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Crossing over the Bounded Domain: From
Exponential to Power-Law Inter-Meeting Time in

Mobile Ad-Hoc Networks
Han Cai and Do Young Eun

Abstract—Inter-meeting time between mobile nodes is one of
the key metrics in a Mobile Ad-hoc Network (MANET) and
central to the end-to-end delay of forwarding algorithms. It
is typically assumed to be exponentially distributed in many
performance studies of MANET or numerically shown to be ex-
ponentially distributed under most existing mobility models in the
literature. However, recent empirical results show otherwise: the
inter-meeting time distribution in fact follows a power-law. This
outright discrepancy potentially undermines our understanding
of the performance tradeoffs in MANET obtained under the
exponential distribution of the inter-meeting time, and thus calls
for further study on the power-law inter-meeting time including
its fundamental cause, mobility modeling, and its effect. In this
paper, we rigorously prove that a finite domain, on which most
of the current mobility models are defined, plays an important
role in creating the exponential tail of the inter-meeting time.
We also prove that by simply removing the boundary in a
simple two-dimensional isotropic random walk model, we are
able to obtain the empirically observed power-law decay of the
inter-meeting time. We then discuss the relationship between
the size of the boundary and the relevant timescale of the
network scenario under consideration. Our results thus provide
guidelines on the mobility modeling with power-law inter-meeting
time distribution, new protocols including packet forwarding
algorithms, as well as their performance analysis.

Index Terms—mobile ad-hoc network, inter-meeting time dis-
tribution, exponential vs. power-law, bounded domain, time and
space scaling.

I. I NTRODUCTION

Capacity and delay are two main factors in assessing the
performance of MANETs. In order to successfully transfer
data from a mobile node to another, the mobile node needs to
first wait until it ‘sees’ other mobile node (until it gets inside
the transmission range of the other node) for data-relay, and
then will be able to relay the data during the period it maintains
the connection with the other node. The former metric is called
the inter-meeting timeof the two nodes [2], [3], [4], and the
latter is called thecontact time[4]. These two metrics are
critical in determining the delay and capacity of the network,
as well as choosing various scheduling/forwarding algorithms.
In particular, the inter-meeting time of two nodes is a major
component of the end-to-end delay in MANET [5], [6], [7],
[8], as it denotes how long it takes to encounter the other
mobile node to have any chance to relay/forward the data for
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communications. Larger inter-meeting time leads to largerend-
to-end delay.

There have been several studies on the characteristics of
the inter-meeting time in the literature. For example, authors
in [7], [6] assume that the inter-meeting time is exponentially
distributed so as to make their analysis tractable. This assump-
tion is supported by numerical simulations [9], [6] based on
random waypoint mobility model (RWP) [10], [11]. Further,
there have been also some theoretical results showing that
the first and second moments of the inter-meeting time are
bounded above [9], [8] under Brownian motion model on a
sphere [12].

However, recent empirical results on the inter-meeting time
via real, extensive mobility traces [2], [3], [4] in fact indicate
that the tail behavior of the inter-meeting time is far from
being exponential, but is close to a power-law [2], [4]. For
example, in [4], four distinct sets of data are used to analyze
the inter-meeting time. Two of them test WiFi networks (large
area) containing thousands of nodes over three or four months
(UCSD [13], Dartmouth [3]); another two use a Bluetooth
network [4] containing hundreds of nodes in an office/lab
environment (small area) over several days. All of these
invariably show that the distribution of the inter-meetingtime
T follows a power-law over a wide range of timescale, i.e.,
P{T > t} ∼ t−α for some constantα > 0. More strikingly,
there it was also shown that the power-law exponentα is
typically less than 1, making even the first moment of the
inter-meeting time infinite. This is in sharp contrast to allthe
results in the current literature where an exponential inter-
meeting time distribution is either assumed or numerically
verified through various current mobility models.

The above discrepancy between the recent empirical data
and the theoretical/simulation results based on current mobility
models has motivated several studies in the literature. [2]in-
vestigates the effect of power-law inter-meeting time distribu-
tion on the system performance (capacity and delay) and calls
for new mobility models to produce power-law inter-meeting
time; [14] studies the effect of infrastructure and multi-hop
transmission on networks with power-law inter-meeting time
and calls for new forwarding algorithm to effectively utilize
communication opportunities such as the existence of low-
delay multi-hop path; [15] proposes a method to generate
power-law inter-meeting time using one dimensional random
walk model. Most recently, [16] has found that although the
inter-meeting time distribution follows a power-law over a
wide range of time scale, there exists a characteristic time,
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on the order of about half a day, beyond which the inter-
meeting time distribution decays exponentially. While these
works provide some answers to the characteristics and effect
of power-law inter-meeting time, the following question still
remains:What is the fundamental reason for this discrepancy?
The answer to this question is very important1 because the
disclosure of the fundamental reasons will provide essential
guidelines on all related studies in MANETs – modeling of
power-law inter-meeting time, analysis of its effect [2], [14],
capacity-delay trade-offs [7], [8], [12], and the design and
performance analysis of relaying algorithms [7], [2].

In this paper, we first show that thefinite boundary(with
respect to the timescale of interest) is one of the key aspects
that give rise to the universal appearance of the exponential
inter-meeting time distribution in the literature. Indeed, almost
all the current mobility models have boundaries or “end-of-
the-world”. For example, in the definition of RWP [10], [11],
the boundary is necessary because whenever the node changes
direction and/or speed, it selects the destination ‘uniformly’
over some bounded simulation area. As for random direction
mobility model (RDM) [17] andi.i.d. mobility model [11],
a boundary is incorporated into their definitions. Similarly,
for random walk mobility model (RWM) [18] or Brownian
motion on a sphere [12], the boundary is also enforced as
all the mobile nodes are constrained to move on a sphere or
inside a boundary. Here theboundarymay be of different types
including ‘reflective’ or ‘wrapping’ as defined in [11], which
converts a 2-D rectangular area into a torus-shaped area.

In particular, we rigorously prove that the tail of the inter-
meeting time between two independent mobile nodes2 decays
at least exponentially fastfor any RWP model and for any
RWM (or RDM) as long as the boundary is finite, i.e.,
the mobility model is defined on a bounded domain. Our
assumptions are quite general in that they are satisfied by
nearly all the current mobility models in the literature. Our
results readily show the finiteness of all the moments of
the inter-meeting time (much stronger than the finiteness of
only the first and second moments as shown in [9]), and
provide analytical support on the simulation-based studies of
the inter-meeting time under the current mobility models with
boundaries [9], [6].

Our theoretical results imply that the finite boundary with
respect to the timescale of interest, among others, is the
key determining factor of the exponential decay in the inter-
meeting time distribution. Moreover, we prove that removing
the boundary from 2-D RWM readily gives the power-law
distribution of the inter-meeting time.3 We also discuss the
relationship between the size of the boundary and the relevant

1Even with the recent claim in [16] saying that the tail of inter-meeting time
distribution is still exponential after the characteristic time around 12 hours,
note that the delay of interest in most of the network scenarios is within this
time scale over which the inter-meeting time distribution exhibits power-law
behavior [2], [16].

2Mobile nodes may be dependent if they belong to the same ‘group’
and follow similar paths, or belong to different groups whose pathways
rarely overlap. The inter-meeting time in such cases may show very different
characteristics, which is beyond the scope of this paper.

3Similar suggestion has been made in [15] via 1-D random walk,while our
example in Section IV is in 2-D.

timescale of interest and their effect on the inter-meeting
time distribution, the heterogeneous modeling approach toward
power-law like inter-meeting time distribution, as well as
the effect of nodes’ pause time on their inter-meeting time
distribution. Simulation results are provided to support our
theoretical analysis and discussion.

The rest of the paper is organized as follows. Section II
first presents related work on empirical observation of the
power-law inter-meeting time distribution, and then provides
several definitions and technical results to be used later on. In
Section III, we prove that mobility models with finite boundary
always yield exponential inter-meeting time distributionat
least in an asymptotic sense. In Section IV, we show that
mobility models in an unbounded space necessarily produce
power-law decay of the inter-meeting time. In Section V, we
provide some discussion on the relationship between the size
of the boundary and timescale of interest, and their effect on
the inter-meeting time. Also, we discuss the heterogeneous
modeling approach and the effect of pause time on the
inter-meeting time distribution. Some simulation resultsare
presented in Section VI to support our theoretical findings
and discussion on time/space scaling. We finally conclude in
Section VII.

II. PRELIMINARIES

A. Empirical Observation of Power-law

The power-law behavior of the inter-meeting time distribu-
tion has been reported through various data sets under different
scenarios. In this section, we provide brief summary on how
those data sets have been collected and interpreted in the
context of the inter-meeting time distribution, while referring
to [4], [2], [14] for more details.

