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Abstract—Fluid models have been the main tools for Internet conges- several system parameters such as the buffer size, tanget li

tion control. By capturing how the average rate of each flow ewlves,
the fluid model proves to be useful as it predicts the equiliblum point
to which system trajectory converges and also provides coiitibns under
which the convergence is ensured, i.e., the system is stabéowever, due
to inherent randomness in the network caused by random packerrivals
or random packet marking, the actual system evolution is ahays of a sto-
chastic nature. In this paper, we show that we can be better dusing a
stochastic approach toward the congestion control. We firsprove that
the equilibrium point of a fluid model can be quite different from the
true average rate of the corresponding stochastic system. fier we de-
scribe the notion of stability for two different approaches we show that
a stable fluid model can impose too much restriction on our chice of
system parameters such as buffer size or link utilization. h particular,
under fluid models, we show that there exists a fundamental adeoff be-
tween the link utilization and buffer size requirement for large systems,
while in a more realistic setting with stochastic models, tere is no such
tradeoff. This implies that the current congestion controldesign can be
much more flexible, to the benefit of efficient usage of networkesources.

I. INTRODUCTION

capacity per flow, marking probability, or its slope. Alttghu
the resulting stability criterion varies case by case ddiven
on the choice of TCP/AQM and the modeling framework un-
der consideration, they all share the same rules-of-thumb f
system stability. For example, it is well known [3], [4], [8]
that the marking slope at the equilibrium point should betkep
small to make the system at least linearly stable. Similénly
system is getting more unstable for larger RTT (delay).

On the other hand, there exists another body of work on
the congestion control based on a stochastic descriptitreof
network [9], [10], [11]. This approach often provides the-di
tribution of the performance measure of the system, e.g-, wi
dow size evolution, possibly at the cost of more difficult and
sometimes unwieldy analysis. The main tool in this areads th
Markov process approach; given the current network status o
event such as the window sizes (or rates) and the existence of
any congestion signal, the TCP/AQM algorithm completely

Transmission Control Protocol (TCP) coupled with variousPecifies (at least probabilistically) the network statushie
Active Queue Management (AQM) schemes are key compeext RTT based on the information available at the current
nents of the current congestion control and responsible f3F T- In this case, the notion of stability of the system is not
more than 90% of total traffic carried by the Internet. Siree t @bout the convergence of the mean rate to an equilibriunt poin
seminal work in [1], many variations and improvements on tHgeal number), but refers to a stationary behavior of theesys
congestion control have been made via the use of the sadcalfl@r “ergodicity”) starting from any initial distribution.

fluid modeling and through its stability analysis [2], [3#]]

In this paper, we provide several arguments in favor of the

[5]. By capturing the mean-level change in each flow’s injestochastic description of congestion control and addreses
tion rate and ensuring its convergence to an equilibriumtpoi possible limitations inherent in the fluid-based appro#arst,

the fluid model approach, usually in the form of a differeintisas the simplest case with a single flow over a single bottle-
or a difference equation, turns out to be extremely effectineck link, we show that the equilibrium (or the fixed point)
and versatile in the analysis and design of various corgyestof the fluid-based model can be much different from the true
controlled systems depending on the type of underlying vetverage of the stochastic counterpart, in which we have some

sions of TCP and AQM.

randomness either through random packet marking or random

Another nice characteristic of this fluid-based approach p&cket arrivals. Depending on the marking function empdoye
that the congestion control can be explained as a distdbui the link, we prove that the fixed point can be strictly lage
algorithm toward solving a global optimization where thetco smaller than the real expected value of the rate (or throuyhp
functions (or utility functions) of flows are chosen suchtthal his implies that the equilibrium point of the fluid model may

certain fairness criterion is achieved at the optimal altimn
of the rates [1], [6], [7]. In this case, the fluid-based diffie-

not be the actual steady-state point of the system and the cor
responding (linear) stability criterion can also be protégic

tial equation or difference equation for the rate of each flogince the system would have been linearized around possibly
can be interpreted as an iteration (or rate-updates) chiesr an inaccurate equilibrium point.

