
{TI > t} — ﬂ3:0+gs - msEIz‘S‘s (7) k=1
for any subset (index sef), C (0,¢] [21]. Now, we choose and 5§ =0 ‘Startmg ,from&il (n = 1), we first skip two
the index seff; — {¢,2C, ..., | £]¢}. Since( is the ‘renewal consecutive renewal points of node A and thgn mark the
next following renewal point of node B. Lét be this marked
point. Then, we sef,, = ' —SZ | andt’ = S7. See Figure 1
for illustration. Notice that”,, consists of three parts: (i) the
residual life of node A ) evaluated atSZ , (time from

P{T; >t} < ]p{ ﬂ gs} — H P{gs}gpL%J ~ec (8) SZ | until the first renewal point of node A), (i) a renewal
scT, seT, interval of lengthT}* for somek, and (iii) the residual life of

interval for both nodes, it follows that (¢;) (i = 1,2,...) are
all independent whenevey € 7, andt; # t;. Thus,&;, for
different¢; in Z; are also independent. Hence, from (7),



A r t Proof: Similarly as in the proof of Proposition 1, we take
i T one ‘snapshot’ ofX (¢) per each renewal intervels,, (n =

! T8 TB: ! ! 1,2,...). To be specific, we construct a random index&et
B _—_— iy & {t1,t2,...} as follows: choose; € [S7, SZ], t2 € [SZ, S7],
l l l and in generalt; € [S7;_,,57;]. Repeat this procedure until
X Sf_ 312 S%» ‘ SZ, becomes larger than Then, for anyi < j, [t;, ;] contains
Q_l,_\, g bLJ’—\, g t at least one full renewal interval of node A and B, thXigt;)
Zn Zm] vaz and X (¢;) are mdependent In this way, it is straightforward

to see thai{X( ,i=1,2,...} are independent (and actually
Fig. 1. lllustration for the construction of,,. Start fromS?Z_,, first identically distributed from the stationarity of (¢)).
skip two consecutive ‘renewal’ points of node A and then wait Let N(t) 2 |Z;| be a counting process that tells us the
the n%xt following renewal point of node B. This defin&s. 74 number of independent ‘snapshots’ &f(u) = (A(u), B(u))
andT,” are ‘residual life’ of node A and B, respectively. during [0, £]. By conditioning onN'(¢) and from (9), we have

node B ('7) evaluated at the second renewal point of node P{T; > t} < E{p" "} = E{eV (")}, (13)
A (from the second renewal point of node A unif). From
this construction, we have the following:
Claim 1: {Z2;_1}r>1 are independent. So af&Zs }i>1. E{e t)} E{e )1{N(t)<ﬁt}}+E{€ eN () Lin@y>pey}
Claim 1 immediately follows since for each, the first <P{N(t) < Bt} +e 7" (14)
component ofZ, o (residual life of node A) and the last A closer look at the way we construdt, reveals that

component ofZ, (residual life of node B) are disjoint and ) < Bty = {SZ > t} assuming thapt takes on integer
separated apart by at least one renewal interval of node A Q{Eﬂlue without Iosstt‘ g_enerality. Thus, for all sufficientlyge
B (see Figure 1).

where¢ = —log p > 0. Note that, for any constarit > 0,

t, we have
To proceed, we need the following technical assumption. P ;o n
Assumption 2:Let iy, = E{Z,.} < co. Then, P{N(t)<pt} = P{S55, >t} = P{53, > —} (setn=p)
1 n
lim — 1 =i . 11
Jim =0 paker =i < 00 (11) < P{ZZ% 1>—}+P{ZZ%_26 (15)

Further, there existg, > 0 such that for eaclf € [0, 6,),
where (15) is from (5) witha = b = 1. For the first term in

lim 1 Zlog]E {69(Z2k—1fﬂ2k71)} =A1(0) < o0, (12) (15), note first that from the assumption in (11), for any give
noeen e > 0, we have

where A;(0) is well-defined and differentiable & = 0. 1 ~
Similarly for i, and A»(6) with indices in (11) and (12) |~ pok1 — | < (16)
replaced by even numbers. O =1

Remark 3:(11) and (12) require thafZoj_1}x>1 have for all sufficiently largen. We then choos@ > 0 such that
similar distribution and the moment generating function of A 1 -
each zero-mean random variablgs — p; be finite in the “T 95 (i1 +€) > 0. (17)

asymptotic sens&or example, if each of the three componen :
belongs toP,® then from property (P1), it readily foIIowsL'Fhen from (16) and (17), it follows that
that Z,, € P, which guarantees the existence of the moment
generating function. One special case can be whgteand 243
T8 are both exponentially distributed, for whicli# and
TB are also exponentially distributed (due to memoryledgr all sufficiently largen.
property) and thus Assumption 2 is automatically satisfied. Rewriting the first term in (15) gives, for arty> 0 and for
Moreover, (12) requires the moment generating function 8fl sufficiently largen,
the node pause time to be finite. Later in Remark 7 and n
Section V-C, we will discuss the effect of pause time with P{ ZZ% 1>—} <P{ Z (Zog1 — por1) >an}  (19)
infinite generating function and finite mean. The pause time k=1
with infinite mean is beyond the scope of our paper. [ —fan -

We now state our main result. =¢ E{eXpw;[Z%*l Hak-1])} (20)

Theorem 1:Under Assumption 2, we havé; € P, i.e., 1
the inter-meeting time of nodes A and B decays at least = eXp(—n[Oﬂ—EZ10gE{€9(Z%’17””’])}D7 (21)
exponentially fast. O k=1
where (19) is from (18), (20) is from Markov’s inequality,
Sif 74, TB ¢ ‘P and the system is in the steady-state tidt < 74 (same and (21) is from independence 2,1 }x>1 (Claim 1). We
for T'B), then properties (P1) and (P2) ensure thad T4 +T4+T5 ¢ P.  then takeog in both sides of (21), divide by, and take limit

