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Abstract—In this paper we focus on how the heterogeneous
contact dynamics of mobile nodes impact the performance of
forwarding/routing algorithms in delay/disruption-tolerant net-
works (DTNs). To this end, we consider two representative het-
erogeneous network models, each of which captures heterogeneity
among node pairs (individual) and heterogeneity in underlying
environment (spatial), respectively, and examine the full extent
of difference in delay performances they cause on forward-
ing/routing algorithms through formal stochastic comparisons.
We first show that these heterogeneous models correctly capture
non-Poisson contact dynamics observed in real traces. Then, we
consider direct forwarding and multicopy two-hop relay protocol
and rigorously establish stochastic/convex ordering relationships
on their delay performances under these heterogeneous models
and the corresponding homogeneous model, all of which have
the same average inter-contact time over all node pairs. We
show that heterogeneous models predict an entirely opposite
ordering relationship in the delay performances depending on
which of the two heterogeneities is captured. This suggests that
merely capturing non-Poisson contact dynamics – even if the
entire distribution of aggregated inter-contact time is precisely
matched, is not enough and that one should carefully evaluate the
performance of forwarding/routing algorithms under a properly
chosen heterogeneous network setting. Our results will also
be useful in correctly exploiting the underlying heterogeneity
structure so as to achieve better performance in DTNs.

I. INTRODUCTION

In delay/disruption-tolerant networks (DTNs), frequent dis-
ruptions in end-to-end connectivity arise due to many factors
such as random node mobility, power limitations, etc. Hence,
to overcome the intermittent connectivity, mobile nodes relay
or copy messages to other mobile nodes upon encounter,
which ensures that the messages eventually reach their des-
tinations. The performance of message delivery depends on
how to relay or copy messages to mobile nodes. Thus, many
forwarding/routing algorithms such as epidemic routing [23],
two-hop relay [12], spray and wait [21], to name a few,
have been proposed and commonly analyzed based upon a
‘homogeneous’ network model in which contacts between any
pair of nodes occur according to a Poisson process. This model
is justified in [12], [23] by observing that the inter-contact
time∗ between two successive contacts for any node pair

† This work was supported in part by National Science Foundation through
grant CNS-0831825 and CAREER Award CNS-0545893.

∗The inter-contact time of two mobile nodes is defined as the time interval
from when their communication becomes unavailable to the time when the
communication resumes. See [15], [5] for its formal definition.

follows an exponential distribution via numerical simulations
under synthetic mobility models. Recent works still resort
to this homogeneous model for an analysis on the content
distribution and for an analytical development of forwarding
policies [13], [2].

However, measurement studies [19], [8], [15], [14], [3] from
real traces reveal the existence of heterogeneity in contact
dynamics, which all make the contact dynamics deviate from
Poisson. In particular, [15], [6] shows that the inter-contact
time distribution is a mixture of power-law and exponential
distributions. In addition, [19], [8], [14], [3] show that there
exists a significant degree of heterogeneity in mobile nodes’
contact dynamics. [19], [14] further exploit empirically the ob-
served heterogeneity for designing of new forwarding/routing
algorithms. [8], [9], [3] introduce two heterogeneous net-
work models, each of which captures the observed individual
or spatial heterogeneity. In the individually heterogeneous
network model [8], [9], the heterogeneity is characterized
by allowing different contact rates for different node pairs,
while the inter-contact time distribution of each pair is still
exponential (but with different rates). On the other hand, in the
spatially heterogeneous network model [3], the heterogeneity
arises on each spatial cluster (site) in which mobile nodes
reside, while they can move to the other spatial clusters.
(See Section II for more details.) However, none of these
works analytically investigates how the heterogeneity structure
impacts the performance of forwarding/routing algorithms, not
to mention whether the considered heterogeneity improves
(helpful) or deteriorates (harmful) the performance.

In this paper, we examine how the forwarding/routing per-
formance under the two representative heterogeneous network
models [8], [9], [3] deviates from that under the aforemen-
tioned homogeneous model, aka the Poisson contact model.
We first show that each of the two heterogeneous models
correctly captures the non-Poisson contact dynamics (non-
exponential inter-contact time distribution of a random pair
of nodes) as observed in real traces. Then, we rigorously
establish stochastic/convex ordering relationships among the
delay performances of direct forwarding and multicopy two-
hop relay protocol† [12], [23], [1] under the two heterogeneous
models and the corresponding homogeneous model, all of

†These algorithms are ‘oblivious’ to the underlying heterogeneous network
structure.
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Fig. 1. An example for spatial and social (individual) heterogeneity in an opportunistic campus mobile network (or a campus-wise DTN).

which are indistinguishable from the average inter-contact
time point of view. Our technical contributions in this paper
can be summarized as follows.

• We prove that the message delivery delays of direct for-
warding and multicopy two-hop relay protocol under the
spatially heterogeneous model are stochastically larger
than those under the corresponding homogeneous model,
respectively.

• We also prove that the message delivery delay of direct
forwarding under the individually heterogeneous model
is larger than that under the corresponding homogeneous
model in convex ordering (see Section IV for its formal
definition), while the average delay of multicopy two-
hop relay protocol under the individually heterogeneous
model is smaller than that under the corresponding ho-
mogeneous model.

• As a special case of the above results, we show that
if the average inter-contact time over all node pairs
is the same for the three models, then E{D[2]

ind} ≤
E{D[2]

hom} ≤ E{D[2]
spa}, where D

[2]
ind,D

[2]
spa, and D

[2]
hom

are the message delivery delay of multicopy two-hop
relay protocol under the individually and spatially het-
erogeneous models and the corresponding homogeneous
model, respectively. The heterogeneity structure in the
spatially heterogeneous model deteriorates the average
delay performance of multicopy two-hop relay proto-
col, whereas the another heterogeneity structure in the
individually heterogeneous model improves its average
delay performance when compared with that under the
corresponding homogeneous model. This implies that
each of the two heterogeneous models predicts an entirely
opposite average delay performance.

• We further show that the delay performance of direct
forwarding under the spatially heterogeneous model is
stochastically larger than that under the individually het-
erogeneous model, even when the entire distributions of
aggregated inter-contact times over all node pairs under
both heterogeneous models are precisely matched.