over a series of round-trip-times (RTTs), and by stability o In case of many flows accessing a shared link, however, it
the system we mean that these rate update equations convhegebeen shown that a simple fluid-based model becomes ac-

to the equilibrium point, i.e., the optimal rate allocation

curate enough to capture the dynamics of the “averaged” be-

In addition to the above, the criterion for system stabilitihavior of the system [12], [5], [13], through which many sta-
(convergence) produces many different design guidelimes laility criteria or design guidelines have been obtainedthwi



fluid models, we point out that there exists a fundamental The stability of the fluid model in (1) requires that
tradeoff between the link utilization and the buffer size rdim;_. ., z(t) = =* where the equilibrium point* satisfies
quirement for system stability. In particular, if we fix the .

buffer size as the qumbgr of flows and the. size of.capacny ot =g(zt) = 1= (1 + 55_) p(z"). ©)
both increase, the link will suffer reduced utilizationricly

less than one). In contrast, if we want to achieve full Iinli_ . .
o - : he system is called globally stable if the convergencesold
utilization and system stability, then the buffer size didie for any initial pointz(0) and locally stable if it holds only

scaled in proportion to the size of capacity and the number 0 s . ! o v i
; : .~ when the initial pointz(0) is sufficiently close ta:*. Similar
flows. However, under the stochastic model as in reality, we . )
. . 0,the techniques based on the Laplace transform for differe
show that there exists a way to scale the system to achidve fal . : ; .
N ) . . , 1al equations, we can also easily obtain a condition foaloc
utilization, while keeping the buffer size requirement |1mucStabilit for the difference equation in (1). Note that
smaller. In this regard, we believe that the current fluiddah y q '
approach toward congestion control may place too much un- 2(t+1) — 2" = ¢ (@) (x(t) — 2%) + o(x(t) — z*).
necessary restriction on the choice of system parameters.
This paper is organized as follows. In Section I, we deFhe system is then linearly stable if and only if
scribe some basics of a fluid model and a Markovian model L
for congestion control and explain the different notiornrssia- lg'(z") | <1, 4
bility n each case. .In. Secuqn ll, we prove that under scm]v(\?hereg’(:r) is the derivative of the functiog(z). In other
conditions the equilibrium points for two different modekmn words. the svstem is locally ‘contractive’ around. and the
be quite different. We also provide popular examples for trfi%ear ,stability ensures coni//er encextowhen (0), is suffi-
marking function for which our assumption is satisfied. In. y . o -9 1S .
) . Lo L . ciently close tar*. Sincep(x) is non-negative and increasing
Section IV, we discuss the implication of the stability eribn non-decreasing) i, we can rewrite the condition in (4) in
for both approaches and illustrate that fluid-based approa{c 9)

can be unduly restrictive for system design. We then comclud "> ofp as follows:

in Section V. * 1 ( ok
p(;ﬂ ) N p((:c*)) <o, 5)
X
Il. FLUID MODEL VS. MARKOV CHAIN FOR CONGESTION P
CONTROL wherez* is the unique solution of (3).

Both fluid-models and Markov chains have been widelgxamples: Let us consider the following examples fa(z):
used in the analysis and design of network protocols and con-

B
gestion controllers. The range of their applications is &st v pi(z) = (E) (6)
in the literature that we by no means attempt to cover them all c
here. Instead, we here use a simple example to illustrate the N —2B(C —x) 7
- pa(x) exp 5 : )
main difference here. oz

(6) can be interpreted as the probability of queue lengthdoei
larger thanB in an M /M /1 queue with arrival rate and ser-
Consider a simple congestion controller with a singhce rateC. Similarly, (7) corresponds to a case where packets
flow adapting its rate according to an additive-increasever one unit time (RTT) arrive to a queue with capacitac-
multiplicative-decrease (AIMD) algorithm. Let the roundcording to a Gaussian process with meaand variancer>z.
trip-time (RTT) be equal to one time slot. Then, it is wellThen,p,(x) is the probability that an arriving packet finds the
known that theaverage behavior of the flow’s ratex(¢t) at queue-length to be larger tha&h([3]. Both of these models for
time slott (t = 1,2,...) can be described by the followingmarking functions are known to capture the packet-level be-
fluid model in a discrete time setting: havior as they explicitly take into account the random packe
arrivals to the queue by modeling the arrival process ehlyer
a Poisson (fop; (x)) or a Gaussian process (fps(x)). By

