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TCP/AQM Congestion Control

More than 90% traffic carried via TCP
It’s a feedback system (equilibrium, stability)
Two approach for analysis and design of TCP/AQM:

Fluid-based Approach
Stochastic Approach

Dst 1
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Dst NB(N)

NC

Src 1

Src 2
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Random markingx(t): rate
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TCP/AQM Primer

Internet

new-Reno, Vegas, 
SACK, etc.

Slow start: probe exponentially for bandwidth
Congestion avoidance: 

Send w packets in a round-trip time.
If no congestion, then put w+1 packets in 
next RTT
If congestion, put w/2 packets in next RTT.

TCP:

Drop-tail, RED, 
REM, PI, AVQ, 

etc.

Governs how to 
generate the 
congestion signal 
based on input rate 
or queue-length
ECN marks

AQM:
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Fluid Approach for Congestion Control

Very popular in networking literature
Provides analysis tools and design guidelines

Congestion control, wireless networks, cross-layer design, etc.

TCP/AQM: distributed solution to utility maximization 
problem (with some notion of fairness)
Equilibrium point (fixed point), Stability (convergence) 
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Fluid Approach for Congestion Control

Deterministic differential/difference equations
Equilibrium point predicts target operating points
Stability (global or local) provides design guidelines
Captures “Average quantities” (x(t): window size or 
throughput, etc)

Canonical form 
of AIMD

AI MD
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Fluid Model in Discrete Time 

where

Single flow case:

p(x): probability of receiving marks or loss (congestion signal)

p(x) = (x/C)B Æ 1     P{Q>B}  for  M/M/1 (Poisson arrival)
p(x) = exp[-2B(C-x)/σ2x] Æ 1    Gaussian arrival with mean x and 
var. σ2x

Given current “rate” x,   p(x) models random packet arrivals

prob. of congestion

average rate or window size
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Equilibrium and Stability of Fluid Model

Equilibrium point (fixed point) x*: x* = g(x*)
Linear stability: x(t+1) = g(x(t)) converges locally if and only if  
|g’(x*)| < 1    (locally `contractive’)

x*

y=x

y=g(x)
slope = g’(x*)

x(0)
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Markovian Model 

Markovian description: Given current state, the next 
state is obtained probabilistically
Rate (window size) is always +1 or /2, nothing in between
X(t) will never converge! But its distribution does.
Stability Ergodic Markov process
Equilibrium stationary distribution π of X(t)

Canonical form 
of AIMD
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Equivalent Representation

Let 

Then,  

Fluid model x(t+1) = g(x(t)) becomes

Fluid model x(t) captures “average” of X(t)

Ut : i.i.d. unif [0,1]
Markov Process

Deterministic value
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Equilibrium and Stability of Markov Model

The previous Markov process always converges in 
total variation to π

Guaranteed by Foster’s criterion
π : stationary distribution of X(t); very hard to find…
Starting from any initial distribution, X(t) converges to a 
steady-state in which X(t) has a stationary distribution π

Let     be the average rate in the steady-state, i.e., 

If X(t) is bounded (as usual), then 
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Discrepancy in Equilibrium Points

The fluid model captures “average” of X(t)
We expect that x(t) ≈ E{X(t)}
Suppose the fluid model is stable, i.e., x(t) → x*
If the fluid model were to be “close” to the original 
Markov model in capturing the “average” behavior, we 
should expect             , i.e., both approaches predicts 
the same equilibrium point.      
Proposition 1: If g(x) is either strictly convex or 
concave, we have
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Examples: Discrepancy in Equilibrium

M/M/1 type arrivals

C = 10
Fluid model is locally 
stable for B=5,10,15

slope = g’(x*)

17.7%7.358.93B=15
16%7.118.47B=10

14.1%6.307.34B=5
x*
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Examples: Discrepancy in Equilibrium

Brownian type arrivals

C = 10, σ2 = 50
Fluid model is locally 
stable for B=50,100,300

slope = g’(x*)

17%7.288.76B=300
13%6.297.23B=100
11%5.285.92B=50

x*
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Discrepancy in Equilibrium Points

Fluid approximation of original Markov process 
yields (i) equilibrium point x* and (ii) stability 
condition
In general, x* ≠ Eπ{X(t)}
Even for “stable” fluid models with x(t) x*, 
the x* is different from the “true average”
value.