The rest of this paper is organized as follows. Section II
gives preliminaries on the formal description of two repre-
sentative (individually and spatially) heterogeneous network
models. Section III presents the characteristic of inter-contact
time under each of the two heterogeneous models. Sections IV
and V provide our theoretical results on the stochastic com-

parison of message delivery delays for direct forwarding and
multicopy two-hop relay protocol under each of the two
heterogeneous models and the corresponding homogeneous
model, respectively. We conclude in Section VI.

II. PRELIMINARIES

In this section, we present the details of two heterogeneous
network models to be used for our paper. In general, mo-
bile nodes typically belong to different societal groups, with
different preferred sites following different mobility patterns.
For example, in Figure 1, there exist several popular places
(e.g., library, dormitory, or dining hall) in a campus and stu-
dents may form spatially separate clusters around the popular
places, while occasionally move to other clusters according
to their own daily schedules. Further, in each spatial cluster,
students from different groups (e.g., ECE/CS departments or
undergraduate/graduate) typically mix together, but making
more frequent contacts with others from the same group than
from different groups. These social (or individual) and spatial
heterogeneity structures can be captured under the follow-
ing two heterogeneous network models [8], [9], [3], each
of which directly characterizes the heterogeneity in mobile
nodes’ contact dynamics in a different manner, rather than
defining detailed mobile trajectories inside a small domain or
group (or social ‘clique’).

A. Individually Heterogeneous Network Model

An individually heterogeneous network model (simply, an
individual model) is introduced in [8], [9] and described as
follows. Consider a set of mobile nodes N . The pairwise
inter-contact time between nodes i and j is drawn from an
exponential distribution with rate λij . Thus, the heterogeneity
is characterized by allowing different contact rates λij , where
i, j ∈ N and i �= j.

If λij = λ for all i, j ∈ N and i �= j, then the
individual model reduces to the homogeneous model. A social
heterogeneity structure can be also captured as a special case
of the individual model. Suppose that there are K different
social groups (memberships) Gi (i = 1, . . . ,K) forming a
partition of N , i.e., N =

⋃K
i=1Gi. Let λ′lk be common

contact rate between any member of Gl and another member
of Gk, l, k ∈ {1, 2, . . . ,K}. That is, for any nodes i ∈ Gl

and j ∈ Gk, λij = λ′lk (l, k ∈ {1, 2, . . . ,K} and i �= j).
Figure 2(a) shows an example with K = 2.

In [8], the individual model is validated by observing
that empirical pairwise inter-contact time distributions for a
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Fig. 2. Examples of the individual and spatial models.

large portion of node pairs can be well fitted by exponential
distributions but with different rates.

B. Spatially Heterogeneous Network Model

A spatially heterogeneous network model (simply, a spatial
model) is introduced in [3] and described formally as follows.
Consider a set of mobile nodes N . There are M different
spatial clusters (or preferred sites). Let Si be a spatial cluster
(site) i, where i ∈ {1, . . . ,M}. Then, each mobile node moves
and encounters with others independently between sites and
within each site as follows:

(i) Each mobile node in site Si moves to site Sj with rate
qij at any time t.

(ii) Any pair of mobile nodes in site Si has Poisson contacts
with rate βi, i.e. the inter-contact time distribution for a
node pair in site Si is exponentially distributed with mean
1/βi.

Figure 2(b) depicts an example with two spatial clusters
(sites). Let X(t) ∈ {S1, . . . , SM} � Ω be the site that a
mobile node belongs to at time t. From the condition (i),
{X(t)}t≥0 is a continuous time Markov chain with infinites-
imal generator Q = {qij}. We assume {X(t)} is irreducible,
i.e., any mobile node can reach everywhere in finite time with
positive probability. For analytical simplicity, we also assume
that qij =qji, i.e., the transition rates of mobile nodes between
sites Si and Sj are the same.

In addition, the condition (ii) is supported in [3] by em-
pirically observing that 90% of all the inter-contacts gath-
ered in a confined area, a subset of whole network domain,
approximately follows an exponential distribution but with
different rates over different subsets. The Poisson contacts over
a small confined area has been also theoretically justified in
[5], regardless of the mobility pattern of each mobile node
inside that small confined area. In this spatial model, the
heterogeneity arises by allowing different contact rates βi over
different sites.

III. INTER-CONTACT TIME UNDER HETEROGENEOUS

NETWORK MODELS

In this section, we show that each heterogeneous network
model can capture non-Poisson contact dynamics as observed
in real traces. For notational simplicity, we enumerate each

of node pairs and define an index set for the node pair
as I = {1, . . . , |N |(|N | − 1)/2}. We also define by I a
random variable to indicate a random node pair, which is
uniformly distributed over I. Further, we define by TI and
Ti the aggregate inter-contact time over all node pairs and
pairwise inter-contact time for a given node pair i ∈ I,
respectively. Here, the aggregate inter-contact time distribution
can be obtained by randomizing the pairwise inter-contact time
distributions over all node pairs, i.e.,

P{TI > t} = E{P{TI > t|I}} =
∑
i∈I

P{Ti > t} 1
|I| .

We will use different superscripts ‘ind’,‘spa’, and ‘hom’ to
distinguish TI and Ti for the individual, spatial, and homoge-
neous models, respectively.

From the definition of the individual model, it follows that

P{T ind
i > t} = e−λit, and P{T ind

I > t} =
∑
i∈I

e−λit
1
|I| ,

where λi is the contact rate of a given node pair i ∈ I. We
can rewrite this as

P{T ind
I > t} = E{e−t/Xind}, (1)

where Xind is a discrete random variable taking values 1
λi

with probability 1
|I| . Note that the actual distribution of Xind

can be quite general by suitably setting λi.‡

For the spatial model, we have the following results:

Proposition 1: For the spatial heterogeneous model as de-
fined earlier, we have for any i ∈ I,

P{T spa
i > t} = P{T spa

I > t} = E{e−t/Xspa}, (2)

for some positive random variable Xspa. �

Proof: See Appendix A.

Proposition 1 says that the inter-contact time for spatial
model follows a hyper-exponential distribution. Here, the
random variable Xspa depends on Q and βi. We refer to the
proof of Proposition 1 for more details. From (1)–(2) and by
noting that E{T}=

∫∞
0

P{T > t}dt, we have

E{T ind
I }=E{Xind}=

∑
i∈I

1
λi

1
|I| , and E{T spa

I }=E{Xspa}.