1 n
= [ > — - 18
o+ [i] + € Oé+n;ﬂ2k1 (18)




with respect ton. By optimizing the resulting expression overposition of a node is chosen uniformly frodv cells. We
0 < 6 < 6y, from the assumption in (12), we have number the cells by, 2, ..., N: the cell on thent” row and
. n m*" column is assigned the number (n—1)v/N-+m, where
lim _1og]P>{ZZQk,12£ < —I(a) (22) n,m=1,2,...,v/Nandi =1,2,..., N. At the beginning of
noeen k=1 26 each time slot, the node jumps from tHé cell to the;j* cell
where I(z) = supy_g-g, [26 — A1 (0)] is called the rate with probabilityp(_z‘,_j) € [0,1]. This model is very general in
function in large-deviation theory [22]. Note thdfz) is a he sense that: (i) in any position, the node can jump to any
well-defined convex function from Assumption 2. FurthelOther cell (including the current cell) with any preassigne
sinceA;(0) = 0 and X, (0) = 0 (from E{Zy — .} = 0), we probability, which obviously includes the model in [12]] [8
have(a) > 0 from our choice ofa > 0 in (17). Similarly, where the noQg can only.jump to one of its adjacent cells with
we can repeat the same lines for the second term in (15). TRRU@l probability, and (i) we allow any arbitrary boundary
completes the proof of Theorem 1. m condition including wrapping, reflecting, etc., by assigni
Remark 4:The exponential tail behavior of the inter-diﬁeren.t jumping probabilities for the cells on the bounda
meeting time of two nodes moving according to RWP modé?ee_Flgure 2 for example.) . . _
has been mentioned in [9]. However, while [9] provide This general RWM can be st_u_dled using a Markov Chain
only simulation results, we rigorously prove the resultsir O MC_) Wlt.h N §tatetshand Itz trba}lr?tsmofn. matr_R :f (i} ;/vrtzre
theoretical result is quite general in that it applies to owly Pij _tfllj(zlljl)ly 1.€., the prc.)" abiiity ot jJumping :tom Stha . ?
the bounded pause time case, but also the random, unbounﬂéa the Tollowing, we will give our main result on the inter-
pause time case (see Assumption 2). Moreover, two usg}getmg time of a pair of nodes, in which only one of the two

under discussion are not required to have the same st@lion%?de_s_ is required to follow the RWM described above aﬁd the
node distribution mobility model of the other node can be completely arbitrary

To avoid trivialities, the MC is assumed to be irreducible,
i.e., any single node in this finite system can go to anywhere
B. Random Walk. Models (RWM) in a finite number of steps. Still, this alone is not sufficiemt
In the current literature studying the RWM [12], [8], COMestablish a well-defined mobility model. For example, define
monly a discrete-time, discrete-space 2-D model is used: Ay opility model such that the node can only jump from cell
square (the bound_ed a_rea)_ is d|V|(_1ed into multiple sub-rm;,l_ai to celli + 1 (wheni = N, the user can only jump to cel).
called cells, and time is divided into slots of equal duratio opyiously this MC is irreducible, but it is not a good molyilit
At each time slot a node is in and can be only in one cell. Thgqqel. The introduction of a mobility model is to emulate the
initial posn!on_of a node is uniformly chosen from all cells_, mobility pattern in real life in an abstract and simple way. |
At the beginning of each time slot, the node jumps from itg,5jity “if an obstacle is present, the moving object (peppl
current cell to one of its adjacent cells with equal prolighbil bus, etc.) will simply bypass it and continue the movement in
Moreover, the boundary can be wrapping or reflecting (sgge system, rather than get stuck on it.

Figure 2). From the viewpoint of graph theory, the mobility model
cell—» can be looked as a directed gragh= {V,E;}, whereV

A and E; are the vertex set and the edge (with direction) set,

respectively. Each cell corresponds to a vertex, and there i

Ends__ a directed edge from vertex to vertex j if and only if

pi; > 0. Hence, the irreducibility actually ensures that the

B graph is connected. However, how strong is the connechvity

o a One fundamental way to test it is to delete one vertex; if the
\ graph is still connected after the deletion of any one vertex
\ then the graph is said to be 2-connected [23]. For example,

Sén \ the mobility model example given above is connected, but
A

/
<

<
N

9 not 2-connected. In view of this, we impose the following
assumption to avoid trivial models.

!
d/Vz 2%

Ttd/& Assumption 3:The directed graply is 2-connected. [
Fig. 2. A trajectory of our RWM model: The node can jump from No_te th_at we are interested in the tail behavior of the _in_t_er-
a cell to any other cell with certain probability, and the boary Meeting time, so we surely want to rule out any possibility
condition can be arbitrarysq — x2: wrapping;y: — y2: reflecting). that two nodes never meet. For example, if nodes A and B
somehowconspire togethemot to meet each other forever
In this section, we consider a more general RWM. The.g., node B always move ‘parallel’ to node A), the inter-
bounded area is assumed to be a unit square. Divide theeting time becomes infinite with probability 1. To rule
square intoN = 1/[-% x %] sub-squares (cefl) each of out this possibility, we also need the following technical

. . d d . . - . =
which with area_s x = as shown in Figure 2. The initial assumption.

Assumption 4:For any possible trajectory of node B, node
6We assuma/N is an integer without loss of generality. A eventually meets node B with positive probability. Specif




ically, there existsM < oo such thatP{T; > M} < 1 In the following, we fixB £ {B(t) = k;, t € N} (k; €
regardless ofthe trajectory of node B, i.eP{Ty > M} <1 {1,2,...,N}) to show thatP{T% > ¢} is uniformly upper-

is true for any trajectory. O boundedby cexp(—~t) wherec > 0 and~v > 0, i.e., for

Remark 5: Assumptions 3 and 4 ensure that (i) there exi@y B € 7, P{T§ > t} < cexp(—~t). For the simplicity of
at least two different paths between any two cells and (i) @pression, we uséy in stead of 7 because now we are
is impossiblefor node B to get away from node A foreverdiscussing fixed trajectorig.
even if it chooses its ‘optimal’ path to stay away from node A Let P = {p;;} be the transition matrix of the Markov
(no conspiracy. Note that all existing versions of RWM [11], chain for A(¢) (position of node A at timet) wherep;; is
[12], [8] readily satisfy Assumptions 3 and’4. 7 the probability of jumping from celi to cell j in one step.