Most data sets available for inter-meeting time study in the
literature can be classified into access point (AP) based or
Bluetooth-based ones. AP-based data sets [13], [3] keep track
of the time instants at which a mobile node gets associated
with an AP and typically record activities (AP logs) of a
large number of mobile nodes for a long period of time. Two
nodes are assumed to ‘meet’ only if both of them are in the
range of the same AP. In view of the inter-meeting time of
mobile nodes, some inaccuracies are inevitable in these AP-
based data sets since (i) two nodes within the range of each
other may not be within the range of the same AP, i.e., the
duration of the inter-meeting time could be overestimated,and
(ii) two nodes within the range of the same AP may be out
of their communication ranges as well, i.e., the inter-meeting
time could also be underestimated.

On the other hand, Bluetooth-based data sets record time
instants at which a node is in contact with other nodes, along
with the ID of the node in contact [4], [2], [14]. While the
number of nodes and the duration of the activities are typically
smaller than those of AP-based ones,4 Bluetooth-based data
provide more accurate information on the inter-meeting time,

4For example, the UCSD data set [13] includes more than 195 thousands
contacts collected from 273 participating devices over 16 days, while the
Infocom 2005 Blluetooth-based data set includes about 7 thousands contacts
collected from 41 dedicated iMote devices over 3 days.
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as they are free of any reference to APs and directly keep
track of contact/inter-contact events. Nevertheless, in all AP-
based and Bluetooth-based data sets, the power-law behavior
of the inter-meeting time has been shown to persists over from
several hours up to even days.

B. Assumption and Definitions

In this section we collect basic assumptions, notations and
several definitions of the metric of interest that will be used
throughout the paper. We also provide some basic properties
associated with those definitions and notations.

We consider two mobile nodes A and B, each of which
moves according to some mobility model inΩ ⊂ R

2. The
domainΩ (the entire ‘world’ for the mobile nodes) can be
bounded or unbounded depending on our choice of mobility
models in sequel. LetA(t), B(t) ∈ Ω be the position of the
node A and B at timet, respectively. We will assume thatA(t)
and B(t) are independent unless otherwise specified. As our
main interest lies in the statistics of the inter-meeting time of
two nodes, we find the following definition useful.

Definition 1: Let {S(t) ∈ Ω}t≥0 be a collection of subsets
of Ω. The first passage time (FPT)TF of A(t) to {S(t)} is
defined as

TF , inf
t>0

{t : A(t) ∈ S(t)}.

given thatA(0) 6∈ S(0). �

Assumption 1:Two mobile nodes can communicate with
each other whenever they are within a distance ofd, the
transmission range of the mobile node. �

Remark 1:Assumption 1 is reasonable if the density of
the mobile nodes is not high and the interference from other
mobile nodes are negligible. This is especially the case in
sparse mobile networks or delay/disruption tolerant networks
(DTNs) [19], [14], [4]. In case of high level of density of
mobile nodes, our assumption might be rather optimistic and
would lead to underestimation of the actual inter-meeting time,
since two nodes may not be able to communicate due to
interference even when they are nearby. Still, even for sucha
highly populated MANET, our subsequent analysis can also be
applied to different mobile ‘groups’ whose density is usually
much lower than that of mobile nodes.

Definition 2: The inter-meeting timeTI of nodes A and B
is defined as

TI , inf
t>0

{t : ‖A(t) − B(t)‖ ≤ d}, (1)

given that‖A(0) − B(0)‖ = d and ‖A(0+) − B(0+)‖ > d.
Here,‖ · ‖ is the Euclidian norm in 2-D. �

Define byNB(t) a set of points that can be reached by node
B at time t. Specifically,

NB(t) , {s ∈ Ω : ‖s − B(t)‖ ≤ d}. (2)

Then, the inter-meeting time becomes the FPT ofA(t) to
{NB(t)}, given thatA(0) ∈ NB(0) andA(0+) 6∈ NB(0+).

As we will be interested in the behavior of the tail of the
inter-meeting time distribution, it is advantageous to introduce
the following definition.

Definition 3: Let P be a collection of positive random
variables whose complementary distribution decaysat least
exponentially fast. Specifically, we writeX ∈ P if there exists
a constantc > 0 such that

lim sup
t→∞

1

t
log P{X > t} ≤ −c < 0. (3)

Note that (3) impliesP{X > t} ≤ exp(−ct + o(t)) where
o(t)/t → 0 as t → ∞. Or, equivalently,P{X > t} =
exp(−c[1 + o(t)/t]t) ≤ Ke−c′t for someK >0, c′ > 0, and
for all sufficiently larget (such that|o(t)/t| < ǫ, whereǫ is a
constant in(0, 1) and we can choosec′ = c(1− ǫ)), indicating
that the tail ofX decays at least exponentially fast. With this
definition, we immediately obtain the following propertiesthat
will be useful later.

(P1) If X, Y ∈ P , then aX + bY ∈ P for any positive
constantsa, b.

(P2) If X ∈ P , thenXe ∈ P , whereXe has the equilibrium
distribution ofX , i.e.,

Fe(x) = P{Xe ≤ x} =

∫ x

0

P{X > u} du/E{X}. (4)

Property P1 can be seen by noting that for any (possibly
dependent) random variablesX andY ,

P{aX + bY > t} ≤ P{X > t/(2a)} + P{Y > t/(2b)}. (5)

P2 follows since

P{Xe > t} ≤ 1

E{X}

∫ ∞

t

Ke−c′xdx =
K

c′E{X}e−c′t

for all sufficiently larget, where the first inequality holds since
P{X > t} ≤ Ke−c′t for some K > 0 and c′ > 0 from
Definition 3. Further,X ∈ P ensures that all the moments
of X are finite, thus its moment generating function is well-
defined, i.e.,E{eθX} < ∞ for someθ > 0.

III. I NTER-MEETING TIME WITH EXPONENTIAL TAIL

In this section we are interested in mobility models with
finite boundaries, i.e.,Ω ∈ R

2 is bounded, and rigorously
prove that mobility models such as random waypoint mobility
models (RWP) and random walk models (RWM), defined
on a bounded domainΩ necessarily result in an asymptotic
exponential tail of the inter-meeting time. We will consider
the case of unboundedΩ (e.g.,Ω = R

2) later in Section IV.

A. RWP Models

In RWP model [20], a node first selects a random waypoint
as its destination uniformly in a convex bounded regionΩ,
and a speedV uniformly from [vmin, vmax] (0 < vmin ≤
vmax), and then moves to its destination at its chosen speed.
After it reaches the destination, it pauses for a random amount
of time and then selects a new destination and speed, and
repeat the whole procedure independently. Denote the time
instant at which a node pauses and chooses a new destination
as joint time and the path of a node consisting of a straight
line segment as oneleg [20]. The speed of node A is chosen
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uniformly from [vA
min, vA

max]. Let τA
n be the duration of the

nth pause time of A. Similarly we defineτB
n for node B.

We first consider the traditional RWP model where all the
pause times are zero and mathematically prove that the inter-
meeting time decays at least exponentially fast. Later in this
section, we generalize the result to include the case of non-
zero random (possibly infinite) pause time. Throughout the
section we assume that nodes A and B are independent, but
we do allow that the speed and pause time distributions are
different for different nodes.

RWP with Zero Pause Time:First, consider the zero pause
time case. LetτA

n = τB
n = 0 for all n = 1, 2, . . .. Then we

have the following result.

Proposition 1: There exists constantc > 0 such that

P{TI > t} ≤ e−ct,

for all sufficiently larget. �

Proof: Let D < ∞ be the ‘diameter’ ofΩ or the
maximum length of a line segment (leg) inΩ. Let

ζ = 2D/ min{vA
min, vB

min} > 0,

which is well defined sincevmin > 0 and D < ∞. Note
that ζ is the longest time it takes for both nodes to finish two
legs. In other words, during the time interval ofζ, both nodes
must have jumped at least twice. Hence,ζ can be interpreted
as a renewal interval for nodes A and B since for anyt >
0, {A(s); s ≤ t} and {A(u + ζ); u ≥ t} are independent
(similarly for node B), i.e., afterζ seconds, nodes A and B
completely forget where they wereζ seconds ago [20].

Let πA andπB be the stationary node distributions of A and
B, respectively, and letX(t) = (A(t), B(t)) ∈ Ω2. Without
loss of generality, we assume that the initial distributionof
X(t) is chosen as its stationary distributionπA × πB. One
immediate consequence is that the joint node distribution of
A and B becomes stationary, i.e.,P{A(t) ∈ S1, B(t) ∈ S2} =
πA(S1)πB(S2) for all t > 0 andS1, S2 ⊂ Ω.