It was addressed in [10] how to approximate a power-law
(heavy-tail) distribution in the regions of primary interest by
a mixture of exponentials while the approximated distribution
still has an exponential tail. This implies that the observed
‘dichotomic’ inter-contact time distribution with power-law
and exponential mixture [15] can be approximated by hyper-
exponential distributions within any desired degree of accu-
racy.

Throughout the rest of this paper, we focus on stochastic
comparison of message delivery delays for direct forwarding

‡For example, setting λ1 = λ2 �= λi for i ≥ 3 will give non-uniform
distribution while setting λi = λ for all i makes Xind = 1/λ, for which the
aggregate inter-contact time follows a pure exponential distribution.



and multicopy two-hop relay protocol under the individual,
spatial, and corresponding homogeneous models. Here, by the
homogeneous model we mean that for all i ∈ I,

P{T hom
i > t} = P{T hom

I > t} = e−t/τ , (3)

where τ := E{Xind} = E{Xspa} is the average inter-contact
time over all node pairs for both heterogeneous models. Thus,
under the constructed homogeneous model, the inter-contact
time of any pair of nodes is exponentially distributed (thus
giving Poisson contacts) with the same average aggregated
inter-contact time as the other heterogeneous models.

In the following stochastic comparisons in Sections IV and
V, we assume the followings as in other analytical works
[12], [23], [1], [9], [3]. There is no resource constraint (i.e.,
infinite buffer) at each mobile node. Also, inter-contact times
between any two node pairs are mutually independent. Further,
message transfers between any two nodes are instantaneous at
their contact epochs. This assumption is reasonable when the
transmission time of a message between two nodes is relatively
small (negligible) with respect to their inter-contact time.

IV. IMPACT OF HETEROGENEITY IN DELAY

PERFORMANCE UNDER DIRECT FORWARDING

In this section, we first stochastically compare the delay
performances of direct forwarding (i.e., a source node waits
until it meets a destination node to deliver a message) under
the three models. Although the direct forwarding is very
simple and there certainly exist other algorithms with better
performance, its performance can serve as a basis for per-
formance evaluation or prediction of two-hop or multi-hop
forwarding/routing algorithms. Let D[1]

ind, D[1]
spa, and D

[1]
hom

be the message delivery delay of direct forwarding under
the individual, spatial, and homogeneous models, respectively.
Source and destination pairs are uniformly chosen over I. To
proceed, we need the following definitions for the stochastic
and convex orders:

Definition 1: [20] For two random variables X and Y , X
is said to be larger than Y in the stochastic order (denoted
by X ≥st Y ) if P{X > u} ≥ P{Y > u} for all u ∈ R,
or equivalently if E{φ(X)} ≥ E{φ(Y )} for any increasing
function φ for which the expectation exists. �

Definition 2: [20] For two random variables X and Y , X
is said to be larger than Y in the convex order (denoted by
X ≥cx Y ) if E{φ(X)} ≥ E{φ(Y )} for any convex function
φ for which the expectation exists. We also define a concave
order (denoted by X ≥cv Y ) if E{φ(X)} ≥ E{φ(Y )} for any
concave function φ. �

Similarly, we further define an increasing convex (resp. in-
creasing concave) order, written X ≥icx Y (resp. X ≥icv Y ),
if E{φ(X)} ≥ E{φ(Y )} for any increasing convex (resp.
increasing concave) function φ. It immediately follows from
Definitions 1–2 that if X ≥st Y , then X ≥icx Y and
X ≥icv Y . Similarly, if X ≥cx Y (resp. X ≥cv Y ), then
X ≥icx Y (resp. X ≥icv Y ). Also, by noting that f is

concave if −f is convex, from Definition 2, X ≥cx Y implies
X ≤cv Y .

Further, from Definition 1, if X ≥st Y , then E{X} ≥
E{Y }. Also, from Definition 2, if X ≥cx Y , then E{X} =
E{Y } and Var{X} ≥ Var{Y } by taking φ(·) = (·)2.

The message delivery delay for a given source and desti-
nation pair is nothing but their residual (or remaining) inter-
contact time after the message is generated at the source node.
First, for the homogeneous model, we have

P{D[1]
hom > t} = P{T hom

I > t} = e−t/τ

due to the memoryless property of the exponential inter-
contact time distribution with mean τ for any pair of nodes.
Similarly, for the individual model,

P{D[1]
ind > t|I = i} = P{T ind

I > t|I = i} = e−λit

for a given pair i ∈ I, thus from (1), we have

P{D[1]
ind > t} = E{P{D[1]

ind > t|I}} = P{T ind
I > t}

= E{e−t/Xind}.
However, for the spatial model, the inter-contact time of a
given pair i ∈ I is no longer memoryless but of hyper-
exponential form as in (2). Under stationary regime, note that
the residual inter-contact time Ri of a pair i ∈ I follows
the equilibrium distribution of Ti [7], [1], i.e., P{Ri > t} =

1
E{Ti}

∫∞
t

P{Ti > u}du. Then, from (2), we can write for any
i ∈ I,

P{Ri > t} =
1

E{Ti}
∫ ∞

t

E{e−u/X}du

=
1

E{Ti}E

{∫ ∞

t

e−u/Xdu

}
=

1
E{X}E{Xe−t/X}, (4)

where Ti and X here represent T spa
i and Xspa for the spatial

model, respectively. Since (4) holds for any i ∈ I, we have

P{D[1]
spa > t}=P{Ri > t}=

E{Xspae
−t/Xspa}

E{Xspa} . (5)

Now, we present our results for stochastic comparison on the
delay performances of direct forwarding under the individual,
spatial, and homogeneous models.