A. Fluid Model in Discrete Time

e(t+1) = (@) + 11 -pl®) + —pl?) substituting (6) and (7) into (3) and (5), we can calculate th
= g(z(t)), (1) equilibrium pointz* and the corresponding local stability con-
ditions for each of these marking functions.
where B. Markovian Models
9(x) = (z + 1)(1 — p(x)) + zp(z)/2. @

We consider the same AIMD-like algorithm in Section II-
Here, the functiorp(z) € [0, 1] is the marking function de- A with one RTT set to one unit time slot. Lef(¢) be the
noting the probability that the flow receives congestiomalg actual rate (or the window size since RTT is set to be unity) of
when the current rate of the flowis Then, as usual, (1) hasthe flow at time slot. Then, depending on the flow’s current
an interpretation that the average flow’s rate will increlage rate X (¢) at time slott, the flow’s actual rate at the next RTT
one if no congestion and reduced by half under congestionwill be always either incremented by one with probability



p(X (t)) or reduced by half with probability(X (¢)). In other as long adim,_,~, p(x) > 0 (which is always the case). Thus
words, the actual rate of a flow (¢) can be described as thefrom Pakes’s Lemma [15], the chain is always ergodic and
following simple (state-dependent) Markov chain: converges to a stationary versionXft) starting from any ini-
) N tial distribution. In other words, the “stability” of the Mkeov
_ JX()+1, with probabilityl — p(X(t)) chain in (8) is always guaranteed.
X(t+1) = . - ®) ys g
X(t)/2,  with probabilityp(X (t))

. o i IIl. DISCREPANCY INEQUILIBRIUM POINTS
Our interpretation is as follows. Suppose the current flow’s

rate (or simply the number of packets in the current RTT) is The fluid model or the recursion in (1) serves two purposes.
X (t). Then, given thafX (¢) = x, the number of packets ar-First, it is intended for capturing the change in the average
riving to the queue of interest is Since each of these packefate over RTTs. Second, by ensuring the stability of the fluid
will be randomly jittered in its arrival time to the queue, itnodel, we also expect that the original system works reason-
causes the queue-]ength to fluctuate even when C. This ably well with gOOd performance. In this SeCtion, we show tha
random arrival nature is already reflected in (6) and (7) dender some conditions the equilibrium point of the fluid mode
pending on the choice of arrival model. However, since tHé&n deviate a lot from the actual expected value obtained via
rate (or the window size) of the flow at the next RTT can onfh€ Markovian model. o S
beeither z+ 1 with probability1 —p(z) or /2 with probabil- In general, an exact_soll_Jtlon (ina d.|str|l_3ut|or.1al sgnse) fo
ity p(z) (never in between), it naturally leads to the Markoviafhe simple Markov chain given by (8), if exists, is quite com-
description as in (8). plicated even for a very simple functigi(z). (See [9] for
Another equivalent representation of (8) is possible via ttxample.) Instead, we can think of an approximation us-

so-called iterated random function [14]. Define |ng the fluid model in (1) to make the anaIySiS feasible and
tractable under more general settings. As suggested in [2],

flz,u) = (z+1)(1 = Liu<p(a)y) + gl{ugp(x)}- (9) an approximation using a fluid model can be justified by cap-
) ) turing the average of system states (random variables), i.e
Let Uy, U, .., bei.i.d. ur_uform random variables ovél, 1] 2(t) ~ E{X(t)}, and focusing on how this average changes

andindependent of everything else. Then, we see that (8) con-i, response to different system reactions triggered by the ¢
veniently takes on the following form: gestion signal. Also, observe that the Markov chain in (8) is
X(t+1) = f(X(©),U0,) t=1,2,.... (10) always ergodic, and thus there always exists a stationagy me

sure for the chain, i.e., a stationary distribution (in tithéor
In view of (8) — (10), we can rewrite the fluid model in (1) asy (¢) satisfying (8) or (10). Let be the stationary distribution
follows: of X (t) and leti be the steady-state meanXft), i.e.,