Let Et = {‖A(t) − B(t)‖ > d} be the event that two
nodes are ‘out-of-range’ at timet. From the stationarity
assumption,P{Et} does not depend ont. Since the stationary
node distribution of the RWP is non-zero on any point of
Ω [20], for any givenB(t) = B ∈ Ω, we see that there exists
a positive constantf (may depend ond and the shape ofΩ)
such thatπA(NB(t)) ≥ f > 0 whereNB(t) is from (2). Thus,
by taking average again with respect toπB, we have

P{Et} ≤ 1 − f , ρ < 1. (6)

Observe that for the inter-meeting timeTI , we have

{TI > t} ≡ ∩t
s=0+Es ⊂ ∩s∈It

Es (7)

for any subset (index set)It ⊂ (0, t] [21]. Now, we choose
the index setIt = {ζ, 2ζ, ..., ⌊ t

ζ ⌋ζ}. Sinceζ is the ‘renewal’
interval for both nodes, it follows thatX(ti) (i = 1, 2, . . .) are
all independent wheneverti ∈ It and ti 6= tj . Thus,Eti

for
different ti in It are also independent. Hence, from (7),

P{TI >t} ≤ P

{

⋂

s∈It

Es

}

=
∏

s∈It

P{Es}≤ρ⌊
t
ζ
⌋ ∼ e−ct, (8)

wherec = −(log ρ)/ζ > 0 from 0 < ρ < 1 and0 < ζ < ∞.
This completes the proof.

Remark 2:Proposition 1 can be immediately extended to
the case of non-zero pause time as long as it is bounded above.
If max{τA

n , τB
n } ≤ M < ∞, we just need to redefine the

renewal interval asζ′ = ζ + 2M in the above proof.

RWP with Random Pause Time:We now consider RWP
models with non-zero random pause time. LetV A, V B and
τA, τB be the speed and pause time of two independent
nodes A and B, respectively. Similarly as before, we define
a sequence of ‘renewal’ intervals for node A as

T A
n ,

D

V A
2n−1

+ τA
2n−1 +

D

V A
2n

+ τA
2n, for n = 1, 2, . . . ,

whereD<∞ is the diameter ofΩ. In words,T A
n is the longest

time it takes for node A to finish two legs including two pause
times. Then, as before, for eachT A

n , {A(s); s ≤ t} and{A(u+
T A

n ); u > t} are independent. Since{V A
n , n ≥ 1} are i.i.d.

(so are{τA
n , n ≥ 1}), it follows that {T A

n , n ≥ 1} are also
i.i.d. Similarly defineT B

n for node B.
Define X(t) , (A(t), B(t)) ∈ Ω2 and assume that the

system is in the steady-state with its stationary distribution.
Then, along the same line in the proof of Proposition 1, we
have for some0 < ρ̂ < 1,

P{TI > t} ≤ ρ̂|It|, (9)

where |S| is the cardinality of a setS and index setIt =
{t1,. . ., t|It|} ⊂ (0, t] has the following property:

{X(ti), i = 1, 2, . . . , |It|} are independent. (10)

The difficulty here lies in the fact that, in contrast to
Proposition 1, there is no finiteζ such thatX(t) andX(t+ζ)
become independent. In addition, even ifT A

n forms a ‘renewal’
sequence forA(t) (T B

n for B(t)), this does not mean thatX(t)
is also ‘renewing’ on any such sequence. For instance, aftera
‘renewal’ of node A, it could be that the pause time of node
B is exceptionally long so that the node A still has to renew
itself possibly an infinite number of times before it ‘sees’ a
renewal of node B.

In what follows, we will construct a random index setIt

satisfying (10). For notational simplicities, we useT A and
T B to denote the distribution ofT A

n andT B
n , T A

e andT B
e to

denote the equilibrium distribution ofT A and T B (see (4)),
respectively, whenever no ambiguity arises.

Sett = 0 as one of the ‘renewal’ point of node B. We will
inductively construct a sequence ofZn, n = 1, 2, . . ., where
eachZn is a sum of non-overlappingT B

k . Define

SZ
n =

∑n

k=1
Zk

and SZ
0 = 0. Starting fromSZ

n−1 (n ≥ 1), we first skip two
consecutive ‘renewal’ points of node A and then mark the
next following renewal point of node B. Lett′ be this marked
point. Then, we setZn , t′−SZ

n−1 andt′ = SZ
n . See Figure 1

for illustration. Notice thatZn consists of three parts: (i) the
residual life of node A (T A

r ) evaluated atSZ
n−1 (time from

SZ
n−1 until the first renewal point of node A), (ii) a renewal

interval of lengthT A
k for somek, and (iii) the residual life of
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Fig. 1. Illustration for the construction ofZn. Start fromSZ
n−1, first

skip two consecutive ‘renewal’ points of node A and then waitfor
the next following renewal point of node B. This definesZn. T A

r

andT B
r are ‘residual life’ of node A and B, respectively.

node B (T B
r ) evaluated at the second renewal point of node

A (from the second renewal point of node A untilSZ
n ). From

this construction, we have the following:

Claim 1: {Z2k−1}k≥1 are independent. So are{Z2k}k≥1.

Claim 1 immediately follows since for eachn, the first
component ofZn+2 (residual life of node A) and the last
component ofZn (residual life of node B) are disjoint and
separated apart by at least one renewal interval of node A and
B (see Figure 1).

To proceed, we need the following technical assumption.
Assumption 2:Let µk = E{Zk} < ∞. Then,

lim
n→∞

1

n

∑n

k=1
µ2k−1 = µ̃1 < ∞. (11)

Further, there existsθ0 > 0 such that for eachθ ∈ [0, θ0),

lim
n→∞

1

n

n
∑

k=1

log E

{

eθ(Z2k−1−µ2k−1)
}

= Λ1(θ) < ∞, (12)

where Λ1(θ) is well-defined and differentiable atθ = 0.
Similarly for µ̃2 and Λ2(θ) with indices in (11) and (12)
replaced by even numbers. �

Remark 3: (11) and (12) require that{Z2k−1}k≥1 have
similar distribution and the moment generating function of
each zero-mean random variablesZk − µk be finite in the
asymptotic sense. For example, if each of the three components
belongs toP ,5 then from property (P1), it readily follows
that Zn ∈ P , which guarantees the existence of the moment
generating function. One special case can be whereT A and
T B are both exponentially distributed, for whichT A

r and
T B

r are also exponentially distributed (due to memoryless
property) and thus Assumption 2 is automatically satisfied.
Moreover, (12) requires the moment generating function of
the node pause time to be finite. Later in Remark 7 and
Section V-C, we will discuss the effect of pause time with
infinite generating function and finite mean. The pause time
with infinite mean is beyond the scope of our paper. �

We now state our main result.

Theorem 1:Under Assumption 2, we haveTI ∈ P , i.e.,
the inter-meeting time of nodes A and B decays at least
exponentially fast. �

5If T A, T B ∈ P and the system is in the steady-state thatT A d
= T A

e (same

for T B ), then properties (P1) and (P2) ensure thatZ
d
= T A

e +T A+T B
e ∈ P .

Proof: Similarly as in the proof of Proposition 1, we take
one ‘snapshot’ ofX(t) per each renewal intervalZ2n (n =
1, 2, . . .). To be specific, we construct a random index setIt =
{t1, t2, . . .} as follows: chooset1 ∈ [SZ

1 , SZ
2 ], t2 ∈ [SZ

3 , SZ
4 ],

and in general,tj ∈ [SZ
2j−1, S

Z
2j ]. Repeat this procedure until

SZ
2n becomes larger thant. Then, for anyi < j, [ti, tj ] contains

at least one full renewal interval of node A and B, thusX(ti)
andX(tj) are independent. In this way, it is straightforward
to see that{X(ti), i = 1, 2, . . .} are independent (and actually
identically distributed from the stationarity ofX(t)).