Proposition 2: Let Xind1, Xind2 be random variables in
(1) for two different scenarios under the individual model, and
D

[1]
ind1, D

[1]
ind2 be the corresponding message delivery delays

of direct forwarding. Then, if Xind1 ≥cx Xind2, we have
D

[1]
ind1 ≥cx D

[1]
ind2. �

Proof: By noting that P{D[1]
ind > t} = E{e−t/Xind} and

E{Xind1} = E{Xind2}, we have E{D[1]
ind1} = E{D[1]

ind2}.
Thus, in order to prove D

[1]
ind1 ≥cx D

[1]
ind2, it is enough to

show [20]∫ ∞

a

P{D[1]
ind1 > t}dt ≥

∫ ∞

a

P{D[1]
ind2 > t}dt,

for all a > 0. It is equivalent to showing that

E{Xind1e
−a/Xind1} ≥ E{Xind2e

−a/Xind2}, (6)



for all a > 0.
Let g(x) := xe−a/x. It is easy to check that g(x) is an

increasing convex function in x > 0 for all a > 0, i.e.,
g′(x) > 0 and g′′(x) ≥ 0. Thus, from Xind1 ≥cx Xind2 and
Definition 2, the above inequality (6) holds for all a > 0 by
taking φ(x) = xe−a/x. This completes the proof.

Proposition 2 says the message delivery delay gets stochasti-
cally larger in the sense of convex order as the underlying indi-
vidual model becomes ‘more heterogeneous’ (in larger convex
ordering of X). In particular, if E{T ind

I } = E{T hom
I } = τ

(the same average aggregated inter-contact time under the
individual and homogeneous models), we have

D
[1]
ind ≥cx D

[1]
hom,

since Xind ≥cx E{Xind}=E{T ind
I }=τ . This means that the

message delivery delay of direct forwarding under individual
model is more variable than that under the homogeneous
model, while the average delays under both models are the
same.

Proposition 3: If E{T spa
I } = E{T hom

I }, then D
[1]
spa ≥st

D
[1]
hom. �

Proof: Recall that

P{D[1]
spa > t} =

1
E{Xspa}E{Xspae

−t/Xspa},

P{D[1]
hom > t} = e−t/τ .

Let Xhom be a random variable that takes the value τ =
E{Xspa} with probability 1. Then, we can write

P{D[1]
hom>t}=

1
E{Xhom}E{Xhome

−t/Xhom}.

Since Xspa ≥cx Xhom and xe−t/x is an increasing convex
function in x > 0 for all t > 0 as shown before, we have

E{Xspae
−t/Xspa} ≥ E{Xhome

−t/Xhom}
for all t > 0, and thus P{D[1]

spa > t} ≥ P{D[1]
hom > t} for all

t > 0. By Definition 1, this completes the proof.

Proposition 3 says that the message delivery delay of direct
forwarding under the spatial model is stochastically larger
than that under the homogeneous model, when the average
inter-contact time under both models are matched. From
Propositions 2 and 3, we see that the delay performance of
direct forwarding under each heterogeneous model deviates
from that under the homogeneous model in a different manner,
though three models are the same in the average inter-contact
time point of view over all node pairs.

Next, we compare the delay performances of direct for-
warding under the spatial and individual models, when their
entire distributions of the aggregate inter-contact time remain
identical. This can be achieved by setting Xspa

d= Xind in (1)–
(2). Still, our next result tells us that the delay of direct
forwarding under the spatial model is always stochastically
larger than that under the individual model.

Proposition 4: If T spa
I

d= T ind
I , then D[1]

spa ≥st D
[1]
ind. �

Proof: Recall that

P{D[1]
spa > t} =

1
E{Xspa}E{Xspae

−t/Xspa},

P{D[1]
ind > t} = E{e−t/Xind}.

Since e−t/x is increasing in x > 0 for any given t > 0, we
have

E{Xspae
−t/Xspa} ≥ E{Xspa}E{e−t/Xspa}. (7)

Then, from the assumption that

P{T spa
I >t}=E{e−t/Xspa}=E{e−t/Xind}=P{T ind

I >t}
for any given t > 0, and from (5) and (7) we have

P{D[1]
spa > t} =

1
E{Xspa}E{Xspae

−t/Xspa}

≥ E{e−t/Xspa} = E{e−t/Xind} = P{D[1]
ind > t},

for any given t > 0. From Definition 1, the result follows.

To sum up, from Propositions 2–4, we observe that the
performance of direct forwarding varies depending on which
of the two heterogeneous models is chosen, i.e., how the
non-Poisson contact dynamics observed in the real traces are
modeled. In addition, the aggregated inter-contact time statis-
tics (the whole distribution) are still insufficient to correctly
predict the forwarding/routing performance, even though many
existing works [7], [15], [3] have relied on the aggregated
inter-contact time samples to uncover the characteristics of
mobile nodes’ contact patterns and justify their modeling
choices.

V. IMPACT OF HETEROGENEITY IN DELAY PERFORMANCE

UNDER MULTICOPY TWO-HOP RELAY

We now turn our attention to multicopy two-hop relay proto-
col [12], [23], [1] as a test case for a further investigation of the
impact of the heterogeneity structure on the forwarding/routing
performance. In this protocol, only source node can replicate
a message and forward its copy to any relay node that does
not have the message copy upon encounter.

Consider the delivery of a single message in the network
with |N | = n + 2. Given a pair of source s and des-
tination d which is uniformly chosen over I, there are n
possible relay nodes (r1, r2, . . . , rn). We denote Tij and Rij

to be the pairwise inter-contact time of a given node pair
(i, j) and their residual inter-contact time, respectively, where
i, j ∈ {s, r1, . . . , rn, d} and i �= j. Then, as shown in [1],
the message delivery delay of the multicopy two-hop relay
protocol (denoted by D) – the time interval from the time
when the message is generated at a source node to the time
when any copy of the message first reaches its destination, is
given by

D
d= min{Rsd, Rsr1 +Rr1d, . . . , Rsrn

+Rrnd}. (8)

As before, D[2]
ind, D[2]

spa, and D[2]
hom denote the message delivery

delay of multicopy two-hop relay protocol under individual,



spatial, and homogeneous models, respectively. Here, we use
superscript D[2] to indicate the multicopy two-hop relay proto-
col, whereby D[1] was used for the direct forwarding (single-
hop) protocol in Section IV.

We first show that the stochastic ordering relationship in
Proposition 3 still holds for the message delay delays of
multicopy two-hop relay protocol under the spatial and ho-
mogeneous models.

