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Abstract—Fluid models have been the main tools for Internet conges-
tion control. By capturing how the average rate of each flow evolves,
the fluid model proves to be useful as it predicts the equilibrium point
to which system trajectory converges and also provides conditions under
which the convergence is ensured, i.e., the system is stable. However, due
to inherent randomness in the network caused by random packet arrivals
or random packet marking, the actual system evolution is always of a sto-
chastic nature. In this paper, we show that we can be better off using a
stochastic approach toward the congestion control. We firstprove that
the equilibrium point of a fluid model can be quite different from the
true average rate of the corresponding stochastic system. After we de-
scribe the notion of stability for two different approaches, we show that
a stable fluid model can impose too much restriction on our choice of
system parameters such as buffer size or link utilization. In particular,
under fluid models, we show that there exists a fundamental tradeoff be-
tween the link utilization and buffer size requirement for large systems,
while in a more realistic setting with stochastic models, there is no such
tradeoff. This implies that the current congestion controldesign can be
much more flexible, to the benefit of efficient usage of networkresources.

I. I NTRODUCTION

Transmission Control Protocol (TCP) coupled with various
Active Queue Management (AQM) schemes are key compo-
nents of the current congestion control and responsible for
more than 90% of total traffic carried by the Internet. Since the
seminal work in [1], many variations and improvements on the
congestion control have been made via the use of the so-called
fluid modeling and through its stability analysis [2], [3], [4],
[5]. By capturing the mean-level change in each flow’s injec-
tion rate and ensuring its convergence to an equilibrium point,
the fluid model approach, usually in the form of a differential
or a difference equation, turns out to be extremely effective
and versatile in the analysis and design of various congestion
controlled systems depending on the type of underlying ver-
sions of TCP and AQM.

Another nice characteristic of this fluid-based approach is
that the congestion control can be explained as a distributed
algorithm toward solving a global optimization where the cost
functions (or utility functions) of flows are chosen such that
certain fairness criterion is achieved at the optimal allocation
of the rates [1], [6], [7]. In this case, the fluid-based differen-
tial equation or difference equation for the rate of each flow
can be interpreted as an iteration (or rate-updates) of its rates
over a series of round-trip-times (RTTs), and by stability of
the system we mean that these rate update equations converge
to the equilibrium point, i.e., the optimal rate allocation.

In addition to the above, the criterion for system stability
(convergence) produces many different design guidelines on

several system parameters such as the buffer size, target link
capacity per flow, marking probability, or its slope. Although
the resulting stability criterion varies case by case depending
on the choice of TCP/AQM and the modeling framework un-
der consideration, they all share the same rules-of-thumb for
system stability. For example, it is well known [3], [4], [8]
that the marking slope at the equilibrium point should be kept
small to make the system at least linearly stable. Similarly, the
system is getting more unstable for larger RTT (delay).

On the other hand, there exists another body of work on
the congestion control based on a stochastic description ofthe
network [9], [10], [11]. This approach often provides the dis-
tribution of the performance measure of the system, e.g., win-
dow size evolution, possibly at the cost of more difficult and
sometimes unwieldy analysis. The main tool in this area is the
Markov process approach; given the current network status or
event such as the window sizes (or rates) and the existence of
any congestion signal, the TCP/AQM algorithm completely
specifies (at least probabilistically) the network status in the
next RTT based on the information available at the current
RTT. In this case, the notion of stability of the system is not
about the convergence of the mean rate to an equilibrium point
(real number), but refers to a stationary behavior of the system
(or “ergodicity”) starting from any initial distribution.

In this paper, we provide several arguments in favor of the
stochastic description of congestion control and address some
possible limitations inherent in the fluid-based approach.First,
as the simplest case with a single flow over a single bottle-
neck link, we show that the equilibrium (or the fixed point)
of the fluid-based model can be much different from the true
average of the stochastic counterpart, in which we have some
randomness either through random packet marking or random
packet arrivals. Depending on the marking function employed
at the link, we prove that the fixed point can be strictly larger or
smaller than the real expected value of the rate (or throughput).
This implies that the equilibrium point of the fluid model may
not be the actual steady-state point of the system and the cor-
responding (linear) stability criterion can also be problematic
since the system would have been linearized around possibly
an inaccurate equilibrium point.