Let N(t) , |It| be a counting process that tells us the
number of independent ‘snapshots’ ofX(u) = (A(u), B(u))
during [0, t]. By conditioning onN(t) and from (9), we have

P{TI > t} ≤ E{ρ̂N(t)} = E{e−ξN(t)}, (13)

whereξ = − log ρ̂ > 0. Note that, for any constantβ > 0,

E{e−ξN(t)}=E{e−ξN(t)1{N(t)≤βt}}+E{e−ξN(t)1{N(t)>βt}}
≤ P{N(t) ≤ βt} + e−ξβt. (14)

A closer look at the way we constructIt reveals that
{N(t) ≤ βt} ≡ {SZ

2βt ≥ t} assuming thatβt takes on integer
value without loss of generality. Thus, for all sufficientlylarge
t, we have

P{N(t)≤βt} = P{SZ
2βt ≥ t} = P{SZ

2n ≥ n

β
} (setn=βt)

≤ P
{

n
∑

k=1

Z2k−1 ≥ n

2β

}

+ P
{

n
∑

k=1

Z2k ≥ n

2β

}

(15)

where (15) is from (5) witha = b = 1. For the first term in
(15), note first that from the assumption in (11), for any given
ǫ > 0, we have

∣

∣

1

n

n
∑

k=1

µ2k−1 − µ̃1

∣

∣ < ǫ (16)

for all sufficiently largen. We then chooseβ > 0 such that

α ,
1

2β
− (µ̃1 + ǫ) > 0. (17)

Then, from (16) and (17), it follows that

1

2β
= α + µ̃1 + ǫ > α +

1

n

n
∑

k=1

µ2k−1 (18)

for all sufficiently largen.
Rewriting the first term in (15) gives, for anyθ > 0 and for

all sufficiently largen,

P
{

n
∑

k=1

Z2k−1≥
n

2β

}

≤ P
{

n
∑

k=1

(Z2k−1−µ2k−1)≥αn
}

(19)

≤ e−θαn
E{exp(θ

n
∑

k=1

[Z2k−1 − µ2k−1])} (20)

= exp
(

− n
[

αθ− 1

n

n
∑

k=1

log E{eθ(Z2k−1−µ2k−1)}
])

, (21)

where (19) is from (18), (20) is from Markov’s inequality,
and (21) is from independence of{Z2k−1}k≥1 (Claim 1). We
then takelog in both sides of (21), divide byn, and take limit



6

with respect ton. By optimizing the resulting expression over
0 < θ < θ0, from the assumption in (12), we have

lim
n→∞

1

n
log P

{

n
∑

k=1

Z2k−1≥
n

2β

}

≤ −I(α) (22)

where I(x) = sup0<θ<θ0
[xθ − Λ1(θ)] is called the rate

function in large-deviation theory [22]. Note thatI(x) is a
well-defined convex function from Assumption 2. Further,
sinceΛ1(0) = 0 andλ′

1(0) = 0 (from E{Zk − µk} = 0), we
haveI(α) > 0 from our choice ofα > 0 in (17). Similarly,
we can repeat the same lines for the second term in (15). This
completes the proof of Theorem 1.

Remark 4:The exponential tail behavior of the inter-
meeting time of two nodes moving according to RWP model
has been mentioned in [9]. However, while [9] provides
only simulation results, we rigorously prove the results. Our
theoretical result is quite general in that it applies to notonly
the bounded pause time case, but also the random, unbounded
pause time case (see Assumption 2). Moreover, two users
under discussion are not required to have the same stationary
node distribution.

B. Random Walk Models (RWM)

In the current literature studying the RWM [12], [8], com-
monly a discrete-time, discrete-space 2-D model is used: A
square (the bounded area) is divided into multiple sub-squares,
called cells, and time is divided into slots of equal duration.
At each time slot a node is in and can be only in one cell. The
initial position of a node is uniformly chosen from all cells.
At the beginning of each time slot, the node jumps from its
current cell to one of its adjacent cells with equal probability.
Moreover, the boundary can be wrapping or reflecting (see
Figure 2).

2/d

2/d

cell

End

Start

A

B

1x 2x

1y

2y

Fig. 2. A trajectory of our RWM model: The node can jump from
a cell to any other cell with certain probability, and the boundary
condition can be arbitrary (x1 → x2: wrapping;y1 → y2: reflecting).

In this section, we consider a more general RWM. The
bounded area is assumed to be a unit square. Divide the
square intoN = 1/[ d√

2
× d√

2
] sub-squares (cell)6, each of

which with area d√
2
× d√

2
as shown in Figure 2. The initial

6We assume
√

N is an integer without loss of generality.

position of a node is chosen uniformly fromN cells. We
number the cells by1, 2, ..., N : the cell on thenth row and
mth column is assigned the numberi = (n−1)

√
N+m, where

n, m = 1, 2, . . . ,
√

N andi = 1, 2, . . . , N . At the beginning of
each time slot, the node jumps from theith cell to thejth cell
with probabilityp(i, j) ∈ [0, 1]. This model is very general in
the sense that: (i) in any position, the node can jump to any
other cell (including the current cell) with any preassigned
probability, which obviously includes the model in [12], [8]
where the node can only jump to one of its adjacent cells with
equal probability, and (ii) we allow any arbitrary boundary
condition including wrapping, reflecting, etc., by assigning
different jumping probabilities for the cells on the boundary.
(See Figure 2 for example.)

This general RWM can be studied using a Markov Chain
(MC) with N states and its transition matrixP = {pij} where
pij = p(i, j), i.e., the probability of jumping from statei to
j. In the following, we will give our main result on the inter-
meeting time of a pair of nodes, in which only one of the two
nodes is required to follow the RWM described above and the
mobility model of the other node can be completely arbitrary.

To avoid trivialities, the MC is assumed to be irreducible,
i.e., any single node in this finite system can go to anywhere
in a finite number of steps. Still, this alone is not sufficientto
establish a well-defined mobility model. For example, define
a mobility model such that the node can only jump from cell
i to cell i+1 (wheni = N , the user can only jump to cell1).
Obviously this MC is irreducible, but it is not a good mobility
model. The introduction of a mobility model is to emulate the
mobility pattern in real life in an abstract and simple way. In
reality, if an obstacle is present, the moving object (people,
bus, etc.) will simply bypass it and continue the movement in
the system, rather than get stuck on it.

From the viewpoint of graph theory, the mobility model
can be looked as a directed graphG = {V, Ed}, where V

and Ed are the vertex set and the edge (with direction) set,
respectively. Each cell corresponds to a vertex, and there is
a directed edge from vertexi to vertex j if and only if
pij > 0. Hence, the irreducibility actually ensures that the
graph is connected. However, how strong is the connectivity?
One fundamental way to test it is to delete one vertex; if the
graph is still connected after the deletion of any one vertex,
then the graph is said to be 2-connected [23]. For example,
the mobility model example given above is connected, but
not 2-connected. In view of this, we impose the following
assumption to avoid trivial models.

Assumption 3:The directed graphG is 2-connected. �

Note that we are interested in the tail behavior of the inter-
meeting time, so we surely want to rule out any possibility
that two nodes never meet. For example, if nodes A and B
somehowconspire togethernot to meet each other forever
(e.g., node B always move ‘parallel’ to node A), the inter-
meeting time becomes infinite with probability 1. To rule
out this possibility, we also need the following technical
assumption.

Assumption 4:For any possible trajectory of node B, node
A eventually meets node B with positive probability. Specif-
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ically, there existsM < ∞ such thatP{TI > M} < 1
regardless ofthe trajectory of node B, i.e.,P{TI > M} < 1
is true for any trajectory. �

Remark 5:Assumptions 3 and 4 ensure that (i) there exist
at least two different paths between any two cells and (ii) it
is impossiblefor node B to get away from node A forever
even if it chooses its ‘optimal’ path to stay away from node A
(no conspiracy). Note that all existing versions of RWM [11],
[12], [8] readily satisfy Assumptions 3 and 4.7 �

To proceed, we present the following definitions and lemma:

Definition 4: Let ‖·‖∞ be the norm of a matrixK ={kij}
defined by‖K‖∞,max

i

∑

j|kij |, i.e., the largest absolute row

sum. For anyk-dimensional vector~x={x1,· · ·, xk} andn∈N,
we definen−norm of ~x as‖~x‖n =(

∑k
i=1|xi|n)1/n. �

Definition 5: A finite set of matricesCm = {cm
ij } ∈ R

N×N

wherem ∈ {1, . . . , L} is said to be a sub-stochastic matrix
set if there exists a finite integer M such that for any integer
set {h1, ..., hM} with hi ∈ {1, . . . , L} and i ∈ {1, . . . , M},
‖Ch1 · · ·ChM

‖∞ < 1. �

Lemma 1:Let {Pm} ∈ R
N×N (m = 1, 2, . . . , L) be a

sub-stochastic matrix set. For any index setI = {n1, n2, ...}
where ni ∈ {1, . . . , L} and i ∈ N, define the product of
k (k ∈ N) matricesA(I, k) = Pn1Pn2 · · ·Pnk

. Then, there
exist constantsc > 0 and 0 < q < 1 (independently of the
choice ofI) such that for any positive integern,

‖~xA(I, k)‖n ≤ cqk‖~x‖n for all sufficiently largek.

Proof: See Appendix.

We now state our main result.

Theorem 2:Suppose that node A moves according to the
RWM described above satisfying Assumptions 3 and 4. Then,
these exists constantγ > 0 such thatP{TI > t} ≤ e−γt for
all sufficiently larget.