Proposition 5: If E{T spa
I } = E{T hom

I }, then D
[2]
spa ≥st

D
[2]
hom. �

Proof: Since the pairwise inter-contact time of any node
pair is statistically equivalent to that of other node pairs under
each of the spatial and homogeneous models, we only need to
consider the message delivery delay of any given source and
destination pair which is uniformly chosen over I.

Let Rspa
ij and Rhom

ij be the residual inter-contact time of
a given node pair (i, j) under the spatial and homogeneous
models, respectively, where i, j ∈ {s, r1, . . . , rn, d} and
i �= j. From Proposition 3, we have Rspa

ij ≥st Rhom
ij .

The stochastic order is also closed under convolutions [20].
Thus, Rspa

sd ≥st R
hom
sd and Rspa

sri
+ Rspa

rid
≥st R

hom
sri

+ Rhom
rid

(i = 1, 2, . . . , n). Then, it easily follows that these stochastic
ordering relationships still hold for their first order statistic,
i.e.,

min{Rspa
sd , R

spa
sr1

+Rspa
r1d, . . . , R

spa
srn

+Rspa
rnd}

≥st min{Rhom
sd , Rhom

sr1
+Rhom

r1d , . . . , R
hom
srn

+Rhom
rnd }.

That is, D[2]
spa ≥st D

[2]
hom. This completes the proof.

Proposition 5 also implies that the hyper-exponential inter-
contact time yields stochastically larger delay than the ex-
ponential inter-contact time for the mulicopy two-hop relay
protocol when their average inter-contact times are matched.

In the following stochastic comparison, we assume that
each message reaches its destination via relay nodes only and
the direct path from source to destination is not considered.
This may be the case with a moderate to large number of
mobile nodes (e.g., campus-wide DTNs), i.e., the ‘best’ of
n relay nodes is likely to reach the destination earlier than
the source node does. We first compare the message delivery
delays of mutlicopy two-hop relay protocol for a given source
and destination pair under the individual and homogeneous
models, as the pairwise inter-contact times are statistically
different for different node pairs under the individual model.
Later on, we will continue our stochastic comparison on the
message delivery delays for a uniformly and randomly chosen
source and destination pair under both models.

Let D[2]
ind(s,d) be the message delivery delay for a given

source and destination (s, d) pair under the individual model.
Here, for a proper comparison between D

[2]
ind(s,d) and D

[2]
hom,

we set the average inter-contact time for the corresponding
homogeneous model as

τ =
1
2n

n∑
i=1

[
1
λsri

+
1
λrid

]
. (9)
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s
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Fig. 3. Three different settings of n two-hop relay paths with varying degrees
of heterogeneity: (a) a fully heterogeneous setting, (b) a partially homogeneous
setting where each relay path is homogeneous. (i.e., two-hop components
in each relay path have the same average inter-contact time as 1/μi =
1
2
[1/λsri +1/λrid]), and (c) a fully homogeneous setting where the average

inter-contact time for any node pair is τ = 1
2n

∑n
i=1[1/λsri + 1/λrid].

That is, the average inter-contact time for any node pair
i ∈ I under the constructed homogeneous model is simply
the arithmetic mean of the average inter-contact times over
all node pairs in n two-hop relay paths under the individual
model. Let T ind

ij and T hom
ij be the inter-contact time of each

node pair (i, j) under the individual and homogeneous models,
respectively, where i, j ∈ {s, r1, . . . , rn, d} and i �= j. Then,
due to the memoryless property of exponential pairwise inter-
contact time distributions under the individual and homoge-
neous models, D[2]

ind(s,d) and D[2]
hom are given by

D
[2]
ind(s,d) = min{T ind

sr1
+ T ind

r1d , . . . , T
ind
srn

+ T ind
rnd}, (10)

D
[2]
hom = min{T hom

sr1
+ T hom

r1d , . . . , T hom
srn

+ T hom
rnd }. (11)

Instead of directly comparing D[2]
ind(s,d) with D[2]

hom, we com-
pare each of these message delivery delays with that under a
partially homogeneous setting (a special case of the individual
model). Figure 3(b) shows this partially homogeneous setting
in which the delay over each relay path is now a sum of
two i.i.d. exponential random variables with mean 1

2 [1/λsri
+

1/λrid] (homogeneous for a given path, but heterogeneous
over different paths). Let Ssri

and Srid be i.i.d. exponential
random variables with mean

1
μi

:=
1
2

[
1
λsri

+
1
λrid

]
, (12)

where i = 1, . . . , n. Then, the message delivery delay in this
partially homogeneous model, D̃[2]

ind(s,d), is given by

D̃
[2]
ind(s,d) = min{Ssr1 + Sr1d, . . . , Ssrn

+ Srnd}. (13)

Figure 3 depicts the aforementioned three different settings of
n two-hop relay paths with varying degrees of heterogeneity
over the average inter-contact times in the network.

To proceed, we collect several definitions on majoriza-
tion [16] ordering. This is a partial order over vectors of real
numbers and is useful in capturing the degree of heterogeneity
in vector components.



Definition 3: [16] For �x, �y ∈ R
n, �x is said to be majorized

by �y, or �y majorizes �x, (written �x ≺ �y), if
∑m

i=1 x[i] ≤∑m
i=1 y[i], (m = 1, 2, . . . , n−1), and

∑n
i=1 x[i] =

∑n
i=1 y[i],

where x[1] ≥ · · · ≥ x[n] (y[1] ≥ · · · ≥ y[n]) denote the
components of �x (resp. �y) in decreasing order. �

From (12) and Definition 3, we have(
1
λsri

,
1
λrid

)
�
(

1
μi
,

1
μi

)
(14)

for any λsri
, λrid > 0, and (1/μi, 1/μi) is the smallest in the

sense of majorization ordering. Further, note that from (9) and
(12),

τ =
1
2n

n∑
i=1

[
1
λsri

+
1
λrid

]
=

1
n

n∑
i=1

1
μi
.

This implies that(
1
μ1
, . . . ,

1
μn

)
� (τ, . . . , τ) (15)

for any μi > 0.

Definition 4: [16] For �x, �y ∈ R
n, a real-valued function ψ

defined on R
n is said to be Schur-convex, if �x ≺ �y implies

ψ(�x) ≤ ψ(�y). Similarly, ψ is said to be Schur-concave, if
�x ≺ �y implies ψ(�x) ≥ ψ(�y). �

We also need the following result on the preservation of the
increasing concave ordering.