To proceed, we present the following definitions and lemm

Definition 4: Let ||- ||, be the norm of a matri¥{ = {k;;}

defined by|| K || 2 max Zj|kij|' i.e., the largest absolute row g0 A(0)

sum. For anyk-dimensional vectof ={x1, - -, 1 } andn €N,
we definen—norm of 7 as || 7|, = (35 =) /™. O
Definition 5: A finite set of matrice€”,,, = {¢}} € RV*V

wherem € {1,...,L} is said to be a sub-stochastic matrix

X\[e then define a set of matricds”;,7 = 1,2,..., N} by
sétting thei’” column of P to 0 and keeping all the other
elements the same.

= 1, the initial state vector becomeg =
[1 0 ...0. ThenP{Tr > 1} is the probability that node
A jumps from state 1 to any state other thBil) = k4, i.e.,

P{Tr>1}=> pij- (24)

1<j<SN, j#k:

set if there exists a finite integer M such that for any integgjefine a matrixQ() € RV*N asQ(®) = P, and denote by
1

set{hy,....,har} with h; € {1,...,L} andi € {1,..., M},
Hchl "'ChM”OO <1

Lemma 1:Let {P,,} € RV*N (m = 1,2,...,L) be a
sub-stochastic matrix set. For any index et {ni,no, ...}

wheren; € {1,...,L} and: € N, define the product of
k (k € N) matricesA(Z, k) = Py, Po, -+ Py,. Then, there P{Tp>2}= )"
exist constantg > 0 and0 < ¢ < 1 (independently of the

choice ofZ) such that for any positive integer,
|ZA(Z, k)|, < cq®||Z], for all sufficiently largek.

Proof: See Appendix. |
We now state our main result.

Theorem 2:Suppose that node A moves according to ti\ﬁ
RWM described above satisfying Assumptions 3 and 4. Then

these exists constant> 0 such thatP{7T; > t} < e for
all sufficiently larget.

q§;> the i*" row and;*" column element of)(!). Then, from
(24), it follows thatP{Tp > 1} = Y ¢} = #QW1,
wherel =[11 ... 1] is the N-dimensional column vector
whose elements are all 1. Similarly, we have

ppii= Y. @ =7Q" Py,1.

1< 4,0 <N, 1< 4l <N

J#k1, 1#k2
Following the similar line, we defin@® = Q(‘~Vp,, for
all t > 2. Then we can show by induction that

N
PTr> 1) =37 aif) =5Q"1, (25)

here qi? is the first row andj** column element of the
matrix Q) = Py, Py, --- Ps, (t > 1). Consequently, if we
can prove that for any given trajectoy of node B, there
exists constant < oo and~y > 0 (independently of3) such

Remark 6:We require that only one of the nodes (node Ayt ToQM1 < ce~t for all sufficiently larget, then from

moves according the RWM. This means that the other no

(1253) and (25), we are done.

(node B) can move according to any other arbitrary mobility | what follows, we will show tha{P?;, i =1,...,N}isa

models defined on a bounded domain such as RWP, randgi-stochastic matrix set as defined in Definition 5. Fron), (25
direction models, etc., as long as two nodes eventually megy)(1)1 is the sum of the first row of)®, or equivalently,

with non-zero probability.

the probability that node A starts from cell 4(0) = 1)

Proof: Since node B moves according to some arbitraiy,g never meets node B (with the trajectd®yup to timet.
mobility model, the only information we know about nod&simjlarly, it can be shown that the sum of tH& row of Q)

B’'s movement is its path-wise position &= 0,1,2,.... Let

is the probability that node A starts from cel{A(0) = ¢) and

T be the set of all possible trajectories of node B satisfyingayer meets B with the trajectol§ up to timet. Thus, from

Assumptions 4. Without loss of generality, assurhend B
are in the communication range just before tionend A(0) =
1 # B(0). (If A(0) # 1, simply renumber the cells.) L&tR
be the FPT of A to the trajectory € 7 as in Definition 1.
Then, we have

P{T; >t} = ZBU P{TE > t}P{B} forallt>1. (23)

“In fact, Assumption 3 is proposed only to avoid trivial maddgl and
it is not used in the proof of Theorem 2 later on. To see the rgdihe
of Assumption 4 more clearly, consider an example where nddaoves
according to the RWM model and node B is static. Chobsas the maximal
average recurrence times of node A to any single cell. Sincgreducible
Markov Chain with finite number of states is always positigeurrent,M is
finite and Assumption 4 readily follows.

Assumption 4, there exist8/ <oo such that for anyt> M,
qu;):]P{Tp>t}§P{TF>M}<1 for any trajectory and

J
1€N. Subsequently, for alt > M,
1PePra - P lloe = Q7 oo = max>"lall | (26)
J

J

where (26) is fromQ") = Py Py, - -- P, and|| - || norm is
from Definition 4, and the equality in (27) is froqﬁ) > 0.
Note that (27) is true for any trajectol§ of node B. In

particular, choos® = { B(t) = k:} wherek; € {1,2,...,N}

(27)



andt € {l,...,M} and M is the finite integer as in time has very strong memory and may result in a power-law
Assumption 4. Hence, from Definition §7;,i = 1,..., N} type distribution.

is a sub-stochastic matrix set. However, when there is a finite boundary, after a long time
In consequence, from Lemma 1, there exists constand (much longer than a typical amount of time for a node to hit
and0 < ¢ < 1 such that the boundary), it forces the mobile nodes to bounce back once
S At Ll = being hit, which tends to reset the nodes’ location and &ras
I ToQ' )H” < <q'[[ o]l (28) the r%emory in the inter-meeting time. This nearly memoyles
for any n-norm, wherezy = [1 0 ... 0]. Fix || - |1 in (28) behavior caused by the existence of the finite boundary tends
as in Definition 4. Then||#Q"||, = 3, |¢{| = 3, ¢\ = to shorten the inter-meeting time and actually results in an
QW1 and |||y = [[1 0 ... 0][l, = 1. Hence, for all asymptotic exponential tail.
sufficiently larget, from (28), we have Remark 7:While Theorems 1 and 2 in Section Il clearly