Remark 6:We require that only one of the nodes (node A)
moves according the RWM. This means that the other node
(node B) can move according to any other arbitrary mobility
models defined on a bounded domain such as RWP, random
direction models, etc., as long as two nodes eventually meet
with non-zero probability.

Proof: Since node B moves according to some arbitrary
mobility model, the only information we know about node
B’s movement is its path-wise position att = 0, 1, 2, . . .. Let
T be the set of all possible trajectories of node B satisfying
Assumptions 4. Without loss of generality, assumeA and B
are in the communication range just before time0 andA(0) =
1 6= B(0). (If A(0) 6= 1, simply renumber the cells.) LetTB

F

be the FPT of A to the trajectoryB ∈ T as in Definition 1.
Then, we have

P{TI > t} =
∑

B∈T
P{TB

F > t}P{B} for all t ≥ 1. (23)

7In fact, Assumption 3 is proposed only to avoid trivial modeling and
it is not used in the proof of Theorem 2 later on. To see the generality
of Assumption 4 more clearly, consider an example where nodeA moves
according to the RWM model and node B is static. ChooseM as the maximal
average recurrence times of node A to any single cell. Since an irreducible
Markov Chain with finite number of states is always positive recurrent,M is
finite and Assumption 4 readily follows.

In the following, we fixB , {B(t) = kt, t ∈ N} (kt ∈
{1, 2, . . . , N}) to show thatP{TB

F > t} is uniformly upper-
boundedby c exp(−γt) where c > 0 and γ > 0, i.e., for
any B ∈ T , P{TB

F > t} ≤ c exp(−γt). For the simplicity of
expression, we useTF in stead ofTB

F because now we are
discussing fixed trajectoryB.

Let P = {pij} be the transition matrix of the Markov
chain for A(t) (position of node A at timet) where pij is
the probability of jumping from celli to cell j in one step.
We then define a set of matrices{Pi, i = 1, 2, . . . , N} by
setting theith column of P to 0 and keeping all the other
elements the same.

From A(0) = 1, the initial state vector becomes~x0 =
[1 0 . . . 0]. Then P{TF > 1} is the probability that node
A jumps from state 1 to any state other thanB(1) = k1, i.e.,

P{TF > 1} =
∑

1≤j≤N, j 6=k1

p1j . (24)

Define a matrixQ(1) ∈ R
N×N asQ(1) = Pk1 and denote by

q
(1)
ij the ith row andjth column element ofQ(1). Then, from

(24), it follows thatP{TF > 1} =
∑N

j=1 q
(1)
1j = ~x0Q

(1)
1,

where1 = [1 1 . . . 1]T is theN -dimensional column vector
whose elements are all 1. Similarly, we have

P{TF >2}=
∑

1≤ j,l ≤N,
j 6=k1, l 6=k2

p1jpjl =
∑

1≤ j,l ≤N

q1jqjl =~x0Q
(1)Pk21.

Following the similar line, we defineQ(t) = Q(t−1)Pkt
for

all t ≥ 2. Then we can show by induction that

P{TF > t} =
∑N

j=1
q
(t)
1j = ~x0Q

(t)
1, (25)

where q
(t)
1j is the first row andjth column element of the

matrix Q(t) = Pk1Pk2 · · ·Pkt
(t ≥ 1). Consequently, if we

can prove that for any given trajectoryB of node B, there
exists constantc < ∞ and γ > 0 (independently ofB) such
that ~x0Q

(t)
1 ≤ ce−γt for all sufficiently larget, then from

(23) and (25), we are done.
In what follows, we will show that{Pi, i = 1, . . . , N} is a

sub-stochastic matrix set as defined in Definition 5. From (25),
~x0Q

(t)
1 is the sum of the first row ofQ(t), or equivalently,

the probability that node A starts from cell 1 (A(0) = 1)
and never meets node B (with the trajectoryB) up to timet.
Similarly, it can be shown that the sum of theith row of Q(t)

is the probability that node A starts from celli (A(0) = i) and
never meets B with the trajectoryB up to timet. Thus, from
Assumption 4, there existsM <∞ such that for anyt≥M ,
∑

j

q
(t)
ij =P{TF >t}≤P{TF >M}<1 for any trajectoryB and

i∈N. Subsequently, for allt ≥ M ,

‖Pk1Pk2 . . . Pkt
‖∞ = ‖Q(t)‖∞ = max

i

∑

j

|q(t)
ij | (26)

= max
i

∑

j

q
(t)
ij < 1, (27)

where (26) is fromQ(t) = Pk1Pk2 · · ·Pkt
and‖ · ‖∞ norm is

from Definition 4, and the equality in (27) is fromq(t)
ij ≥ 0.

Note that (27) is true for any trajectoryB of node B. In
particular, chooseB = {B(t) = kt} wherekt ∈ {1, 2, . . . , N}
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and t ∈ {1, . . . , M} and M is the finite integer as in
Assumption 4. Hence, from Definition 5,{Pi, i = 1, . . . , N}
is a sub-stochastic matrix set.

In consequence, from Lemma 1, there exists constantc > 0
and0 < q < 1 such that

‖ ~x0Q
(t)‖n ≤ cqt‖~x0‖n (28)

for any n-norm, where~x0 = [1 0 . . . 0]. Fix ‖ · ‖1 in (28)
as in Definition 4. Then,‖~x0Q

(t)‖1 =
∑

j |q
(t)
1j | =

∑

j q
(t)
1j =

~x0Q
(t)

1 and ‖~x0‖1 = ‖[1 0 . . . 0]‖1 = 1. Hence, for all
sufficiently larget, from (28), we have

~x0Q
(t)

1 =
∑N

j=1
q
(t)
j ≤ cqt = c exp(−γt) (29)

where γ = − ln q > 0. Note that (29) holds good for any
trajectory B and the constantsc, q are independent ofB.
Hence, from (23) and (25), we are done.

Through space/time quantization, Theorem 2 can also be
applied to any other continuous-time, continuous-space models
(e.g., random direction model (RDM), etc) provided that both
the time it takes for a node to walk from one cell to another
and the pause time are bounded. For any continuous-space
analogue of our model, note that whenever nodes A and B are
in the same cell, they are ‘in-range’ (the maximum distance
between A and B is no larger thand). Note also that even
when they meet in the continuous-space model, they may not
in the quantized discrete-space model. For example, nodes A
and B in Figure 2 are within a distance ofd, but they are
in different cells, i.e., they do not meet in the discrete-space
model. In consequence, the inter-meeting time in a continuous-
space model is upper-bounded by that in the discrete-space
(quantized) model. Hence, Theorem 2 readily shows that the
tail of the inter-meeting time of a continuous-space model also
decays at least exponentially fast.

IV. FROM EXPONENTIAL TO POWER-LAW INTER-MEETING

TIME

A. Finite Boundary and Exponential Tail

So far we have proven that the inter-meeting time of two
independent mobile nodes with mobility models such as RWP,
RWM, and RDM in a bounded domain has at most exponential
tails. These models are clearly different in defining each
node’s mobility pattern. In fact, for other mobility models
in a bounded domain (e.g., Brownian motion on a sphere,
i.i.d. mobility model on a square, etc.), we can also show
similar exponential behavior of the inter-meeting time. This
observation along with our theoretical results assert thatthe
exponential tail of the inter-meeting time seems a universal
property and the empirically observed power-law decay of
the inter-meeting time will not arise by simply tweaking the
aforementioned mobility models.

What is common in all these mobility models? The finite
boundary. Suppose that two mobile nodes (without pause)
have not met for a long time (e.g., several hours). If there
is no boundary, intuitively, it is more likely that they are
moving toward different directions, hence chances are that
they will not meet for the next several hours and the inter-
meeting time is prolonged. In other words, the inter-meeting

time has very strong memory and may result in a power-law
type distribution.

However, when there is a finite boundary, after a long time
(much longer than a typical amount of time for a node to hit
the boundary), it forces the mobile nodes to bounce back once
being hit, which tends to reset the nodes’ location and ‘erase’
the memory in the inter-meeting time. This nearly memoryless
behavior caused by the existence of the finite boundary tends
to shorten the inter-meeting time and actually results in an
asymptotic exponential tail.