2(t+1) B{X(t+ 1)|X(t) = z(t)} or,

1

z(t+1) = Ey{f(z(t),U)} —/0 Flt),u) du, where the expectation is taken over Since the original

C. Sability of the Markov Chain I\/!arkpv chain always enters the steady-state in wr]igh the dis
tribution does not depend anwe expect that* = 7 if the

Any suitably designed network algorithm or protocol is eXjuid model were to be “close” to the original Markov chain
pected to be “stable”. The notion of the stability of communigng to capture the “average behavior” of the system.
cation networks is in general the most important concept andprgposition 1: Assume thatX () in (8) is not always a
has been the first condition that needs to be satisfied in evephstant (non-degenerate). Suppose #ia} in (2) is either

&= E X)), Vi,

occasion. . o strictly convex or strictly concave. Then, we have
The stability of a Markov chain means “ergodicity” of the
chain in that, starting from any initial distribution, thaain Tt + 3.

eventually converges (in the sense of total variation) ttaa s ) ) ]
tionary version, where the distribution of a stationaryioha ~ Proof: Suppose the functiog(z) is strictly convex.
does not depend on time [15]. Thus, by enforcing the statidhtom the stationarity ok (¢) and (10), note that

arity of the system, we expect that any performance measure,

usually defined by an expectation (over the stationaryitistr * = EAX(t+1)} = E{f(X(),Us}

ution) of some function of the staf¥(t), is well-defined and EAEuA{f(X(1),U) | X(t)}}
does not change in time. Let us consider again the chain in 1

(8). Itis easy to see that for any ‘well-defined’ non-deciegs Er {/ fX(2),u) du} , (11)
function p(x), the chain in (8) becomes aperiodic and irre- 0

ducible. Further, observe that wheref (z, u) is from (9), and (11) follows sinc& (¢) andU,
limsup E{X(t+1) — X(¢) | X(t) = 2} are independent. Singgz) = fol f(z,u) du from (9) and
z—00 (2), the previous equation implies
= limsupl —p(z) — 2p(z) <0 N .
P 2 ’ T =E{g(X(t)} > g (E-{X(1)}) =9(2), (12)



where the inequality follows from the (strict) convexity ¢f
and Jensen’s inequality. Sineé is the unique fixed point of

TABLE Il

EQUILIBRIUM POINTS FORp(z) = p2(x) IN (7)

g, i.e,, z* = g(z*) (see (3)) and from (12), we see that T | 2= E XD | @ -3/

cannot be the fixed point qf, i.e., & # z*. The proof for B=50 | 5.92 5.28 11%

a concavey is identical except that the inequality in (12) is B=100 | 7.23 6.29 13%
B=300 | 8.76 7.28 7%

reversed. |

If p(x) is given by (6), it is immediate to see that the func-

tion g(z) as in (2) is always strictly concave. Thus, from o N )
Proposition 1, we have* # E,{X(t)}. Fig. 1 shows the study the implication of the stability for these two diffate

functiong(z) with p(z) given by (6). Note that the fixed pOintapproaches and its impact on the choice of system parameters
* increases a® increases and the functior(z) is always When there are many flows in the system.

concave in this case. For all three valuediothe fluid model 5 1.2 4ot Between Link Utilization and Buffer Size in Fluid
is stable, i.e., it satisfies (4).