L @) N @ . indicate that finite boundaries have significant impact an th
ToQ1 = ijl q; < cq = cexp(=t) (29)  tail behavior of the inter-meeting time distribution, weinto
out that they both require mobile nodes to be independent and

trajectory B and the constants, ¢ are independent ofs. the moment generating function of the pause time to be finite.
Hence, from (23) and (25), we are done. (See Remarks 3 and 5.) In other words, in the presence of non-

Through spaceltime quantization, Theorem 2 can also Bgdligible dependency among mobile nodes (e.g., they Gelon
applied to any other continuous-time, continuous-spaagatso to the same group following §|m|Iar paths all the time or ligta
(e.g., random direction model (RDM), etc) provided thatrbotdifférent groups whose typical pathways do not overlap) or
the time it takes for a node to walk from one cell to anothé&idnificant amount of pause time (e.g., pause time following
and the pause time are bounded. For any continuous-spRe&er-law with infinite mean), the inter-meeting time cobiel
analogue of our model, note that whenever nodes A and B &@Ver-law type even under a small finite boundary. Another
in the same cell, they are ‘in-range’ (the maximum distan&ception could b(_a the.case wh_ere there eX|sts.a considerabl
between A and B is no larger thaf). Note also that even amount of correlations |r_1_the trajectory of a mobile nodg_.(g.
when they meet in the continuous-space model, they may fs¢ Gauss-Markov mobility model [24]). The effect of finite
in the quantized discrete-space model. For example, node@@ndary on the inter-meeting time distribution under such
and B in Figure 2 are within a distance df but they are spatial-temporal correlations is beyonq the scope of t_bpep
in different cells, i.e., they do not meet in the discretacgp S t0 the effect of power-law pause time, see Section V for

model. In consequence, the inter-meeting time in a contiguo discussion.

space model is upper-bounded by that in the discrete-space

(quantized) model. Hence, Theorem 2 readily shows that tRe Infinite Domain and Power-law Tail
tail of the inter-meeting time of a continuous-space motta a
decays at least exponentially fast.

wherey = —Ing > 0. Note that (29) holds good for any

In what follows, we will show through a class of simple
isotropic random walks in an open-space without boundary
(i.e., Q = R?) that the power-law decay of the inter-meeting
time will arise by simply removing the boundary. We consider
o . ) only a discrete-time model here, but similar results alslol ho
A. Finite Boundary and Exponential Tail for its continuous-time analogue, which we omit due to the

So far we have proven that the inter-meeting time of twspace constraint.
independent mobile nodes with mobility models such as RWP,In a two-dimensional (2-D) discrete-time isotropic random
RWM, and RDM in a bounded domain has at most exponentighlk model, at the beginning of each time slot, the node
tails. These models are clearly different in defining eaathooses a random direction uniformly frdfh 2x], travels for
node’s mobility pattern. In fact, for other mobility modelsa random length? which is chosen from0, co) following
in a bounded domain (e.g., Brownian motion on a spheregrtain distribution, then the process repeats itself. dien
i.i.d. mobility model on a square, etc.), we can also shoby R, the length of thek!" step andd, the random angle
similar exponential behavior of the inter-meeting time.isThuniformly distributed ovef0, 2x]. Then, the position of node
observation along with our theoretical results assert that A at timet (¢t = 1,2,...) can be written as
exponential tail of the inter-meeting time seems a unidersa .

¢ (k) =) Ri'exp(iff!) € R, (30)

t
property and the empirically observed power-law decay of A(t) = Zk_l
the inter-meeting time will not arise by simply tweaking the o
aforementioned mobility models. where A(0) = 0. Since both sequenced} and {0{'} are
What is common in all these mobility models? The finité-i-d- and independent from each othef, (k) = R;! exp(if;)
boundary. Suppose that two mobile nodes (without paudé) = 1,2,...) are alsoi.i.d. Thus, A(t) is a sum ofi.i.d.
have not met for a long time (e.g., several hours). If theMCtors, i.e., a random walk in 2-D. (Similarly for node B.)
is no boundary, intuitively, it is more likely that they are The following result will be used in our proof of the main
moving toward different directions, hence chances are tHg8ult in this section.
they will not meet for the next several hours and the inter- Theorem 3:[Sparre-Andersen (S-A) Theorem in [25],
meeting time is prolonged. In other words, the inter-megtirj26]]: For any one-dimensional discrete time random walk

IV. FROM EXPONENTIAL TO POWER-LAW INTER-MEETING
TIME



process starting aty # 0 with each step chosen from a contincrossed the vertical line = d before it crosses the circle. In
uous, symmetric but otherwise arbitrary distribution, Eiest other words, we havé; > T, and hence

Passage Time Density (FPTD) to the origin asymptotically
decays as- t—3/2 with the number of steps P{T; >t} =2 P{Tr > t}, forall ¢ > 0. (32)

Remark 8:The only assumption required in S-A Theorem Observe thatC(t) = 22:1 oA (k) — 22:1 dB(k) =
is that each step of the random walker is chosen fromZ‘a‘;:1 Rﬁei"? _lefeief . Thus, we have[C(t)], =
continuous (the probability of choosing a specific step feng+ (RA cosfA — BB cos 93) whereRA RE are alli.i.d
is zero) and symmetric distribution (at each step, the remd an]a:slo a?es?A 9§ In oliher Wgrds{C(t)] ]igs’ orl:e-dimenéi(.)r;al
walker goes left or right with equal probability). DenOterandom W;”; Izs;um ofi.id random Q\C/ariables) with each
the first passage time (FPT) &%, then by S-A Theorem, step distributed ask : .R.A 04 _ RB cospB. Clearl
the probability density function of’» decays as~ t—3/2, P v o8 cosb Y

d . . . . .
which means that the complementary cumulative distriputidts = ~Fe, SO it is symmetric. Also, the distribution dt,
function (ccdf) of Tr decays aP{Tr > t} ~ +~1/2 The IS continuous because the uniform distribution is contirsio

result is applicable for any initial position of the node egt Hence, by Theorem 3 and Remark 8,

the origir?. _ _ o P{Tp >t} ~t /2
Now we present our main result on the inter-meeting time .
of two isotropic random walkers. In view of (32), this completes the proof. ]