Remark 7:While Theorems 1 and 2 in Section III clearly
indicate that finite boundaries have significant impact on the
tail behavior of the inter-meeting time distribution, we point
out that they both require mobile nodes to be independent and
the moment generating function of the pause time to be finite.
(See Remarks 3 and 5.) In other words, in the presence of non-
negligible dependency among mobile nodes (e.g., they belong
to the same group following similar paths all the time or totally
different groups whose typical pathways do not overlap) or
significant amount of pause time (e.g., pause time following
power-law with infinite mean), the inter-meeting time couldbe
power-law type even under a small finite boundary. Another
exception could be the case where there exists a considerable
amount of correlations in the trajectory of a mobile node (e.g.,
the Gauss-Markov mobility model [24]). The effect of finite
boundary on the inter-meeting time distribution under such
spatial-temporal correlations is beyond the scope of this paper.
As to the effect of power-law pause time, see Section V for
discussion.

B. Infinite Domain and Power-law Tail

In what follows, we will show through a class of simple
isotropic random walks in an open-space without boundary
(i.e., Ω = R

2) that the power-law decay of the inter-meeting
time will arise by simply removing the boundary. We consider
only a discrete-time model here, but similar results also hold
for its continuous-time analogue, which we omit due to the
space constraint.

In a two-dimensional (2-D) discrete-time isotropic random
walk model, at the beginning of each time slot, the node
chooses a random direction uniformly from[0, 2π], travels for
a random lengthR which is chosen from(0,∞) following
certain distribution, then the process repeats itself. Denote
by Rk the length of thekth step andθk the random angle
uniformly distributed over[0, 2π]. Then, the position of node
A at time t (t = 1, 2, . . .) can be written as

A(t) =
∑t

k=1
φA(k) =

∑t

k=1
RA

k exp(iθA
k ) ∈ R

2, (30)

whereA(0) = 0. Since both sequences{RA
k } and {θA

k } are
i.i.d. and independent from each other,φA(k) = RA

k exp(iθA
k )

(k = 1, 2, . . .) are alsoi.i.d. Thus, A(t) is a sum ofi.i.d.
vectors, i.e., a random walk in 2-D. (Similarly for node B.)

The following result will be used in our proof of the main
result in this section.

Theorem 3:[Sparre-Andersen (S-A) Theorem in [25],
[26]]: For any one-dimensional discrete time random walk
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process starting atx0 6= 0 with each step chosen from a contin-
uous, symmetric but otherwise arbitrary distribution, theFirst
Passage Time Density (FPTD) to the origin asymptotically
decays as∼ t−3/2 with the number of stepst.

Remark 8:The only assumption required in S-A Theorem
is that each step of the random walker is chosen from a
continuous (the probability of choosing a specific step length
is zero) and symmetric distribution (at each step, the random
walker goes left or right with equal probability). Denote
the first passage time (FPT) asTF , then by S-A Theorem,
the probability density function ofTF decays as∼ t−3/2,
which means that the complementary cumulative distribution
function (ccdf) of TF decays asP{TF > t} ∼ t−1/2. The
result is applicable for any initial position of the node except
the origin8.

Now we present our main result on the inter-meeting time
of two isotropic random walkers.

Theorem 4:Suppose that two independent nodes A and
B move according to the 2-D isotropic random walk model
described above. Then, there exists constantC > 0 such that
the inter-meeting timeTI of nodes A and B satisfies

P{TI > t} ≥ Ct−1/2, for all sufficiently larget. (31)

Proof: Define byC(t) = A(t)−B(t) ∈ R
2 the difference

vector between the position of node A and B at timet. Assume
‖C(0)‖ = d and ‖C(1)‖ > d. Then, the inter-meeting time
TI becomesTI := inf

t>0
{t : ‖C(t)‖ ≤ d}.

x d=

x

y

(0)C

( )IC T

(1)CO
[ ( )] xC t

( )C t

( )FC T

Fig. 3. TF is a lower bound on the inter-meeting timeTI as C(t)
must cross the linex = d before crossing the circle of radiusd.

Draw anx-axis connectingC(0) and the origin as shown
in Figure 3 and alsoy-axis accordingly. Let[C(t)]x be the
projection ofC(t) onto thex-axis. Then, clearly,[C(0)]x = d
and [C(1)]x > d.9 Define byTF the FPT of[C(t)]x to x = d
in 1-D (the vertical line tangent to the circle at(d, 0)). Suppose
that the two nodes meet for the first time att = TI sincet = 0,
or equivalently,C(t) crosses the circle for the first time at
t = TI after t = 0. Then, it is clear thatC(t) must have

8Similarly, in a continuous time domain, the ccdf of FPT for one-
dimensional Brownian motion inR1 also decays asP{TF > t} ∼
t−1/2 [27]. Note however that S-A theorem is applicable to any arbitrary
step-length distribution in a discrete time domain, as longas it is continuous
and symmetric.

9This is always possible by making one time step small enough such that
when the node gets out of the circle att = 1, it is located outside that
tangential line atx = d.

crossed the vertical linex = d before it crosses the circle. In
other words, we haveTI ≥ TF , and hence

P{TI > t} ≥ P{TF > t}, for all t > 0. (32)

Observe thatC(t) =
∑t

k=1 φA(k) − ∑t
k=1 φB(k) =

∑t
k=1

(

RA
k eiθA

k − RB
k eiθB

k

)

. Thus, we have [C(t)]x =
∑t

k=1

(

RA
k cos θA

k − RB
k cos θB

k

)

, whereRA
k , RB

k are alli.i.d.
and so areθA

k , θB
k . In other words,[C(t)]x is one-dimensional

random walk (sum ofi.i.d. random variables) with each
step distributed asRx = RA cos θA − RB cos θB. Clearly,
Rx

d
= −Rx, so it is symmetric. Also, the distribution ofRx

is continuous because the uniform distribution is continuous.
Hence, by Theorem 3 and Remark 8,

P{TF > t} ∼ t−1/2.

In view of (32), this completes the proof.
The result in (31) is close to the empirical result reported

in [4] that the coefficient of the power-law tail is nearly 0.4
(see Figure 4 in [4]). Recall that in Section III, mobility
models are analyzed through an irreducible Markov Chain
(MC) by quantizing the space and time. Whenever there is
a finite boundary, since the communication ranged of two
nodes is non-zero, we can always divide the system (bounded
area) into a set of finite cells, each with diameterd. Hence,
the MC has finite states. This finiteness of the state-space
along with the irreducibility condition implies that the MCis
positive recurrent [28]. In other words, starting from any initial
position, the MC will return to a given state infinitely often,
and the mean return time is finite. Further, Assumptions 3 and
4 guarantee that the MC will visit any arbitrarymoving set
of statesalso infinitely often and the mean return time to this
moving set is finite. In fact, our result in Theorem 2 shows
not only the mean of this return time (to a moving set) is
finite, but its distribution is at most exponential, making all
the moments also finite.

In contrast, however, when the node walks in an open
space without boundary, the corresponding MC has an infinite
number of states. As a result, even if the chain is recurrent,
it may take infinitely long on average to return to a given
state (null recurrence), which clearly rules out the possibility
of an exponential tail of the inter-meeting time. In some sense,
different recurrence properties in a bounded/unbounded space
provide a quick explanation on the completely distinct tail
behaviors of the inter-meeting time in these two situations.

V. D ISCUSSION

A. Scaling the Size of the Space

From Sections III and IV, we see that the finite boundary
plays a key role in generating the exponentially decaying inter-
meeting time or the FPT, and by removing the boundary, the
power-law inter-meeting time distribution can be observed.
However, the question is:How to decide whether a domain
is virtually bounded or not? In fact, it is hard to believe that
this change happens abruptly only at the infinity. If we set
the boundary for RWM in Section III large enough such that
the mobile node rarely hits the boundary under the timescale
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(a) [0, 104] (second) (b)[0, 106] (second)

Fig. 4. Sample trajectories of five nodes following standard2-D Brownian
motion observed over time duration (a)[0, 104] (second) and (b)[0, 106]
(second). All nodes start from the origin att = 0. The average displacement
of each node scales asO(

√
t) from both (a) and (b).

of interest, it is almost equivalent to the random walk in an
open-space or we can say there is practically no boundary.
In this regard, the question is: where does the transition from
exponential to power-law happen? Or, equivalently, how do we
scale the size of the space (boundary) to observe the power-
law inter-meeting time distribution over a given timescale?

The answer lies in the interaction between the timescale
under discussion and the size of the boundary. As an example,
consider a 2-D random walk model in (30) (or equivalently
we can take 2-D Brownian motion in a continuous time case).
Note that

E{|A(t)|2} =

t
∑

k,l=1

E{RkRle
i(θk−θl)}=

t
∑

k=1

E{R2
k}=σ2t

from E{eiθ} = 0 and the independence of the random
variables fork 6= l. Thus, its standard deviation or theaverage
displacementof node A during timet scales asO(

√
t).10 In

other words, after a duration of timet, a node will typically
travel a distance ofO(

√
t) from its original position.