Models

10 ‘ ‘ ‘ ‘ Consider now a single link with capacity C shared by

ol o I N flows, where the rate of each flow is governed by the

ol slope = g'¢) N same AIMD algorithm. Letr;(t) be the rate of flowi (i €

| A\ {1,2,...,N}) at time slott in the fluid model. Assume that

O\ the congestion signal at the link is generated based only on

9 N the ‘link utilization’ of the link, i.e.,p(z) depends only on
5 ° Zfil x;(t)/N. Note that the two examples in (6) and (7) sat-

i isfies this assumption. We then obtain a fluid model for flow

3 ] as follows:

2 ---B=5

— B=10 N (¢
1 - ot ni(i+1) = <%u»+n<1—p(25%§ﬁl>>
00 2 4 é 8 10

x z; N
+zmp<zrlxw> 13)

Fig. 1. g(z) in (2) for a marking functiong(z) = (2/C)B with C = 10 2 N
and different buffer size$.
Defineyy (t) := Zf.vzl x;(t)/N. Then, by summing (13) over
Tables | and Il show the equilibrium points of the fluid; and dividing it by N yields
modelz* and of the Markov chait = E.{X(t)} for two (Oplun(©)
different functionsp(z), respectively. We fixC' = 10 for fa1) = D1 — ) 4+ Ivplyn ()
all cases and set? = 50 only for po(x) in Table Il. All o )= v (@ + DA =plyn(B) 14
these values make the fluid model stable. As expected fr?\lm (14)

Proposition 1, the two equilibrium points are quite diffetre Hote that t?'s IS me same as trt1e case ftl)f a S|_ngle flow md(lt)r.]
In general, the higher the curvature of the functign), the ence, as far as the average rate (over flows) is concerred,

larger the difference betweert andz. For example, in case system withV flows preserves the same equilibrium point and

N : _ _ . tability property as the single flow case.
of p(z) = (x/C)B with C = 10 and B = 15 (for which the > . . .
system is stable in the sense of (5)), the actual expected r tConS|der again the two examples fafr) in (6) and (7).

of the system can be abolif.7% smaller than what the fluid s shown in Fig. 1, it is not difficult to see that the stability
model predicts condition for both cases becomé&s < B for some finite B

and we always havgy, < C, whereyy, is the fixed point of
(14), i.e.,g(yy) = y&- (Note thaty}y, = z* since the fixed
point is unique.) In other words, if the system in (13) with
many flows were to be stable, then the buffer dizshould be

TABLE |
EQUILIBRIUM POINTS FORp(z) = p1(z) IN (6)

=5 7’3;4 &= 1%,;;;((75)} (x*l; f%w bounded (not too large), and the resulting link utilizathma
B=10 | 8.47 =11 6% comes strictly less than one. If we arbitrarily incredsethen
B=15 | 8.93 7.35 17.7% the equilibrium pointyy, approaches td@’ (full utilization),

but the fluid model becomes unstable, i.e., it never congerge
toyy-

This type of observation between the link utilization and
buffer size can also arise in other situations. Under the AQM
scheme with a virtual queue [16], where we base the marking

In the previous section, we show that the equilibrium prelecision on the virtual queue whose capacity is strictlg les
dicted by a fluid model can be quite different from the adhan the real capacity, the real queue size remains bounded
tual expected rate of the stochastic system. In this seate®n (very small), so the buffer requirement is minimal at thetcos

IV. | MPLICATION OF THE STABILITY OF A SYSTEM WITH
MANY FLOwS

4



of reduced link utilization. Similarly, in [17], it is showtihat As before, we can interpret (15) as follows. Given
starting from a queue-based marking where the marking hgps; (¢), ..., Xn(t)) = (x1,...,2n), we see that the actual
pens at a fixed queue-length, the system dynamics becomegpatket arrivals to the link will be a random process with para
most identical to a system with a rate-based marking schemesterz = (z1 +x2+---+xx)/N. Depending on our choice
for which we again obtain reduced utilization but boundefdbr the arrival process, each flow will either decrease (er in
buffer-size requirement. crease) with probability(z) (or 1 —p(z)) independently from

On the other hand, if we use queue-based AQMs (e.gther flows. Thus, we obtain the a Markov chain as in (15) for
RED [18]) with suitably chosen marking functions with an apX (t) = (X1 (¢),..., Xn(t)), wherel < X,;(t) < wmaz-
propriate buffer size, we can achieve both full utilizatemd First, let N be fixed. Then, from our Constructioﬁf(ﬁ) =
stable system. Again, let there Beé flows accessing a link (X (t),..., Xn(t)) is an N-dimensional Markov chain with a
with capacityNC' and assume that the marking happens onfjhite number of states. Since the chain is also irreducibte a
based on the normalized queue-length. SpecificallyNét) aperiodic, it is always ergodic and converges in total viania
be the actual queue-length at time sloThen, the normalized to its stationary version [15]. This means that for any baehd
gueue-length evolves as function F', we have