In case of many flows accessing a shared link, however, it
has been shown that a simple fluid-based model becomes ac-
curate enough to capture the dynamics of the “averaged” be-
havior of the system [12], [5], [13], through which many sta-
bility criteria or design guidelines have been obtained. With



fluid models, we point out that there exists a fundamental
tradeoff between the link utilization and the buffer size re-
quirement for system stability. In particular, if we fix the
buffer size as the number of flows and the size of capacity
both increase, the link will suffer reduced utilization (strictly
less than one). In contrast, if we want to achieve full link
utilization and system stability, then the buffer size should be
scaled in proportion to the size of capacity and the number of
flows. However, under the stochastic model as in reality, we
show that there exists a way to scale the system to achieve full
utilization, while keeping the buffer size requirement much
smaller. In this regard, we believe that the current fluid-based
approach toward congestion control may place too much un-
necessary restriction on the choice of system parameters.

This paper is organized as follows. In Section II, we de-
scribe some basics of a fluid model and a Markovian model
for congestion control and explain the different notions for sta-
bility in each case. In Section III, we prove that under some
conditions the equilibrium points for two different modelscan
be quite different. We also provide popular examples for the
marking function for which our assumption is satisfied. In
Section IV, we discuss the implication of the stability criterion
for both approaches and illustrate that fluid-based approach
can be unduly restrictive for system design. We then conclude
in Section V.

II. FLUID MODEL VS. MARKOV CHAIN FOR CONGESTION

CONTROL

Both fluid-models and Markov chains have been widely
used in the analysis and design of network protocols and con-
gestion controllers. The range of their applications is so vast
in the literature that we by no means attempt to cover them all
here. Instead, we here use a simple example to illustrate the
main difference here.

A. Fluid Model in Discrete Time

Consider a simple congestion controller with a single
flow adapting its rate according to an additive-increase-
multiplicative-decrease (AIMD) algorithm. Let the round-
trip-time (RTT) be equal to one time slot. Then, it is well-
known that theaverage behavior of the flow’s ratex(t) at
time slot t (t = 1, 2, . . .) can be described by the following
fluid model in a discrete time setting:

x(t + 1) = (x(t) + 1)(1 − p(x(t))) +
x(t)

2
p(x(t))

:= g(x(t)), (1)

where

g(x) := (x + 1)(1 − p(x)) + xp(x)/2. (2)

Here, the functionp(x) ∈ [0, 1] is the marking function de-
noting the probability that the flow receives congestion signal
when the current rate of the flow isx. Then, as usual, (1) has
an interpretation that the average flow’s rate will increaseby
one if no congestion and reduced by half under congestion.

The stability of the fluid model in (1) requires that
limt→∞ x(t) = x∗ where the equilibrium pointx∗ satisfies

x∗ = g(x∗) ⇐⇒ 1 =

(

1 +
x∗

2

)

p(x∗). (3)

The system is called globally stable if the convergence holds
for any initial point x(0) and locally stable if it holds only
when the initial pointx(0) is sufficiently close tox∗. Similar
to the techniques based on the Laplace transform for differen-
tial equations, we can also easily obtain a condition for local
stability for the difference equation in (1). Note that

x(t + 1) − x∗ = g′(x∗)(x(t) − x∗) + o(x(t) − x∗).

The system is then linearly stable if and only if

| g′(x∗) | < 1, (4)

whereg′(x) is the derivative of the functiong(x). In other
words, the system is locally ‘contractive’ aroundx∗, and the
linear stability ensures convergence tox∗ whenx(0) is suffi-
ciently close tox∗. Sincep(x) is non-negative and increasing
(non-decreasing) inx, we can rewrite the condition in (4) in
terms ofp as follows:

p(x∗)

2
+

p′(x∗)

p(x∗)
< 2, (5)

wherex∗ is the unique solution of (3).