Theorem 4:Suppose that two independent nodes A and The result in (31) is close to the empirical result reported
B move according to the 2-D isotropic random walk mod p [4] that the coefficient of the power-law tail is nearly 0.4

described above. Then, there exists cons@nt 0 such that ‘S€€ Figure 4 in [4]). Recall that in Section I, mobility
the inter-meeting tim@; of nodes A and B satisfies models are analyzed through an irreducible Markov Chain

(MC) by quantizing the space and time. Whenever there is
P{T; >t} > Ct~'/2, for all sufficiently larget. ~ (31) a finite boundary, since the communication rangef two
nodes is non-zero, we can always divide the system (bounded
Proof: Define byC(t) = A(t)— B(t) € R? the difference area) into a set of finite cells, each with diameterHence,
vector between the position of node A and B at timAssume the MC has finite states. This finiteness of the state-space
[IC(0)]] = d and ||C(1)|| > d. Then, the inter-meeting time along with the irreducibility condition implies that the Mi€
T; becomed; := inf {t: ||C(¢)| < d}. positive recurrent [28]. In other words, starting from aniial
=0 position, the MC will return to a given state infinitely often
Ya x=d and the mean return time is finite. Further, Assumptions 3 and
4 guarantee that the MC will visit any arbitrangoving set
of statesalso infinitely often and the mean return time to this
AL () moving set is finite. In fact, our result in Theorem 2 shows
/\ ST not only the mean of this return time (to a moving set) is
(0] P finite, but its distribution is at most exponential, making a
C(0) [CMI,; X the moments also finite.
c(n) . In contrast, however, when the node walks in an open
| N space without boundary, the corresponding MC has an infinite
R R K number of states. As a result, even if the chain is recurrent,
it may take infinitely long on average to return to a given
Fig. 3. Tr is a lower bound on the inter-meeting tirde asC(¢) state (null recurrence), which clearly rules out the palisib
must cross the line = d before crossing the circle of radius of an exponential tail of the inter-meeting time. In somesgen
Draw anz-axis connecting”(0) and the origin as shown diﬁerent recurrence prope_rties in a bounded/unbou_ndade;p_
in Figure 3 and alsa-axis accordingly. LefC(t)], be the Provide a quick explanation on the completely distinct tail
projection ofC(t) onto thez-axis. Then, clearly|C(0)], = d behaviors of the inter-meeting time in these two situations
and[C(1)], > d.° Define byTr the FPT of[C(t)], to z = d
in 1-D (the vertical line tangent to the circle(@t 0)). Suppose V. DiscussIiON
that the two nodes meet for the first timefat 7} sincet = 0, A Scaling the Size of the Space
or equivalently,C(t) crosses the circle for the first time at
t = Ty aftert = 0. Then, it is clear thatC(¢t) must have

From Sections Ill and IV, we see that the finite boundary
plays a key role in generating the exponentially decayiterin
meeting time or the FPT, and by removing the boundary, the

8Simi i i i i . o A
_“Similarly, ‘in a continuous time domain, the ccdf of FPT foreen nqyer|aw inter-meeting time distribution can be observed
dimensional Brownian motion ifR* also decays asP{Tr > t} ~ . . . .

#=1/2 [27]. Note however that S-A theorem is applicable to anyteahj ~HOWever, the question islow to decide whether a domain

step-length distribution in a discrete time domain, as lesgt is continuous is virtually bounded or n& In fact, it is hard to believe that
angTz)i/:qi;nztl\r/:/(; s possible by making one time step small enough ¢hat this change happens abruptly only at the infinity. If we set
oy Y : P - the boundary for RWM in Section Il large enough such that

when the node gets out of the circle @at= 1, it is located outside that k . .
tangential line at: = d. the mobile node rarely hits the boundary under the timescale
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When the time scale of interest is aroumd® second, the
mobile node now hits the boundary &f frequently as seen
in Figure 4(b), so it is essentially bounded.

In order to better grasp the idea of the space-time dynamics,

180 150 let us take an example of the so-calleédld. mobility model
~509. 5 w0 1595 5 —e, and sftudy_differfer_lt waysdofhsga!ing the sizc:1 ofdt_he.tt:ogndarfy
4 p as a function of time and their impact on the distribution o
(a) 0,107 (second) (), 10°] (second) the inter-meeting time. In thé.i.d. mobility model, a node

Figi.4- Sampltzj trajecttqriesdof fi¥e nodeiofgllowing S‘fand%rﬂbB(f)Oerggn moves in aD x D square consisting oF = D? unit cells. At
?ggclggd()). Zelir\r/]?)de(;vgtrarltn??omutr}?el(:)nrig(ﬁl)’at: %.(iiceogvgergge ((ﬁsjpiacem}ent th.e start of each t!r_ne_smt' the node jumps to P”GVOte”S
of each node scales @(+/%) from both (a) and (b). with equal probability independently of everything elsetél
that this is equivalent to setting;; = 1/N in the RWM in

of interest, it is almost equivalent to the random walk in afection llI-B. The two nodes ‘meet’ whenever they are in the
open-space or we can say there is practically no boundsggme cell, and at any given time, this happens with prolgbili
In this regard, the question is: where does the transitiomfr 1/N = 1/D?. Suppose now that the length of the boundary
exponential to power-law happen? Or, equivalently, how éo vis a function of time, i.e.D = D(t). WhenD(t) grows over
scale the size of the space (boundary) to observe the pow#ne (i.e., D(t) — oo ast — oc), note that
law inter-meeting time distribution over a given times@ale BN 10 s S