Proposition 6: [18, Proposition 9.5.4] If X1, . . . , Xn are
independent random variables and Y1, . . . , Yn are independent
random variables, and Xi ≥icv Yi, where i ∈ {1, . . . , n}, then

f(X1, . . . , Xn) ≥icv f(Y1, . . . , Yn)

for all increasing and componentwise concave function f . �

Now we present our main result on the stochastic compari-
son among D[2]

ind(s,d), D̃
[2]
ind(s,d), D

[2]
hom – the message delivery

delay of multicopy two-hop relay protocol over the network
setting in Figure 3(a), (b), (c), respectively.

Theorem 1: If E{T hom
I } = τ = 1

2n

∑n
i=1

[
1

λsri
+ 1

λrid

]
,

then D[2]
ind(s,d) ≤icv D̃

[2]
ind(s,d) ≤st D

[2]
hom. �

Proof: Proof of D[2]
ind(s,d) ≤icv D̃

[2]
ind(s,d): Let U1 and

U2 be i.i.d. exponential random variables with rate one. Then,
observe that

T ind
sri

d=
1
λsri

U1, and T ind
rid

d=
1
λrid

U2.

Similarly, we have

Ssri

d=
1
μi
U1, and Srid

d=
1
μi
U2.

Thus, from the independence of T ind
sri

and T ind
rid

and the
independence of Ssri

and Srid, we have

T ind
sri

+ T ind
rid

d=
1
λsri

U1 +
1
λrid

U2,

Ssri
+ Srid

d=
1
μi
U1 +

1
μi
U2.

(16)

Note that if X1, . . . , Xn are exchangeable random variables,
then for any convex function f , ψ(�a) = E {f (

∑
aiXi)} is

Schur-convex on R
n [16, p.287, Proposition B.2]. Thus, from

(14), (16), and Definition 4, we have,

E{f(T ind
sri

+ T ind
rid )} = E

{
f

(
1
λsri

U1 +
1
λrid

U2

)}

≥ E

{
f

(
1
μi
U1 +

1
μi
U2

)}
= E{f(Ssri

+ Srid)},

for any convex function f . Equivalently, from Definition 2, we
have T ind

sri
+ T ind

rid
≥cx Ssri

+ Srid for each i = 1, . . . , n. As
mentioned in Section IV, it follows that

T ind
sri

+T ind
rid ≥cx Ssri

+Srid ⇒ T ind
sri

+T ind
rid ≤cv Ssri

+Srid

⇒ T ind
sri

+T ind
rid ≤icv Ssri

+Srid,

for any i = 1, . . . , n. Then, since min{x1, . . . , xn} is increas-
ing on R

n and concave in each argument xi, from (10), (13),
and Proposition 6, we have

D
[2]
ind(s,d) ≤icv D̃

[2]
ind(s,d). (17)

Proof of D̃[2]
ind(s,d) ≤st D

[2]
hom: Let νi := 1

μi
and

g(νi) := P {Ssri
+ Srid > t} = (1 +

t

νi
)e−t/νi

for any t > 0. We also define another function h : R
n
++ →

R++ by

h(�ν) := P

{
D̃

[2]
ind(s,d) > t

}
=

n∏
i=1

g(νi),

where �ν := (ν1, ν2, . . . , νn). It is straightforward to check
log g(νi) is concave in νi > 0 for all t > 0. Then, since
g(νi) is log-concave, h(�ν) =

∏
g(νi) is Schur-concave on

R
n
++ [16, p.73, Proposition E.1]. Thus, from (11), (13), (15)

and Definition 4, we have for any �ν,

P

{
D̃

[2]
ind(s,d) > t

}
= h(ν1, . . . , νn)

≤ h(τ, . . . , τ) = P

{
D

[2]
hom > t

}
,

for any given t > 0. In order words, by Definition 1,

D̃
[2]
ind(s,d) ≤st D

[2]
hom. (18)

From (17) and (18), we are done.

By noting that ≤st⇒≤icv , Theorem 1 implies that if
E{T hom

I } = 1
2n

∑n
i=1[1/λsri

+ 1/λrid], then

D
[2]
ind(s,d) ≤icv D

[2]
hom.

Since φ(x)=x is increasing and concave, from the definition
of increasing concave order, it further implies

E{D[2]
ind(s,d)} ≤ E{D[2]

hom}.
We now move on to the stochastic comparison on message

delivery delays for a uniform source and destination pair. Note
that the average message delivery delay of a uniform pair



is nothing but the arithmetic mean of the average message
delivery delays over all possible |N |(|N | − 1)/2 source and
destination (s, d) pairs. Then, since E{D[2]

ind(s,d)} is upper-

bounded by E{D[2]
hom} for each (s, d) pair when E{T hom

I } =
1
2n

∑n
i=1[1/λsri

+ 1/λrid], after computing the arithmetic
mean of upper bounds on E{D[2]

ind(s,d)} over all (s, d) pairs,
we obtain the following corollary.

Corollary 1: If E{T hom
I } = E{T ind

I } =
∑

i∈I
1
λi

1
|I| , then

E{D[2]
ind} ≤ E{D[2]

hom}. �

Proof: See Appendix B.

As shown in Theorem 1 and Corollary 1, the path diversity
(heterogeneity) over n relay paths under the individual model
results in better delay performance of multicopy two-hop relay
protocol. It also turns out that Proposition 5 still holds under
the same scenario (i.e., no direct path is used) considered
in Corollary 1. Thus, under this scenario, if E{T spa

I } =
E{T ind

I } = E{T hom
I }, we have

E{D[2]
ind} ≤ E{D[2]

hom} ≤ E{D[2]
spa}.

This means that the heterogeneity structure in the spatial
model makes the average delay performance of multicopy two-
hop relay protocol worse, whereas the another heterogeneity
structure in the individual model is beneficial to its average
delay performance when compared with that under the corre-
sponding homogeneous model.

From our theoretical results, we expect that the delay per-
formance of other two-hop and multi-hop forwarding/routing
protocols under each heterogeneous model differs considerably
from that under the homogeneous model and there exists a
significant performance gap between the two heterogeneous
models as we observed, even when the entire aggregate
inter-contact time distributions are precisely matched. Further
studies are still required as to how to correctly capture and
model the underlying heterogeneity in mobile nodes’ contact
dynamics to correctly compare and accurately estimate the
actual forwarding/routing performance under more general
protocols. We leave this as a future work.