Examples: Let us consider the following examples forp(x):

p1(x) =
( x

C

)B

(6)

p2(x) = exp

(−2B(C − x)

σ2x

)

. (7)

(6) can be interpreted as the probability of queue length being
larger thanB in anM/M/1 queue with arrival ratex and ser-
vice rateC. Similarly, (7) corresponds to a case where packets
over one unit time (RTT) arrive to a queue with capacityC ac-
cording to a Gaussian process with meanx and varianceσ2x.
Then,p2(x) is the probability that an arriving packet finds the
queue-length to be larger thanB [3]. Both of these models for
marking functions are known to capture the packet-level be-
havior as they explicitly take into account the random packet
arrivals to the queue by modeling the arrival process eitherby
a Poisson (forp1(x)) or a Gaussian process (forp2(x)). By
substituting (6) and (7) into (3) and (5), we can calculate the
equilibrium pointx∗ and the corresponding local stability con-
ditions for each of these marking functions.

B. Markovian Models

We consider the same AIMD-like algorithm in Section II-
A with one RTT set to one unit time slot. LetX(t) be the
actual rate (or the window size since RTT is set to be unity) of
the flow at time slott. Then, depending on the flow’s current
rateX(t) at time slott, the flow’s actual rate at the next RTT
will be always either incremented by one with probability1−
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p(X(t)) or reduced by half with probabilityp(X(t)). In other
words, the actual rate of a flowX(t) can be described as the
following simple (state-dependent) Markov chain:

X(t+1) =

{

X(t) + 1, with probability1 − p(X(t))

X(t)/2, with probabilityp(X(t))
(8)

Our interpretation is as follows. Suppose the current flow’s
rate (or simply the number of packets in the current RTT) is
X(t). Then, given thatX(t) = x, the number of packets ar-
riving to the queue of interest isx. Since each of these packet
will be randomly jittered in its arrival time to the queue, it
causes the queue-length to fluctuate even whenx < C. This
random arrival nature is already reflected in (6) and (7) de-
pending on the choice of arrival model. However, since the
rate (or the window size) of the flow at the next RTT can only
beeither x+1 with probability1−p(x) or x/2 with probabil-
ity p(x) (never in between), it naturally leads to the Markovian
description as in (8).

Another equivalent representation of (8) is possible via the
so-called iterated random function [14]. Define

f(x, u) := (x + 1)(1 − 1{u≤p(x)}) +
x

2
1{u≤p(x)}. (9)

Let U1, U2, . . . , bei.i.d. uniform random variables over[0, 1]
andindependent of everything else. Then, we see that (8) con-
veniently takes on the following form:

X(t + 1) = f(X(t), Ut) t = 1, 2, . . . . (10)

In view of (8) – (10), we can rewrite the fluid model in (1) as
follows:

x(t + 1) = E{X(t + 1)|X(t) = x(t)} or,

x(t + 1) = EUt
{f(x(t), Ut)} =

∫ 1

0

f(x(t), u) du,

C. Stability of the Markov Chain

Any suitably designed network algorithm or protocol is ex-
pected to be “stable”. The notion of the stability of communi-
cation networks is in general the most important concept and
has been the first condition that needs to be satisfied in every
occasion.

The stability of a Markov chain means “ergodicity” of the
chain in that, starting from any initial distribution, the chain
eventually converges (in the sense of total variation) to a sta-
tionary version, where the distribution of a stationary chain
does not depend on time [15]. Thus, by enforcing the station-
arity of the system, we expect that any performance measure,
usually defined by an expectation (over the stationary distrib-
ution) of some function of the stateX(t), is well-defined and
does not change in time. Let us consider again the chain in
(8). It is easy to see that for any ‘well-defined’ non-decreasing
function p(x), the chain in (8) becomes aperiodic and irre-
ducible. Further, observe that

lim sup
x→∞

E{X(t + 1) − X(t) | X(t) = x}

= lim sup
x→∞

1 − p(x) − xp(x)

2
< 0,

as long aslimx→∞ p(x) > 0 (which is always the case). Thus
from Pakes’s Lemma [15], the chain is always ergodic and
converges to a stationary version ofX(t) starting from any ini-
tial distribution. In other words, the “stability” of the Markov
chain in (8) is always guaranteed.