The answer lies in the interaction between the timescale {77 >t} =[1 —1/D*(1)] PRO i~ em T,

under discussion and the size of the boundary. As an exam%eremt N)2t/D2(t). Hence, the scaling functiop(t, N')
consider a 2-D random walk model in (30) (or equivalentl{ompletely determines the tail behavior of the inter-nregti
we can take 2-D Brownian motion in a continuous time cas§jme. For example, wheg(t, N) ~ ¢ or D(t) = O(1), we
Note that haveP{T; >t} ~ e~ "t as expected. When(t, N) ~ alogt,
¢ ¢ we getP{T; >t} ~e~ 18t =t~ In other words, we get the
2 (0,0 2 2 ;
E{A()[*} = Y E{Ry R} = "E{R}} =0t desired power-law behavior when the length of the boundary
k=L =t is scaled agD(t) ~+/t/(alogt). This is also consistent with
from E{¢*®} = 0 and the independence of the randorihe aforementioned discussion that the average displateme

variables fork + 1. Thus, its standard deviation or theerage scales asO(y/t). By maintaining the size of the space as
displacemenbf node A during timet scales ag)(v/1).1° In  D(t) = O(y/t/(alogt)) or larger, we can ensure that the
other words, after a duration of time a node will typically ‘world’ is expanding at about the same rate (or larger) as the
travel a distance of)(1/%) from its original position. node, so the node rarely feels the existence of the boundary.
Suppose that the maximum timescale of interespjg.e., If D(t)<O(\/t/(alogt)), the size of the world grows much
we are interested in system dynamics only offer,], and slower than the average displacement of a node, so the node
the ‘radius’ of the bounded spacerig. Whenr, < /%y, the inevitably hits the boundary frequently and the non-polaer-
node will hit the boundary (thus ‘feel’ it) many times and @r exponential behavior of the inter-meeting time kicks in.
mobility model with a finite boundary is in effect. Hence all This first-order scaling rule vig(t,N) also provides a
the results in Section IIl naturally apply. In contrast, wheway to choose a ‘right’ size of the world in the random
ro > /to, the node will almost never hit the boundary an@alk model for the study of MANET. For instance, if one is
we can say that the node is moving around practically in &nterested in some performance metric that makes sense only
unbounded space. Hence in this case results similar to the¥€r a certain time period, e.g., hours, days, or even weeks
in Section 1V apply. (could be possible in delay-tolerant network settingsgnth
For example, Figure 4 shows sample trajectories of fi¥ge scaling functiory(z, V) tells us approximately how to set
mobile nodes following the standard 2-D Brownian motiorthe size of the boundary in which the MANET is operating
observed over time duration (&), 10%] and (b)[0, 10°] (sec- SO as to make the inter-meeting time power-law distributed.
onds) and drawn over different— 3 ranges. As the timescaleAnother possible way is to dynamically increase the size of
increases by 100 times, the average displacement of eagh ¢ boundaryD(¢) as time goes on to control the ‘frequency’
grows approximately by/100 = 10 times. This figure also of hitting the boundary as desired.
provides an answer to whether a given domain is essentially
bounded or not. For instance, if the time scale of interest g power-Law vs. Heterogeneous Approach
[0,10%] secondg! the mobile node rarely hits the boundary

of © = [=500m, 500m]?, thus Y’ is essentially unbounded. The power-law behavior of the inter-meeting time distribu-

tion reported in [2], [4] is from the ‘aggregate’ measureimsen
1owe implicitly assume thab® — B{R?} < co. If E{R2} = oo, then in _vvh|ch all the mter—mgetmg time samples_for all possible

under constant velocity, the mobile node tends to ‘spreddquicker and its  Palf's of nodes are taken mtq accountover a given meaSljl_temen

average displacement will grow faster th@x{v/z). period. An analytically feasible way to model this behaugr
1INote that mobile noqes_ha_ve to a_Iways f0||OW space-contisupaths, to assume that all mobile nodes aréd. [2]’ |e, the inter-

even when the system is in its stationary regime. Here, timean be . . f ir of d foll h distri

understood as a time instant at which the node is around theerde the ME€Ng time of any pair ot nodes follows the same distri-

steady-state bution. This applies to the scenarios where the (indivigual
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inter-meeting time of a given pair is close to the ‘aggregate 10° ——————— :

inter-meeting time as evidenced by the in-depth study if.[16 - SN "~.\
' hJ

There are also different voices, e.g., [29] claimed that the / ."'—‘_‘ N
power-law behavior observed from these aggregated inter- | | P *) *\  Slope2
meeting time samples can also be a result of the hetero- §10‘1’ !‘\ Slopel
geneity in the inter-meeting time of different pairs whehne t AN f
‘individual’ inter-meeting time of a given pair still folles 10* ".“ "\,..
an exponential distribution. This type of approach has been . o 7000 "1'2500
widely used in teletraffic engineering [30] to represent pow 0 0 0 0
law decaying correlations as a weighted sum of exponential Time (sec)

functions to facilitate Markovian analysi8. This approach, ] o i
however, is unable to reflect the recent findings in [16] wheE%’v;/fr'_laWC%aDLngtmi %%nt;%;?gg'Zgl'énev?,inﬂat\'g;égr EVXEO%O‘:;Z
the ‘individual’ inter-meeting times for most pairs of n@de ;, = 1.5 in (33) so thatE{r} = 400 seconds and the average step length is
(always more than a half) do exhibit power-law behavigibout104.2m [20]. Underv = 1m/s, this leads tol00/(400 + 104.2) =
over a wide range of timescale. Nevertheless, the existerfig £ 4o, e, 50017 fom ouf Smaton, S e o
of heterogeneity itself in the nodes’ behavior and theiefint The inset in the bottom left shows the same curves on a s@mplot to
meeting time (in terms of different ‘contact rates’ undeg thclearly show the heavier-than-exponential behavioiis the point where the
assumption of exponential distribution or Poisson cosjacfect of pause time starts to kick in.