+
SRS OB

lim B{F(X (1)} = EAF(X)},

| N _ _ whereX = (Xi,...,Xy) denotes a stationary version of
whereyn (f) = > ;= 2i(t). When the marking function X(t) and is the associated stationary distribution. Since
p(z) depends only omy (t)/N, it is shown that the system Ya(t) < w the above implies
can be (locally) stable in the sense of the fluid model(if) - o

satisfies further conditions. In essence, the stabilityd@@nm 1 &

always requires that the slope of the marking probability attlilrolo E{YN(t)} = Ex{Yn} = E, {N ZX,} = UN-

the equilibrium point be kept low. In case of queue-based i=1

AQMs with IV flows and capacityVC, this means that the |, giner words, the expected value of averaged rates (Sver

slope should b&(1/N) [4], [13], indicating that the equilib- g0,y converges to an equilibrium value. This result tes u

rium queue—_len_gth anc_i t_he buffer size should be at @@_{)'_ that, givenN, due to the stochastic nature of the system, the
Note that this linear sizing for the buﬁgr and the e‘?“!“‘"‘," expected rate of the systeahways converges to the equilib-
q_ueue-lengtrr]l enleljrehs a lstabled Operﬁttlpn and fg‘" Irllnlrzm rium pointyy regardless of initial distributions of the system.
tion even when all theV flows drop their rates by half. AS s s in stark contrast to the fluid model in which there ex-

;;?Stﬁg,rgoerx% tssyzt?lnggrr?snf;??rlZ dlgo?f glgt'\?veﬁntshee’ I\:\rlqi if;s‘? some restrictive conditions on the system parameters fo
L ; : o . t) to converges to the equilibrium point, which is given b
lization and the buffer size requirement: (i) if the bufféres yn (1) g 9 P g y

: . : P the unique solution of(z) = =.
is bounded, i.e.5 = O(l),nth.en the link ut|I|z_at|on_|_s a[so This stochastic construction also allows much less restric
bounded away from one; (ii) if we need full link utilization

hen the buffer si hould be ch h 'tive parameter choice for a system with many flows. Similarly
then the buffer size should be chosen'as- Q(N) whereN' g above, sincg(-) is bounded, we expect th&#{p(Yn(¢)}
is the number of flows accessing the link with capadty’. o, converges to a steady-state probabifity{p(Yx)} for

B. Sahility of a Markov Chain with Many Flows any givenN. To illustrate how this stocha;tic description af-
) ) _ ) ) fects the system performance and the choice of parameters, w
In this section we consider a stochastic version of the SMekep(z) = (z/C)E as in (6) and assume that

tem via a Markov chain when there aké flows accessing a

link with capacityNC'. Let X;(¢) be the random variable for O<a<E{p(Ynm)}<pB<1, (16)

the actual rate to the queue from fléWor simply the window ] _
size or the number of packets) at time stotSuppose now for all N, wherea, 5 € (0, 1) are constants. This assumption
that X, (¢) is always bounded, i.el, < X;(t) < wma, Where IS réasonable since, in order for the system to be in a station
is due to the receiver buffer space or bounded ma@ty regime, the steady-state marking probabifity{p(Yn)}

wmax

mum rates at access networks. Dét(t) for i = 1,2 N also needs to be bounded away from 0 and 1. Indeed, if this
. ) AR . . .

be given. Then, based on the arguments as in Section II-B, Vigdue is arbitrarily close to zero, then we expect that atrabhs

see thatX; (¢ + 1) will evolve as follows: the flows will increase their rates by one. This surely causes

the distribution of the rates at the next RTT to be certaitifly d
(Xi(t) + 1) Awpmae, W.p.1—p(Yn(t)) feregt from the current one, thereby violating the statiitpa

condition.
(Xi®)/2) v 1, w.p-p(Y (1)), (15) Observe tha¥'y is an average ove¥ random variables(;