III. D ISCREPANCY INEQUILIBRIUM POINTS

The fluid model or the recursion in (1) serves two purposes.
First, it is intended for capturing the change in the average
rate over RTTs. Second, by ensuring the stability of the fluid
model, we also expect that the original system works reason-
ably well with good performance. In this section, we show that
under some conditions the equilibrium point of the fluid model
can deviate a lot from the actual expected value obtained via
the Markovian model.

In general, an exact solution (in a distributional sense) for
the simple Markov chain given by (8), if exists, is quite com-
plicated even for a very simple functionp(x). (See [9] for
example.) Instead, we can think of an approximation us-
ing the fluid model in (1) to make the analysis feasible and
tractable under more general settings. As suggested in [2],
an approximation using a fluid model can be justified by cap-
turing the average of system states (random variables), i.e.,
x(t) ≈ E{X(t)}, and focusing on how this average changes
in response to different system reactions triggered by the con-
gestion signal. Also, observe that the Markov chain in (8) is
always ergodic, and thus there always exists a stationary mea-
sure for the chain, i.e., a stationary distribution (in timet) for
X(t) satisfying (8) or (10). Letπ be the stationary distribution
of X(t) and letx̂ be the steady-state mean ofX(t), i.e.,

x̂ = Eπ{X(t)}, ∀ t,

where the expectation is taken overπ. Since the original
Markov chain always enters the steady-state in which the dis-
tribution does not depend ont, we expect thatx∗ = x̂ if the
fluid model were to be “close” to the original Markov chain
and to capture the “average behavior” of the system.

Proposition 1: Assume thatX(t) in (8) is not always a
constant (non-degenerate). Suppose thatg(x) in (2) is either
strictly convex or strictly concave. Then, we have

x∗ 6= x̂.

Proof: Suppose the functiong(x) is strictly convex.
From the stationarity ofX(t) and (10), note that

x̂ = Eπ{X(t + 1)} = E{f(X(t), Ut}
= Eπ{EUt

{f(X(t), Ut) | X(t)}}

= Eπ

{
∫ 1

0

f(X(t), u) du

}

, (11)

wheref(x, u) is from (9), and (11) follows sinceX(t) andUt

are independent. Sinceg(x) =
∫ 1

0
f(x, u) du from (9) and

(2), the previous equation implies

x̂ = Eπ{g(X(t)} > g (Eπ{X(t)}) = g(x̂), (12)
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where the inequality follows from the (strict) convexity ofg
and Jensen’s inequality. Sincex∗ is the unique fixed point of
g, i.e., x∗ = g(x∗) (see (3)) and from (12), we see thatx̂
cannot be the fixed point ofg, i.e., x̂ 6= x∗. The proof for
a concaveg is identical except that the inequality in (12) is
reversed.

If p(x) is given by (6), it is immediate to see that the func-
tion g(x) as in (2) is always strictly concave. Thus, from
Proposition 1, we havex∗ 6= Eπ{X(t)}. Fig. 1 shows the
functiong(x) with p(x) given by (6). Note that the fixed point
x∗ increases asB increases and the functiong(x) is always
concave in this case. For all three values ofB, the fluid model
is stable, i.e., it satisfies (4).
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Fig. 1. g(x) in (2) for a marking functionsp(x) = (x/C)B with C = 10
and different buffer sizesB.

Tables I and II show the equilibrium points of the fluid
modelx∗ and of the Markov chain̂x = Eπ{X(t)} for two
different functionsp(x), respectively. We fixC = 10 for
all cases and setσ2 = 50 only for p2(x) in Table II. All
these values make the fluid model stable. As expected from
Proposition 1, the two equilibrium points are quite different.
In general, the higher the curvature of the functiong(x), the
larger the difference betweenx∗ andx̂. For example, in case
of p(x) = (x/C)B with C = 10 andB = 15 (for which the
system is stable in the sense of (5)), the actual expected rate
of the system can be about17.7% smaller than what the fluid
model predicts.