VI. CONCLUSION

In this paper we have mainly focused on how the underlying
heterogeneity structure in mobile nodes’ contact dynamics
impacts the performance of forwarding/routing algorithms in
DTNs. Based upon two representative heterogeneous network
models, we have investigated their non-Poisson contact dy-
namics and stochastically compared their delay performances
of direct forwarding and multicopy two-hop relay protocol
with those under the homogeneous model. In particular, our
findings show that each heterogeneous model predicts an
entirely opposite delay performance when compared with that
under the homogeneous model. This calls for much more
careful studies on the forwarding/routing performance under
non-Poisson contacts, and perhaps more importantly, under
properly chosen heterogeneous models.

APPENDIX A
PROOF OF PROPOSITION 1

Here, we prove that the inter-contact time of any node
pair which is uniformly chosen in I has a hyper-exponential
distribution for the spatial model. By the definition of the
spatial model, the distribution of inter-contact time of a node
pair is identical to the others, it is enough to show the inter-
contact time distribution of a given node pair i ∈ I.

Let TAB be inter-contact time between randomly chosen
nodes A and B. Without loss of generality, we assume that a
contact between nodes A and B occurs at time 0. We denote
{A(t)}t≥0 and {B(t)}t≥0 to be Markov chains for a state
(a spatial cluster) that nodes A and B belong to at time t,
respectively. In this proof, we use state i to indicate state Si for
notational simplicity (Ω = {1, 2, . . . ,M}). Since the Markov
chain is irreducible and its state space is finite, it is ergodic
and thus there exists a stationary probability πi, where i ∈ Ω
(i.e., �π such that �πQ = �0) [4]. We assume that the system is in
the steady-state with its stationary distribution �π. Recall that
the infinitesimal generator Q of the Markov chains is given
by

Q =

⎡
⎢⎢⎢⎣

−q1 q12 · · · q1M

q21 −q2 · · · q2M

...
...

...
. . .

qM1 qM2 · · · −qM

⎤
⎥⎥⎥⎦ ,

where qi =
∑

k �=i qik. We also define a matrix B by
B= diag{β1, β2, . . . , βM}. From the definition of the spatial
model, we know that a contact process based on B between
nodes A and B is modulated by {A(t)}t≥0 and {B(t)}t≥0.
In order words, a contact between nodes A and B happens
according to a Poisson process with rate βi, only when two
nodes reside in the same state i (i ∈ Ω). One can expect
the similarity as a point process between the contact process
under the spatial model and an arrival process governed by the
Markov Modulated Poisson Process (MMPP) [11] widely used
in teletraffic engineering. In the MMPP, packet arrivals occur
according to a Poisson process with a different rate which is
modulated by an irreducible continuous time Markov chain.

To show the clear relationship with the MMPP, we first
define a stochastic process C(t) := (A(t), B(t)) to represent
a pair of the states that nodes A and B belong at time
t, as the contact process is modulated by the pair of the
states. The process C(t) is a continuous time Markov chain
{C(t)}t≥0 with state space S = {1, . . . ,M}×{1, . . . ,M} and
infinitesimal generator Q′ = [ q′(u, v) ]u,v∈S . In particular,
Q′ is given by

Q′=

⎡
⎢⎢⎢⎢⎢⎣

−q′1 q12 q13 · · · 0
q21 −q′2 q23 · · · 0
q31 q32 −q′3 · · · 0

...
...

...
. . .

...
0 0 0 · · · −q′M2

⎤
⎥⎥⎥⎥⎥⎦ .

Here, the entries of the generator Q′ are ordered lexicograph-
ically, i.e., (1, 1), (1, 2), . . . , (1,M), (2, 1), . . . , (M,M), and



q′l =
∑

k �=i qik +
∑

k �=j qjk, where l = M(i − 1) + j and
i, j ∈ {1, 2, . . . ,M}. The steady state probability vector �π′

for {C(t)}t≥0 can be represented in terms of πi and is given
by �π′ = [π2

1 π1π2 · · · π1πM π2π1 · · · π2
M ].

For notational convenience, we define another M2 ×M2

matrix B′ from the M ×M matrix B, as the generator Q′

is a M2 × M2 matrix. The B′ is a diagonal matrix with
B′

jj = βi if j = M(i − 1) + i, otherwise zero, where
j ∈ {1, 2, . . . ,M2} and i ∈ {1, 2, . . . ,M}. Thus, the contact
process based on B′ between nodes A and B is modulated by
{C(t)}t≥0. That is, when the Markov chain {C(t)}t≥0 is in
the state (i, i), contacts occur according to the Poisson process
of βi. Therefore, it has exactly the same structure of MMPP
with (Q′, B′) [11].

Consider the epochs of successive contacts in the MMPP
with (Q′, B′) to obtain the pairwise inter-contact time dis-
tribution between nodes A and B, i.e., P{TAB > t}. As
mentioned above, the contact process between nodes A and
B starts at an “arbitrary contact epoch”, i.e., t = 0 is a
contact epoch. It is called interval-stationary process in the
MMPP [11]. We denote Jn, n ≥ 0, to be the state of the
Markov chain {C(t)}t≥0 associated with the nth contact (J0

is the state at t = 0). We also denote Xn, n ≥ 1, to be the
inter-contact time between the (n−1)st and the nth contacts
(X0 = 0). Then, the sequence {(Jn,Xn), n ≥ 0} is a Markov
renewal sequence with transition probability matrix [11], [17]

F(t)=
∫ t

0

e(Q
′−B′)uduB′=

[
I−e(Q′−B′)t

]
(B′−Q′)−1B′

=
[
I − e(Q

′−B′)t
]
F(∞), (19)

where the element Fij(t) of F(t) is the conditional probability
{Jn = j,Xn ≤ t | Jn−1 = i} for n ≥ 1, and I is a M2 ×M2

identity matrix.
The matrix F(∞) = (B′ − Q′)−1B′ is stochastic and its

stationary vector �p is given by [11], [17]