(t =1,2,...,N). Thus, under a very general condition, we
expect thal’y will be very close to its mean due to the law of
large numbers. Thus, for larg€, we can writeYy as

Xi(t+1) = {
wherez A y = min{z, y} andz V y = max{z, y}, and

N
1

V() = — 3" X,(0).
N; Yn = gn +o(1),



wheregy = E.{Yn} andlimy_.o, o(1) = 0. So, the condi- that the stability of the fluid model, which ensures the conve

tion in (16) with the choice op(x) = (z/C)” becomes

(2 vo)”

wherea < k(N) < 3. Now, letB = B(N), i.e., we wan
to scale the buffer size as the number of flows and the size
capacity grows. Then, we can rewrite (17) as

in =C- (K(N)ﬁ . 0(1)) .

Kk(N), a7)

the

gence of the average rate to its (possibly incorrect) dayitilin
point, may impose excessive restriction of our choice of sys
tem parameters. In particular, under many flows with large
capacity, we have shown that the system utilization stifl ap
t proaches to full utilization even when the buffer size idsda
f%? smaller than the bandwidth-delay product, while thddyuf
size on the order of bandwidth-delay product is necessary fo

stability of the fluid model with full utilization. Our fe

(18) sults in this paper thus generalize the new scaling lawshfor t
buffer size that are recently reported in [19], [20] and glsm

Sincex(N) > a > 0 for all N, we see thafy approaches to Vide deep insight into the true meaning of a fluid model and
C as long adimy_... B(N) = oc. In other words, we can its stability.

have a ‘stochastically stable’ system with almost fullinét
tion as long as the buffer size increases without bound as the
system sizel{) increases. [1]
Recall that in the fluid-based approach there exists a fun-
damental tradeoff between the buffer size requirenigfiV) [2]
and the link utilization. In particular, we require that theffer
size increases linearly iV, i.e., B(N) = O(N) for a stable
system with full utilization, where the stability is in thersse [3]
of the convergence ajy (t) to yi (see (14)). On the other 4
hand, if we put fixed buffer siz8(N) = O(1) in a stable sys-
tem, then the system utilization will be reduced and betbtric
less than one. However, as we can see from (18), thete ist®!
such tradeoff between the utilization and the linearly increas-
ing buffer size. Under the stochastic model, the system wil
achieve full utilization forB(N) = O(NP) with0 < p < 1
or even forB(N) = log N, although the convergence canv)
be very slow for such slowly increasig(N). This result is
striking in that it offers a wide range of possibilities forss
tem configuration without suffering “stability” issues. fiact,
quite recently, it was shown [19] via real measurement th&f]
under many TCP flows, the system utilization can be very hi
even when the buffer size is chosen as the bandwidth-delay
product O(N)) divided byv/'N, i.e., B(N) = O(v/N). Fur- 1]
ther, more generally, we have also recently shown [20] that
under a queue-based AQM, the system utilization approaches
to 1 with low loss asV grows even whe(N) = O(N?) for  [12]
anyp € (0,1), and verified this viazs-2 simulations.

(8]

[13]
V. CONCLUSION
The fluid-based modeling approach has proven to be ¢x4]
tremely powerful and versatile for many problems in a ne s
work. For congestion control, the fluid model has been the
main tool to derive any criterion for system stability arduts  [16]
equilibrium point. However, the actual behavior in a netkvor
is always stochastic, as there always exists inevitablda@n [17]
ness due to random packet arrivals as well as random mark-
ing/dropping at routers. In this paper, through simple wsial [18]
and numerical results, we maintain that there may exist some
limitation on the fluid modeling approach from two distinct19]
viewpoints. First, we have shown that the two equilibriurBO]
points can be quite different for a single flow system. In t&rm
of the local stability of the fluid system, this implies thhet
system could have been linearized around an incorrect equi-
librium point. Second, under many flows, we have also shown
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