TABLE I

EQUILIBRIUM POINTS FORp(x) = p1(x) IN (6)

x∗ x̂ = Eπ{X(t)} (x∗ − x̂)/x∗

B=5 7.34 6.30 14.1%
B=10 8.47 7.11 16%
B=15 8.93 7.35 17.7%

IV. I MPLICATION OF THE STABILITY OF A SYSTEM WITH

MANY FLOWS

In the previous section, we show that the equilibrium pre-
dicted by a fluid model can be quite different from the ac-
tual expected rate of the stochastic system. In this sectionwe

TABLE II

EQUILIBRIUM POINTS FORp(x) = p2(x) IN (7)

x∗ x̂ = Eπ{X(t)} (x∗ − x̂)/x∗

B=50 5.92 5.28 11%
B=100 7.23 6.29 13%
B=300 8.76 7.28 17%

study the implication of the stability for these two different
approaches and its impact on the choice of system parameters
when there are many flows in the system.

A. Tradeoff Between Link Utilization and Buffer Size in Fluid
Models

Consider now a single link with capacityNC shared by
N flows, where the rate of each flow is governed by the
same AIMD algorithm. Letxi(t) be the rate of flowi (i ∈
{1, 2, . . . , N}) at time slott in the fluid model. Assume that
the congestion signal at the link is generated based only on
the ‘link utilization’ of the link, i.e.,p(x) depends only on
∑N

i=1 xi(t)/N . Note that the two examples in (6) and (7) sat-
isfies this assumption. We then obtain a fluid model for flowi
as follows:

xi(t + 1) = (xi(t) + 1)

(

1 − p

(

∑N

i=1 xi(t)

N

))

+
xi(t)

2
p

(

∑N

i=1 xi(t)

N

)

(13)

DefineyN (t) :=
∑N

i=1 xi(t)/N . Then, by summing (13) over
i and dividing it byN yields

yN (t + 1) = (yN (t) + 1)(1 − p(yN (t))) +
yN (t)p(yN (t))

2
.

(14)
Note that this is the same as the case of a single flow in (1).
Hence, as far as the average rate (over flows) is concerned, the
system withN flows preserves the same equilibrium point and
stability property as the single flow case.

Consider again the two examples forp(x) in (6) and (7).
As shown in Fig. 1, it is not difficult to see that the stability
condition for both cases becomesB < B̄ for some finiteB̄
and we always havey∗

N < C, wherey∗
N is the fixed point of

(14), i.e.,g(y∗
N ) = y∗

N . (Note thaty∗
N = x∗ since the fixed

point is unique.) In other words, if the system in (13) with
many flows were to be stable, then the buffer sizeB should be
bounded (not too large), and the resulting link utilizationbe-
comes strictly less than one. If we arbitrarily increaseB, then
the equilibrium pointy∗

N approaches toC (full utilization),
but the fluid model becomes unstable, i.e., it never converges
to y∗

N .
This type of observation between the link utilization and

buffer size can also arise in other situations. Under the AQM
scheme with a virtual queue [16], where we base the marking
decision on the virtual queue whose capacity is strictly less
than the real capacity, the real queue size remains bounded
(very small), so the buffer requirement is minimal at the cost
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of reduced link utilization. Similarly, in [17], it is shownthat
starting from a queue-based marking where the marking hap-
pens at a fixed queue-length, the system dynamics becomes al-
most identical to a system with a rate-based marking scheme,
for which we again obtain reduced utilization but bounded
buffer-size requirement.

On the other hand, if we use queue-based AQMs (e.g.,
RED [18]) with suitably chosen marking functions with an ap-
propriate buffer size, we can achieve both full utilizationand
stable system. Again, let there beN flows accessing a link
with capacityNC and assume that the marking happens only
based on the normalized queue-length. Specifically, letqN (t)
be the actual queue-length at time slott. Then, the normalized
queue-length evolves as

qN (t + 1)

N
=

[

qN (t)