Then, what is x* ? 

For single flow case (Summary):
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Fluid Model for Multiple Flows

xi(t): rate (window size) of flow i  (i=1,2, …, N)
p(·) depends only on the average rate (over N) 

B(N)

qN NC

Src 1
Src 2

Src N

Dst 1
Dst 2

Dst N

= yN(t): Average rate on the link

Same as the single flow case!

for each i
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Stability of Rate-Based AQM

Average rate yN(t) satisfies the same fluid equation as the 
single flow case

Same equilibrium point y*N = x* (regardless of N!)
Same stability condition

Stability condition:
p(x) = (x/C)B Fixed point x* < C
Stability condition: B < B’ (for some constant B’)
Bounded buffer size for stability, at the cost of reduced link 
utilization ρ < 1
Similar observations (Kunniyur, Srikant, Deb)
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Stability of Queue-Based AQM

The function p(·) depends on qN(t)/N, where

This means that, for stability, slope of the marking function p(·) 
at the fixed point should be O(1/N) [Low, Srikant, Shakkottai]

Buffer size then should be at least B(N) = O(N) 
rule-of-thumb: B(N) = NC × RTT = O(N)

B(N)
queue-length q

1

0 aN bN

Marking probability p(q) slope = O(1/N)

Scales used in 
virtually every 
fluid model
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Trade-off: Buffer Size vs. Utilization

Trade-off between buffer size and link utilization for 
(linearly) stable fluid models

O(1) O(N)

link 
utilization 1

B(N) : buffer 
size requirement

fluid model 
(rate-based)

fluid model 
(queue-based)

Linearly “unstable” for both models prohibited ?

?
O(1)<B(N)<O(N)
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Markovian Model for Many Flows

N-dimensional Markov process: 
For any given N, the above chain is ergodic.
Since YN(t) ≤ wmax, we expect that

where

Regardless of initial distribution of YN(t)
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Behavior in the Steady-State
In the steady-state, under weak-dependency among Xi, 
we have

Similarly, the average marking probability will also 
converge, i.e., 

We expect that                           
Constants α, β ∈ (0,1)
If pN ≈ 0, then almost all flows increase rates in the next RTT→
distribution will not be stationary.
Similar argument for the case of pN ≈ 1

Law of large numbers

error term
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Behavior in the Steady-State

Take
Poisson packet arrivals to queue with capacity NC and 
buffer size B(N)

Previous expression gives

So,

target avg. rate for full utilization

error factoravg. rate for MC

where
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Trade-off: Buffer Size vs. Utilization

κ(N) > 0 is bounded away from 0
as long as B(N)→∞ 

Achieve full link utilization for any increasing 
function B(N) for the buffer size
System is always “stochastically stable”
No such trade-off as in the fluid model!
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Fluid vs. Stochastic Models

Buffer size vs. Link utilization tradeoff for a 
`stable’ system with N flows and capacity NC

O(1) O(N)

link 
utilization 1

buffer size 
requirement

O(Np)

fluid model 
(rate-based)

fluid model 
(queue-based)stochastic 

model
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Some Evidence from the Literature

[Appenzeller, et. al. 04]
Under drop-tail, high link utilization under

Empirically observed independence among flows
Has nothing to do with stability of any kind…

[Eun & Wang 05]
Under various queue-based AQMs, high link utilization and low 
packet loss under

Based on stochastic models and stochastic stability 
(ergodicity)

where
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Summary & Conclusion

Fluid approach is versatile and powerful
Actual behavior in the network is more like 
“stochastic”.
Fluid approach may be limited and result in

Inaccurate equilibrium
Excessive restriction of system parameters
Tradeoff between utilization and buffer size

No such tradeoff in stochastic approach
Results in much wider system parameter choices with good 
performance 
Evidence: Recent results on buffer sizing, etc. 



Thank You!

Questions ?