Suppose that the maximum timescale of interest ist0, i.e.,
we are interested in system dynamics only over[0, t0], and
the ‘radius’ of the bounded space isr0. Whenr0 ≪ √

t0, the
node will hit the boundary (thus ‘feel’ it) many times and a
mobility model with a finite boundary is in effect. Hence all
the results in Section III naturally apply. In contrast, when
r0 ≫ √

t0, the node will almost never hit the boundary and
we can say that the node is moving around practically in an
unbounded space. Hence in this case results similar to those
in Section IV apply.

For example, Figure 4 shows sample trajectories of five
mobile nodes following the standard 2-D Brownian motion,
observed over time duration (a)[0, 104] and (b)[0, 106] (sec-
onds) and drawn over differentx− y ranges. As the timescale
increases by 100 times, the average displacement of each node
grows approximately by

√
100 = 10 times. This figure also

provides an answer to whether a given domain is essentially
bounded or not. For instance, if the time scale of interest is
[0, 104] seconds,11 the mobile node rarely hits the boundary
of Ω′ = [−500m, 500m]2, thusΩ′ is essentially unbounded.

10We implicitly assume thatσ2 = E{R2} < ∞. If E{R2} = ∞, then
under constant velocity, the mobile node tends to ‘spread out’ quicker and its
average displacement will grow faster thanO(

√
t).

11Note that mobile nodes have to always follow space-continuous paths,
even when the system is in its stationary regime. Here, time0 can be
understood as a time instant at which the node is around the center in the
steady-state.

When the time scale of interest is around106 second, the
mobile node now hits the boundary ofΩ′ frequently as seen
in Figure 4(b), so it is essentially bounded.

In order to better grasp the idea of the space-time dynamics,
let us take an example of the so-calledi.i.d. mobility model
and study different ways of scaling the size of the boundary
as a function of time and their impact on the distribution of
the inter-meeting time. In thei.i.d. mobility model, a node
moves in aD×D square consisting ofN = D2 unit cells. At
the start of each time slot, the node jumps to one ofN cells
with equal probability independently of everything else. Note
that this is equivalent to settingpij = 1/N in the RWM in
Section III-B. The two nodes ‘meet’ whenever they are in the
same cell, and at any given time, this happens with probability
1/N = 1/D2. Suppose now that the length of the boundary
is a function of time, i.e.,D = D(t). WhenD(t) grows over
time (i.e.,D(t) → ∞ as t → ∞), note that

P{TI > t} = [1 − 1/D2(t)]
D2(t)· t

D2(t) ∼ e−g(t,N),

whereg(t, N), t/D2(t). Hence, the scaling functiong(t, N)
completely determines the tail behavior of the inter-meeting
time. For example, wheng(t, N) ∼ βt or D(t) = O(1), we
haveP{TI > t} ∼ e−βt as expected. Wheng(t, N)∼ α log t,
we getP{TI >t}∼e−α log t = t−α. In other words, we get the
desired power-law behavior when the length of the boundary
is scaled asD(t)∼

√

t/(α log t). This is also consistent with
the aforementioned discussion that the average displacement
scales asO(

√
t). By maintaining the size of the space as

D(t) = O(
√

t/(α log t)) or larger, we can ensure that the
‘world’ is expanding at about the same rate (or larger) as the
node, so the node rarely feels the existence of the boundary.
If D(t)≪O(

√

t/(α log t)), the size of the world grows much
slower than the average displacement of a node, so the node
inevitably hits the boundary frequently and the non-power-law
or exponential behavior of the inter-meeting time kicks in.

This first-order scaling rule viag(t, N) also provides a
way to choose a ‘right’ size of the world in the random
walk model for the study of MANET. For instance, if one is
interested in some performance metric that makes sense only
over a certain time period, e.g., hours, days, or even weeks
(could be possible in delay-tolerant network settings), then
the scaling functiong(t, N) tells us approximately how to set
the size of the boundary in which the MANET is operating
so as to make the inter-meeting time power-law distributed.
Another possible way is to dynamically increase the size of
the boundaryD(t) as time goes on to control the ‘frequency’
of hitting the boundary as desired.

B. Power-Law vs. Heterogeneous Approach

The power-law behavior of the inter-meeting time distribu-
tion reported in [2], [4] is from the ‘aggregate’ measurements,
in which all the inter-meeting time samples for all possible
pairs of nodes are taken into account over a given measurement
period. An analytically feasible way to model this behavioris
to assume that all mobile nodes arei.i.d. [2], i.e., the inter-
meeting time of any pair of nodes follows the same distri-
bution. This applies to the scenarios where the (individual)
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inter-meeting time of a given pair is close to the ‘aggregate’
inter-meeting time as evidenced by the in-depth study in [16].

There are also different voices, e.g., [29] claimed that the
power-law behavior observed from these aggregated inter-
meeting time samples can also be a result of the hetero-
geneity in the inter-meeting time of different pairs where the
‘individual’ inter-meeting time of a given pair still follows
an exponential distribution. This type of approach has been
widely used in teletraffic engineering [30] to represent power-
law decaying correlations as a weighted sum of exponential
functions to facilitate Markovian analysis.12 This approach,
however, is unable to reflect the recent findings in [16] where
the ‘individual’ inter-meeting times for most pairs of nodes
(always more than a half) do exhibit power-law behavior
over a wide range of timescale. Nevertheless, the existence
of heterogeneity itself in the nodes’ behavior and their inter-
meeting time (in terms of different ‘contact rates’ under the
assumption of exponential distribution or Poisson contacts)
as pronounced in [29], [32], [33] suggests that performance
analysis based on a homogeneous setting withi.i.d. nodes be
taken with great care.

We here emphasize that our focus in this paper is on
the inter-meeting time distribution ofany given pairof two
nodes. Thus, our results can be applied to homogeneous
setting withi.i.d nodes as well as any heterogeneous setting
in which some fraction of pairs of nodes have power-law
like inter-meeting times while others have exponential inter-
meeting times with different ‘contact rates’. For instance, our
observation on space-time scaling in Section V-A suggests that
we can control the shape of the ‘individual’ inter-meeting
time distribution to be either an exponential or a mostly
power-law by choosing appropriate domain size with respect
to a given time scale. Specifically, an exponential-like inter-
meeting time distribution can be generated by pairs of nodes
in the same ‘social group’ whosemoving domainΩ(t) is
essentially bounded with respect to the time scale under
consideration and nodes in that group rarely cross over the
boundary ofΩ(t). Note that the boundary here is not physical
but should be interpreted as a virtual one.13 Similarly, for
certain pair of nodes that are loosely coupled, i.e., they reside
in a much larger moving domain with weak correlation or
they belong to totally different social groups, the only (virtual)
boundary that ‘push’ them back is from their own daily
movement pattern (e.g., people returning home after working
8 hours or buses returning to their origins) and thus their inter-
meeting time distribution will follow a power-law until they
hit this ‘virtual boundary’ over a much longer period.

12For any completely monotone function [31] (including all the power-
law functions)f(t), with (−1)nf(n)(t) ≥ 0 for all t and n = 1, 2, . . .,
there existsh(s) ≥ 0 such thatf(t) =

∫

∞

0 e−sth(s)ds. Thus, by suitably
choosing the ‘weights’h(s), a given power-law can be represented as a
weighted sum of exponentials{e−st}.

13The whole group (e.g., students in the same grade and same department
following similar class schedules in a campus) may move toward the same
destination while their tendency to maintain contact with other nodes in the
same group will create ‘virtual boundary’ to ‘force’ them back whenever they
are about to leave the group’s trajectory.
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Fig. 5. CCDF of the contact and inter-meeting time for RWP model with
power-law pause time on a log-log scale. We have setτmin = 400/3 and
µ = 1.5 in (33) so thatE{τ} = 400 seconds and the average step length is
about104.2m [20]. Under v = 1m/s, this leads to400/(400 + 104.2) =
79.3% pause ratio, which is79.01% from our simulation. Both the contact
and inter-meeting time exhibit power-law behavior at around timescale103.
The inset in the bottom left shows the same curves on a semi-log plot to
clearly show the heavier-than-exponential behavior.P is the point where the
effect of pause time starts to kick in.

C. Effect of Pause Time

Our analysis so far can also be employed to study the effect
of the transmission ranged on the contact time distribution.
In fact, the contact time can be looked as the inter-meeting
time with NB(t) in equation (2) replaced by its complement
N c

B(t) = Ω \ NB(t). Consequently, the size of boundary and
the transmission range can be used to control the inter-meeting
time and the contact time distribution, respectively. In contrast,
the pause time of mobile node affects both the contact and
inter-meeting time distribution. Clearly, as stated in Remark 7,
the power-law pause time with infinite mean makes both the
contact and inter-meeting time have infinite means. On the
other hand, when the pause time has all the finite moments,
Theorem 1 guarantees that the inter-meeting time distribution
on a bounded domain should be of exponential type.