N
+ yN (t) − C

]+

,

whereyN (t) = 1
N

∑N

i=1 xi(t). When the marking function
p(x) depends only onqN (t)/N , it is shown that the system
can be (locally) stable in the sense of the fluid model ifp(x)
satisfies further conditions. In essence, the stability condition
always requires that the slope of the marking probability at
the equilibrium point be kept low. In case of queue-based
AQMs with N flows and capacityNC, this means that the
slope should beO(1/N) [4], [13], indicating that the equilib-
rium queue-length and the buffer size should be at leastO(N).
Note that this linear sizing for the buffer and the equilibrium
queue-length ensures a ‘stable’ operation and full link utiliza-
tion even when all theN flows drop their rates by half. As
a result, for a system to be stable in a ‘fluid’ sense, we see
that there exists a fundamental tradeoff between the link uti-
lization and the buffer size requirement: (i) if the buffer size
is bounded, i.e.,B = O(1), then the link utilization is also
bounded away from one; (ii) if we need full link utilization,
then the buffer size should be chosen asB = O(N) whereN
is the number of flows accessing the link with capacityNC.

B. Stability of a Markov Chain with Many Flows

In this section we consider a stochastic version of the sys-
tem via a Markov chain when there areN flows accessing a
link with capacityNC. Let Xi(t) be the random variable for
the actual rate to the queue from flowi (or simply the window
size or the number of packets) at time slott. Suppose now
thatXi(t) is always bounded, i.e.,1 ≤ Xi(t) ≤ wmax where
wmax is due to the receiver buffer space or bounded maxi-
mum rates at access networks. LetXi(t) for i = 1, 2, . . . , N
be given. Then, based on the arguments as in Section II-B, we
see thatXi(t + 1) will evolve as follows:

Xi(t + 1) =

{

(Xi(t) + 1) ∧ wmax, w.p.1 − p(YN (t))

(Xi(t)/2) ∨ 1, w.p.p(YN (t)),

(15)
wherex ∧ y = min{x, y} andx ∨ y = max{x, y}, and

YN (t) :=
1

N

N
∑

i=1

Xi(t).

As before, we can interpret (15) as follows. Given
(Xi(t), . . . ,XN (t)) = (x1, . . . , xN ), we see that the actual
packet arrivals to the link will be a random process with para-
meterx̄ = (x1 +x2 + · · ·+xN )/N . Depending on our choice
for the arrival process, each flow will either decrease (or in-
crease) with probabilityp(x̄) (or 1−p(x̄)) independently from
other flows. Thus, we obtain the a Markov chain as in (15) for
~X(t) = (X1(t), . . . ,XN (t)), where1 ≤ Xi(t) ≤ wmax.

First, letN be fixed. Then, from our construction,~X(t) =
(X1(t), . . . ,XN (t)) is an N-dimensional Markov chain with a
finite number of states. Since the chain is also irreducible and
aperiodic, it is always ergodic and converges in total variation
to its stationary version [15]. This means that for any bounded
functionF , we have

lim
t→∞

E{F ( ~X(t))} = Eπ{F ( ~X)},

where ~X = (X1, . . . ,XN ) denotes a stationary version of
~X(t) and π is the associated stationary distribution. Since
YN (t) ≤ wmax, the above implies

lim
t→∞

E{YN (t)} = Eπ{YN} = Eπ

{

1

N

N
∑

i=1

Xi

}

:= ŷN .

In other words, the expected value of averaged rates (overN
flows) converges to an equilibrium value. This result tells us
that, givenN , due to the stochastic nature of the system, the
expected rate of the systemalways converges to the equilib-
rium point ŷN regardless of initial distributions of the system.
This is in stark contrast to the fluid model in which there ex-
ist some restrictive conditions on the system parameters for
yN (t) to converges to the equilibrium point, which is given by
the unique solution ofg(x) = x.

This stochastic construction also allows much less restric-
tive parameter choice for a system with many flows. Similarly
as above, sincep(·) is bounded, we expect thatE{p(YN (t)}
also converges to a steady-state probabilityEπ{p(YN )} for
any givenN . To illustrate how this stochastic description af-
fects the system performance and the choice of parameters, we
takep(x) = (x/C)B as in (6) and assume that

0 < α ≤ Eπ{p(YN )} ≤ β < 1, (16)

for all N , whereα, β ∈ (0, 1) are constants. This assumption
is reasonable since, in order for the system to be in a station-
ary regime, the steady-state marking probabilityEπ{p(YN )}
also needs to be bounded away from 0 and 1. Indeed, if this
value is arbitrarily close to zero, then we expect that almost all
the flows will increase their rates by one. This surely causes
the distribution of the rates at the next RTT to be certainly dif-
ferent from the current one, thereby violating the stationarity
condition.