�p = �p (B′ − Q′)−1B′ =
1

�π′�β′�π
′B′,

where �β′
M2×1 := [β′

1 β′
2 · · · β′

M2 ]T . Here, β′
j = βi if

j = M(i − 1) + i, otherwise zero, where j ∈ {1, . . . ,M2}
and i ∈ {1, . . . ,M}. Thus, an element of �p is π2

i βi∑M
k=1 π2

kβk
if

the element is for the state (i, i), otherwise 0. Here, since
the contact process between nodes A and B governed by
the MMPP with (Q′, B′) is interval-stationary, the initial
probability vector {J0} of the MMPP with (Q′, B′) is chosen
to be �p. Thus, since P{TAB > t} = P{Xn > t} for n ≥ 1,
from (19) with �p, we have

P{TAB > t} = �p e(Q
′−B′)t(B′ − Q′)−1B′�e

= �p e(Q
′−B′)t�e, (20)

where �eM2×1 = [1 1 · · · 1]T . The second equality is from the
fact that the matrix (B′−Q′)−1B′ is stochastic. Note that (20)
is the marginal distribution of an inter-contact time between

two successive contact epochs, and it is the form of a matrix
exponential.

Recall that qij = qji in the generator Q, where i, j ∈ Ω.
Hence, it is easy to see that the matrix Q′−B′ is symmetric,
and thus its eigenvalues and eigenvectors are real. By the spec-
tral theorem [22], the matrix Q′−B′ can be diagonalized by an
orthogonal matrix. In other words, Q′−B′ = MUM−1, where
M is a M2 ×M2 orthogonal matrix containing orthonormal
eigenvectors of Q′−B′, and U is a M2×M2 diagonal matrix
in which each diagonal element is its an eigenvalue. Thus,
(20) becomes

P{TAB > t} = �p e(Q
′−B′)t�e = �p MeUtM−1�e. (21)

Here, since all the eigenvalues of Q′ − B′ are real and
e(Q

′−B′)t → 0 as t → ∞ in (19), all the eigenvalues (in U)
should be negative [22]. Therefore, (21) becomes a weighted
sum of exponentials (i.e., hyper-exponential). This completes
the proof. �

APPENDIX B
PROOF OF COROLLARY 1

Recall that Theorem 1 implies that if E{T hom
I } = τ =

1
2n

∑n
i=1[1/λsri

+ 1/λrid], then

E{D[2]
ind(s,d)} ≤ E{D[2]

hom}. (22)

Here, from this result, we show that if E{T hom
I } = E{T ind

I } =∑
i∈I

1
λi

1
|I| , then E{D[2]

ind} ≤ E{D[2]
hom}. First, observe that

E{D[2]
hom}=

∫ ∞

0

P{min{T hom
sr1

+T hom
r1d , . . . , T hom

srn
+T hom

rnd }>t}dt

=
∫ ∞

0

n∏
i=1

P{T hom
sri

+T hom
rid > t}dt =

∫ ∞

0

(1 + t/τ)ne−nt/τdt

=
τ

n

n∑
i=0

n!
(n− i)!ni

.

For notational simplicity, let f(n) := 1
n

∑n
i=0

n!
(n−i)!ni . Hence,

we have

E{D[2]
hom} = τf(n). (23)

As mentioned earlier, the average message delivery delay
of a uniform source and destination pair is equivalent to the
arithmetic mean of the average message delivery delays over
all possible |N |(|N |−1)/2 source and destination (s, d) pairs.
Here, since the average message delivery delay for each (s, d)
pair is different depending on which (s, d) pair is chosen, we
use (i, j) instead of (s, d) to clearly distinguish each source
and destination pair, where i, j ∈ N � {1, 2, . . . , n+2}. Then,
the average message delivery delay of a uniform source and



destination pair is given by

E{D[2]
ind} =

2
(n+2)(n+1)

n+2∑
i=1

n+2∑
j>i

E{D[2]
ind(i,j)}

=
1

(n+2)(n+1)

n+2∑
i=1

n+2∑
j �=i

E{D[2]
ind(i,j)}

≤ 1
(n+2)(n+1)

n+2∑
i=1

n+2∑
j �=i

1
2n

n+2∑
k �=i,j

(
1
λik

+
1
λkj

)
f(n)

=
f(n)

(n+2)(n+1)2n

n+2∑
i=1

n+2∑
j �=i

n+2∑
k �=i,j

(
1
λik

+
1
λkj

)
, (24)

where the inequality is from (22)–(23). Further, summation
terms in (24) can be simplified as follows. Observe that

n+2∑
i=1

n+2∑
j �=i

n+2∑
k �=i,j

1
λik

=
n+2∑
i=1

⎛
⎝n+2∑

k �=i

n+1
λik

−
n+2∑
j �=i

1
λij

⎞
⎠

=
n+2∑
i=1

n+2∑
j �=i

n

λij
,

and
n+2∑
i=1

n+2∑
j �=i

n+2∑
k �=i,j

1
λkj

=
n+2∑
i=1

n+2∑
j=1

n+2∑
k �=i,j

1
λkj

−
n+2∑
j=1

n+2∑
k �=j

1
λkj

=
n+2∑
j=1

⎛
⎝n+2∑

k �=j

n+2
λkj

−
n+2∑
h�=j

1
λhj

⎞
⎠−

n+2∑
j=1

n+2∑
k �=j

1
λkj

=
n+2∑
j=1

n+2∑
k �=j

n

λkj
=

n+2∑
j=1

n+2∑
k �=j

n

λjk
.

Thus, (24) can be rewritten as

E{D[2]
ind} ≤ f(n)

(n+2)(n+1)

n+2∑
i=1

n+2∑
j �=i

1
λij

=

⎛
⎝ 2

(n+2)(n+1)

n+2∑
i=1

n+2∑
j>i

1
λij

⎞
⎠f(n)

=

(∑
i∈I

1
λi

1
|I|

)
f(n) = E{T ind

I }f(n), (25)

where the equalities are from the definition of the individ-
ual model. See also (1). Then, from the assumption that
E{T ind

I } = E{T hom
I } = τ , and from (23) and (25) we have

E{D[2]
ind} ≤ E{T ind

I }f(n) = τf(n) = E{D[2]
hom}.

This completes the proof. �
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