In this section, we briefly discuss the effect of power-
law pause time with finite mean on both the contact and
inter-meeting time distribution. The heavy-tailed natureof the
pause time distribution has been discovered in recent empirical
studies [34], [35]. Specifically, we consider the pause timeτ :

P{τ > t} = min{1, (t/τmin)
−µ}, µ > 1. (33)

Clearly, the power-law pause time of nodeA will contribute to
the inter-meeting time betweenA andB wheneverA pauses
for a long time outside ofB’s transmission range, thus making
the inter-meeting time power-law distributed as well.

In order to quantitatively capture the extent to which a given
power-law affects the contact and inter-meeting time distribu-
tion, we consider two independent mobile nodes following
RWP defined on200m× 200m square, where each node has
transmission ranged = 50m and pauses forτ seconds after
each step. Figure 5 shows that the CCDF of both the contact
and inter-meeting time follow power-law distribution at around
timescale103. Further, it also indicates that the exponents of
the power-law distributions of contact and inter-meeting time
are both around 1.5 (slope1 and slope2 are almost the same
on a log-log scale), matching the exponent in the power-law
pause time. This is in contrast to the empirical results in [2]
showing that there exists a sizable difference between the



12

two exponents in the power-law distributed contact and inter-
meeting time (The difference is about 0.9 for Bluetooth-based
dataset, and is more than 1.3 in WiFi datasets). Hence, in
view of our discussion above, the power-law pause timealone
is not enough to capture the varying degrees of power-law
behavior in the contact and inter-meeting time, and our space-
time scaling for the domain size discussed in Section V-A
should be in effect to properly capture the stronger power-
law behavior in the inter-meeting time distribution over an
appropriate range of timescale.

VI. SIMULATION

In this section we provide simulation results to support
our theoretical results in Sections III and IV, as well as the
discussion on scaling the size of the space in Section V.
We here consider RWP and random walk model (RWM)
with/without boundary. In any case, the speed of a node is
chosen uniformly from 1 m/sec to 1.68 m/sec with a mean
value of 1.34 m/sec [34], since this is known as the mean
walking speed of human beings. The transmission range is
set to 50 meters, and we have square domain for all mobility
models with finite boundary in our simulations.

As mentioned before, the interaction between the timescale
under discussion and the size of the boundary is essential in
determining the tail behavior of the inter-meeting time. Tosee
this interaction, we fix the simulation time period and change
the size of the boundary using RWP and RWM (including both
bounded and essentially unbounded domain cases) models to
observe different tail behaviors of the inter-meeting time.
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Fig. 6. CCDF of the inter-meeting time for RWP models under different sizes
of the domain: “Pause” means an exponentially distributed pause time with a
mean value of 3 minutes, and “No pause” means zero pause time.Figure is
drawn on a semi-log scale. In any case, the slope increases for larger domain.

Figure 6 shows the complementary distribution (CCDF) of
the inter-meeting timeP{TI > t} on a semi-log scale for
RWP models under varying sizes of the domain. We set the
simulation period as40 hours,14 and simulate zero pause time
case (‘no pause’) as well as an exponentially distributed pause
time with mean of 3 minutes (‘pause’). Note that no matter
how large the boundary is, the inter-meeting time always has
an exponential tail, which is in good agreement with our
theoretical results in Proposition 1 and Theorem 1. Recall
from Section V that in case ofi.i.d. mobility models, the

14The timescale which matters in real network is commonly in the order of
hours (less than one day). Hence, we choose 40 hours, which islong enough to
observe the accurate tail behavior of the inter-meeting time in this timescale.
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Fig. 7. CCDF of the inter-meeting time for RWM models under different
sizes of the domain on a log-log scale (a) and on a semi-log scale (b).
The hitting frequency to the boundary decreases as the size of the domain
increases. For(5000m)2 size, a node rarely hits the boundary and thus
moves like in an unbounded space and produces power-law behavior of the
inter-meeting time, as seen in (a). Exponential behavior ofthe inter-meeting
time distribution under smaller domains (e.g.,(200m)2 , (400m)2) is clearly
shown in (b)(1) (straight line on a semi-log scale). Power-law type behavior
starts to appear in mid-to-large domain size as shown in (b)(2).

slope of the exponential tail is given byg(t, N)/t = 1/D2.
In other words, the slope of the tail in a semi-log scale is
inversely proportional to the area of the bounded domain (D2).
Similarly, even for RWP models, we notice from Figure 6 that
the product of the slope of the tail and the area of the domain
(ranging from2002 up to10002 square meters) remains almost
constant, which implies that the intuition obtained fromi.i.d.
mobility models can also be applied to RWP models.

Figure 7 shows CCDF of the inter-meeting time on a log-log
scale for random walk models (RWM) under different sizes
of the domain, where the boundary is always reflective. To
observe the transition of inter-meeting time behavior froman
exponential type to a power-law more clearly, we draw the
simulation results both on a log-log scale in Figure 7(a) and
on a semi-log scale in Figure 7(b). In this case, we set the
simulation period to 40 hours.15 Here, we use a very simple
and widely used random walk model where a node changes
directions uniformly from[0, 2π] every 50 seconds [11]. For
each size of the domain simulated, we calculate the hitting
frequency defined as the ratio between the number of steps
within which the node hits the boundary and the total number
of steps. For example, when the size of domain is200× 200,
the hitting frequency is quite high (40.0%), thus the inter-
meeting time behaves like an exponential (The CCDF of

15Since
√

144000 ∗ 1.35 ≈ 512 (144000 seconds are 40 hours, 1.35 is the
standard deviation of step length), we expect that the two smallest domains
can be looked as bounded, whereas the other two can be looked as essentially
unbounded from our discussion in Section V.
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inter-meeting time is a straight line on a semi-log scale, as
shown in Figure 7(b)(1).) as expected from our theoretical
results. In contrast, when the size of the domain is very large
(5000 × 5000 square meters), the hitting frequency is as low
as 1.7%, which means that it is practically an unbounded
domain for the duration of the timescale (40 hours). Hence, as
Theorem 4 shows, the inter-meeting time follows a power-law
distribution. (The CCDF of inter-meeting time is a straightline
on a log-log scale, as Figure 7(a) shows.) Further, the slope
of this CCDF on a log-log scale is shown to be around 0.25,
which is also consistent with our findings in Section IV. In
addition, for a large domain size (e.g.,1000m× 1000m), the
power-law behavior is dominant over up toO(104) seconds,
followed by a sharp decrease beyond that timescale. As shown
in Figure 7(b)(3), beyond104 seconds, the inter-meeting
time distribution decays exponentially. This behavior is also
consistent with the measurement studies in [4], [16], and is
well expected from our theoretical results in Sections III–V.

VII. C ONCLUSION

In this paper we have proven that one of the fundamental
reasons, for the discrepancy on the tail behavior of inter-
meeting time between the recent empirical data and the theo-
retical/simulation results based on most of the current mobility
models, is thefinite boundary with respect to the timescale
of interest. We have also shown that simply removing the
boundary can quickly change the inter-meeting time distri-
bution from exponential to power-law by studying a simple
random walk in an open space. Further, our guidelines on
scaling the size of the domain also help better understand the
true role of the boundary. Our theoretical results and findings
provide guideline on mobility modeling, performance analysis,
and protocol design, to survive the ‘curse’ of the power-law
distribution of the inter-meeting time in MANET.

APPENDIX A
PROOF OFLEMMA 1

In view of Proposition 2 in [36] and‖Pk1 · · ·PkM
‖∞ <

1 for any index set{k1, · · · , kM}, (ki ∈ {1, · · · , L}, i ∈
{1, · · · , M}) andM < ∞, the following condition is satisfied
by A(I, k):

limk→∞ A(I, k) = 0, for all I = {n1, n2, ...} (34)

wherenl ∈ {1, 2, . . . , L} for all l ∈ N.
Define a discrete-time system whose state at timet is given

by a 1 × N vector ~X(t) where ~X(t) = ~X(t − 1)Pnt
=

· · · = ~X(0)A(I, t) = ~x0A(I, t). Relation (34) means that the
system is absolutely asymptotic stable (Section 3.1.1 in [37]),
which is equivalent to saying that the system is absolutely
exponentially stable (Definition 3.1 in [37]), i.e., for any~x0,
there exists constantc > 0, 0 < q < 1 such that for all
sufficiently largek,

‖~x0A(I, k)‖ ≤ cqk‖~x0‖, (35)

where‖ · ‖ is any vector norm. Specifically, (35) is true for
n−norms‖ · ‖n.
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