Observe thatYN is an average overN random variablesXi

(i = 1, 2, . . . , N). Thus, under a very general condition, we
expect thatYN will be very close to its mean due to the law of
large numbers. Thus, for largeN , we can writeYN as

YN ≈ ŷN + o(1),
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whereŷN = Eπ{YN} andlimN→∞ o(1) = 0. So, the condi-
tion in (16) with the choice ofp(x) = (x/C)B becomes

(

ŷN

C
+ o(1)

)B

= κ(N), (17)

whereα ≤ κ(N) ≤ β. Now, letB = B(N), i.e., we want
to scale the buffer size as the number of flows and the size of
capacity grows. Then, we can rewrite (17) as

ŷN = C ·
(

κ(N)
1

B(N) − o(1)
)

. (18)

Sinceκ(N) ≥ α > 0 for all N , we see that̂yN approaches to
C as long aslimN→∞ B(N) = ∞. In other words, we can
have a ‘stochastically stable’ system with almost full utiliza-
tion as long as the buffer size increases without bound as the
system size (N ) increases.

Recall that in the fluid-based approach there exists a fun-
damental tradeoff between the buffer size requirementB(N)
and the link utilization. In particular, we require that thebuffer
size increases linearly inN , i.e.,B(N) = O(N) for a stable
system with full utilization, where the stability is in the sense
of the convergence ofyN (t) to y∗

N (see (14)). On the other
hand, if we put fixed buffer sizeB(N) = O(1) in a stable sys-
tem, then the system utilization will be reduced and be strictly
less than one. However, as we can see from (18), there isno
such tradeoff between the utilization and the linearly increas-
ing buffer size. Under the stochastic model, the system will
achieve full utilization forB(N) = O(Np) with 0 < p < 1
or even forB(N) = log N , although the convergence can
be very slow for such slowly increasingB(N). This result is
striking in that it offers a wide range of possibilities for sys-
tem configuration without suffering “stability” issues. Infact,
quite recently, it was shown [19] via real measurement that,
under many TCP flows, the system utilization can be very high
even when the buffer size is chosen as the bandwidth-delay
product (O(N)) divided by

√
N , i.e.,B(N) = O(

√
N). Fur-

ther, more generally, we have also recently shown [20] that
under a queue-based AQM, the system utilization approaches
to 1 with low loss asN grows even whenB(N) = O(Np) for
anyp ∈ (0, 1), and verified this vians-2 simulations.

V. CONCLUSION

The fluid-based modeling approach has proven to be ex-
tremely powerful and versatile for many problems in a net-
work. For congestion control, the fluid model has been the
main tool to derive any criterion for system stability around its
equilibrium point. However, the actual behavior in a network
is always stochastic, as there always exists inevitable random-
ness due to random packet arrivals as well as random mark-
ing/dropping at routers. In this paper, through simple analysis
and numerical results, we maintain that there may exist some
limitation on the fluid modeling approach from two distinct
viewpoints. First, we have shown that the two equilibrium
points can be quite different for a single flow system. In terms
of the local stability of the fluid system, this implies that the
system could have been linearized around an incorrect equi-
librium point. Second, under many flows, we have also shown

that the stability of the fluid model, which ensures the conver-
gence of the average rate to its (possibly incorrect) equilibrium
point, may impose excessive restriction of our choice of sys-
tem parameters. In particular, under many flows with large
capacity, we have shown that the system utilization still ap-
proaches to full utilization even when the buffer size is scaled
far smaller than the bandwidth-delay product, while the buffer
size on the order of bandwidth-delay product is necessary for
the stability of the fluid model with full utilization. Our re-
sults in this paper thus generalize the new scaling laws for the
buffer size that are recently reported in [19], [20] and alsopro-
vide deep insight into the true meaning of a fluid model and
its stability.
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