as pronounced in [29], [32], [33] suggests that performange Etffect of Pause Time

?:kaelﬁs\lljitﬁa;fedafgaar\ehomogeneous setting witi. nodes be Our analysi§ SO far can also be employeql to stl_de_ thg effect
] ) ] _of the transmission rangé on the contact time distribution.
We here emphasize that our focus in this paper is QR fact, the contact time can be looked as the inter-meeting
the inter-meeting time distribution ainy given pairof two  time with N&(t) in equation (2) replaced by its complement
nod_es. T_hus, our results can be applied to homogene_g\l/tg(t) = O\ N5(t). Consequently, the size of boundary and
§ettlng withi.i.d nodgs as Welllas any heterogeneous settigs transmission range can be used to control the interimgeet
in which some fraction of pairs of nodes have power-laime and the contact time distribution, respectively. Inicast,
like inter-meeting times while others have exponentiagint o pause time of mobile node affects both the contact and
meeting times with different ‘contact rates’. For instanGer inier-meeting time distribution. Clearly, as stated in Reki7,
observation on space-time scaling in Section V-A suggests tihe power-law pause time with infinite mean makes both the
we can control the shape of the ‘individual’ inter-meetingonact and inter-meeting time have infinite means. On the
time distribution to be either an exponential or a mostlyiher hand, when the pause time has all the finite moments,
power-law by choosing appropriate domain size with respefheorem 1 guarantees that the inter-meeting time distoibut
to a given time scale. Specifically, an exponential-likeint 5, 4 hounded domain should be of exponential type.
meeting time distr_ibution can be gene_rated by pairs of_nodesln this section, we briefly discuss the effect of power-
in the same ‘social group” whosmoving domainf(t) is |aw pause time with finite mean on both the contact and
essentially bounded with respect to the time scale undgfer-meeting time distribution. The heavy-tailed natafehe
consideration and nodes in that group rarely cross over these time distribution has been discovered in recent @mpir

boundary of(2(t). Note that the boundary here is not physicaly,gies [34], [35]. Specifically, we consider the pause time
but should be interpreted as a virtual dieSimilarly, for

certain pair of nodes that are loosely coupled, i.e., theidee P{r >t} = min{1, (¢/7min) "}, p>1. (33)

in a much larger moving domain with weak correlation Fjearly. th | . f nodawill ib
they belong to totally different social groups, the onlyr{wal) ear y, the POWEr-'aw pause time of noglewill contribute to
' the inter-meeting time betwee and B wheneverA pauses

boundary that “push’ them back is from their_own da”.}foralong time outside oB’s transmission range, thus making
movement pattern (e.g._, people _retu_rn_mg home after V.Vg.rk"fhe inter-meeting time power-law distributed as well.
8 hogrs or buse_s rgtur_nlng tp their origins) and thus th_wrm In order to quantitatively capture the extent to which a give
meeting time distribution will follow a power-law.unnl the power-law affects the contact and inter-meeting time ithigtr
hit this “virtual boundary” over a much longer period. tion, we consider two independent mobile nodes following
RWP defined or200m x 200m square, where each node has
transmission rangé = 50m and pauses for seconds after
12For any completely monotone function [31] (including alletipower- each step. Figyre 5 shows that the CCDF qf b(_)th the contact
law functions) f (), with (=1)" f")(r) > 0 for all t andn = 1,2,..., and inter-meeting time follow power-law distribution aband
there existsh(s) > 0 such thatf(t) = [o* e~ *'h(s)ds. Thus, by suitably timescale103. Further, it also indicates that the exponents of
choosing the ‘weights’a(s), a given power-law can be represented as % T . ..
weighted sum of exponentialee—5t}. the power-law distributions of contact and inter-meetimget
13The whole group (e.g., students in the same grade and samerdept are both around 1.5 (slopel and slope2 are almost the same
following similar class schedules in a campus) may move tdviae same gn g |Og-|Og scale) matching the exponent in the power-law
destination while their tendency to maintain contact witheo nodes in the pause time. This iS' in contrast to the empirical results nn [2

same group will create ‘virtual boundary’ to ‘force’ themdsavhenever they - - ) h
are about to leave the group’s trajectory. showing that there exists a sizable difference between the




two exponents in the power-law distributed contact andrinte
meeting time (The difference is about 0.9 for Bluetoothduhs
dataset, and is more than 1.3 in WiFi datasets). Hence, in
view of our discussion above, the power-law pause tome

is not enough to capture the varying degrees of power-law
behavior in the contact and inter-meeting time, and ourespac
time scaling for the domain size discussed in Section V-A
should be in effect to properly capture the stronger power-
law behavior in the inter-meeting time distribution over an
appropriate range of timescale.

V1. SIMULATION

In this section we provide simulation results to support
our theoretical results in Sections Ill and 1V, as well as the
discussion on scaling the size of the space in Section V.
We here consider RWP and random walk model (RWM)
with/without boundary. In any case, the speed of a node is
chosen uniformly from 1 m/sec to 1.68 m/sec with a mean
value of 1.34 m/sec [34], since this is known as the mean
walking speed of human beings. The transmission range is
set to 50 meters, and we have square domain for all mobility
models with finite boundary in our simulations.

10°
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As mentioned before, the interaction between the timesclé 7- CCDF of the inter-meeting time for RWM models undeifedent
. . . . ._Sizes of the domain on a log-log scale (a) and on a semi-lote b8
under discussion and the size of the boundary is essennalSTHg

determining the tail behavior of the inter-meeting time.sée

hitting frequency to the boundary decreases as the $ifgecdomain

this interaction, we fix the simulation time period and chan

increases. For(5000m)? size, a node rarely hits the boundary and thus
oves like in an unbounded space and produces power-lawibelad the

. . : . ter-meeting time, in (a). E tial behaviaghefinter-meeti
the size of the boundary using RWP and RWM (including bongner meeting time, as seen in (a). Exponential behavihefinier meeting

e distribution under smaller domains (e.(200m)2, (400m)?) is clearly

bounded and essentially unbounded domain cases) modelshtwn in (b)(1) (straight line on a semi-log scale). Povesv-type behavior
observe different tail behaviors of the inter-meeting time

10°

CCDF

m— 200mMX200m (No Pause)
= = = 200mX200m (Pause)
m— 500mMX500m (No Pause)
= = = 500mX500m (Pause)
. w1 000MX1000m (No Pause) |4
= = = 1000mX1000m (Pause)

2 3
Inter—-meeting Time (sec) 4

Fig. 6. CCDF of the inter-meeting time for RWP models undéfecknt sizes
of the domain: “Pause” means an exponentially distributedsp time with a
mean value of 3 minutes, and “No pause” means zero pause Figere is
drawn on a semi-log scale. In any case, the slope increaséder domain.

starts to appear in mid-to-large domain size as shown ir2)b)(

slope of the exponential tail is given kyt, N)/t = 1/D>.

In other words, the slope of the tail in a semi-log scale is
inversely proportional to the area of the bounded doma&i) (
Similarly, even for RWP models, we notice from Figure 6 that
the product of the slope of the tail and the area of the domain
(ranging from2002 up to 10002 square meters) remains almost
constant, which implies that the intuition obtained frémd.
mobility models can also be applied to RWP models.

Figure 7 shows CCDF of the inter-meeting time on a log-log
scale for random walk models (RWM) under different sizes
of the domain, where the boundary is always reflective. To
observe the transition of inter-meeting time behavior fram
exponential type to a power-law more clearly, we draw the
simulation results both on a log-log scale in Figure 7(a) and
on a semi-log scale in Figure 7(b). In this case, we set the

Figure 6 shows the complementary distribution (CCDF) Gfimuylation period to 40 hourS. Here, we use a very simple
the inter-meeting time?{7; > ¢} on a semi-log scale for ang widely used random walk model where a node changes
RWP models under varying sizes of the domain. We set tQgections uniformly from[0, 2] every 50 seconds [11]. For
simulation period ag0 hours}* and simulate zero pause timegach size of the domain simulated, we calculate the hitting
case (‘no pause’) as well as an exponentially distributets@a frequency defined as the ratio between the number of steps
time with mean of 3 minutes (‘pause’). Note that no matt&githin which the node hits the boundary and the total number
how large the boundary is, the inter-meeting time always hggsteps. For example, when the size of domaia0ig x 200,
an exponential tail, which is in good agreement with oupe hitiing frequency is quite high (40.0%), thus the inter-

theoretical results in Proposition 1 and Theorem 1. Recgleeting time behaves like an exponential (The CCDF of
from Section V that in case of.i.d. mobility models, the

14The timescale which matters in real network is commonly &dhder of

hours (less than one day). Hence, we choose 40 hours, wHmigi®nough to  can be looked as bounded, whereas the other two can be loslessentially
observe the accurate tail behavior of the inter-meeting timthis timescale.

15Since /144000 = 1.35 ~ 512 (144000 seconds are 40 hours, 1.35 is the

standard deviation of step length), we expect that the twallest domains

unbounded from our discussion in Section V.



inter-meeting time is a straight line on a semi-log scale, as
shown in Figure 7(b)(1).) as expected from our theoreticaﬁ]
results. In contrast, when the size of the domain is veryelarg
(5000 x 5000 square meters), the hitting frequency is as low
as 1.7%, which means that it is practically an unbounded?!
domain for the duration of the timescale (40 hours). Hense, a
Theorem 4 shows, the inter-meeting time follows a power-law
distribution. (The CCDF of inter-meeting time is a straiihé 3]
on a log-log scale, as Figure 7(a) shows.) Further, the slope
of this CCDF on a log-log scale is shown to be around 0.254]
which is also consistent with our findings in Section IV. In
addition, for a large domain size (e.d)00m x 1000m), the
power-law behavior is dominant over up €(10*) seconds,
followed by a sharp decrease beyond that timescale. As sho
in Figure 7(b)(3), beyondl0* seconds, the inter-meeting
time distribution decays exponentially. This behavior lisoa [7]
consistent with the measurement studies in [4], [16], and is
well expected from our theoretical results in Sections\Mll- [g]

(5]

VII. CONCLUSION [9]

In this paper we have proven that one of the fundamental
reasons, for the discrepancy on the tail behavior of intgn0]
meeting time between the recent empirical data and the theo-
retical/simulation results based on most of the currentilitpb (17
models, is thefinite boundary with respect to the timescale
of interest We have also shown that simply removing thé?
boundary can quickly change the inter-meeting time distri-
bution from exponential to power-law by studying a simplg3]
random walk in an open space. Further, our guidelines on
scaling the size of the domain also help better understamd fhy,
true role of the boundary. Our theoretical results and figslin
provide guideline on mobility modeling, performance asay
and protocol design, to survive the ‘curse’ of the power-la\%s]
distribution of the inter-meeting time in MANET. [16]

APPENDIXA
PROOF OFLEMMA 1

[17]

In view of Proposition 2 in [36] and|Px, - - Pry, llee < [18
1 for any index set{ki,--- ,ka}, (ki € {1,---,L}, @ €
{1,---,M})andM < oo, the following condition is satisfied

by A(Z, k):

[19]

[20]

limg o0 A(Z,k) =0, forall Z = {ny,nsg,...} (34)

[21]
wheren; € {1,2,...,L} forall [ € N. [22]
Define a discrete-time system whose state at tirisegiven

by a1l x N vector X(¢) where X(t) = X(t — 1)P,, =
... = X(0)A(Z,t) = ZHA(Z, t). Relation (34) means that the
system is absolutely asymptotic stable (Section 3.1.17j)[3
which is equivalent to saying that the system is absolutdRp]
exponentially stable (Definition 3.1 in [37]), i.e., for ay, 26]
there exists constant > 0, 0 < ¢ < 1 such that for all

sufficiently largek,

(23]

[24]

[27]

”fOA(I’ k)” < qu”fouv (35) (28]
where|| - || is any vector norm. Specifically, (35) is true for??!
n—norms|| - ||,. |
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