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TCP/AQM Congestion Control

X(T): rate :
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® More than 90% traffic carried via TCP
m Tt's a feedback system (equilibrium, stability)
m Two approach for analysis and design of TCP/AQM:

> Fluid-based Approach
> Stochastic Approach
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TCP/AQM Primer

Internet

Drop-tail, RED,
REM, PI, AVQ,
etc.

TCP: AQM:
m Slow start: probe exponentially for bandwidth ~ m  Governs how to
m Congestion avoidance: generate the

congestion signal
based on input rate
or queue-length

ECN marks

> Send w packets in a round-trip time.

> If no congestion, then put w+1 packets in
nhext RTT

> If congestion, put w/2 packets in next RTT.

Do Young Eun NC STATE UNIVERSITY



Fluid Approach for Congestion Control
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m Very popular in networking literature

m Provides analysis tools and design guidelines
» Congestion control, wireless networks, cross-layer design, etc.

m TCP/AQM: distributed solution to utility maximization
problem (with some notion of fairness)

m Equilibrium point (fixed point), Stability (convergence)
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Fluid Approach for Congestion Control

Canonical form
of AIMD

m Deterministic differential/difference equations

m Equilibrium point > predicts target operating points
m Stability (global or local) > provides design guidelines
m Captures "Average quantities” (x(t): window size or

throughput, etc)

Do Young Eun

NC STATE UNIVERSITY



Fluid Model in Discrete Time

Single flow case:

average rate or window size

—— o(t)
o(t+1) = (@) + DA - pa®)) + 7 p(®)
= g(a(®) -

prob. of congestion

where g(z) ;= (z+ 1)(1 — p(x)) + 9319(95)/2

m p(x): probability of receiving marks or loss (congestion signal)

> p(x) = (x/CBAT >  P{QB} for M/M/1 (Poisson arrival)

> p(x) = exp[-2B(C-x)/c2x] A1 > Gaussian arrival with mean x and
var. o2x

m Given current "rate” x, p(x) models random packet arrivals
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x(0) x*

m Equilibrium point (fixed point) x*: x* = g(x*)

m Linear stability: x(t+1) = g(x(t)) converges locally if and only if
|g'(x*)| <1 (locally " contractive')
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Markovian Model

_ X(t)+1, w.p.1-—p(X()) Canonical form
X b= {X(t>/2, w.p. p(X (1)) ot AIMD

m Markovian description: Given current state, the next
state is obtained probabilistically

m Rate (window size) is always +1 or /2, nothing in between

m X(t) will never converge! But its distribution does.
m Stability > Ergodic Markov process
m Equilibrium - stationary distribution = of X(%)

Do Young Eun NC STATE UNIVERSITY



Equivalent Representation

mlet f(z,u) = (+ 1)1 - 1))+ gl{ugp(m)}

m Then,
Xt+1)=f(X@),U) t=12,...

/ s
Markov Process ++ i.id. unif [0,1]

m Fluid model x(++1) = g(x(t)) becomes
a:(;—l— 1) = E{X(t+1) \ X(t) = a(t) ]

1
Deterministic value = /O f(x(t),u) du = g(x(t))

> Fluid model x(t) captures "average” of X(t)
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Equilibrium and Stability of Markov Model

m The previous Markov process always converges in
total variation to =
> Guaranteed by Foster’'s criterion

> T : stationary distribution of X(t); very hard to find...

> Starting from any initial distribution, X(t) converges to a
steady-state in which X(1) has a stationary distribution «

m Let x be the average rate in the steady-state, i.e.,
xr = EW{X(t)}

m If X(1) is bounded (as usual), then
E{X(t)} — 2 as t— x
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Discrepancy In Equilibrium Points

m The fluid model captures "average” of X(t)
m We expect that x(t) ~ E{X(1)}
m Suppose the fluid model is stable, i.e., x(t) — x*

m If the fluid model were to be "close” to the original
Markov model in capturing the “"average” behavior, we
should expect z* = 7, i.e., both approaches predicts
the same equilibrium point.

m Proposition 1: If g(x) is either strictly convex or
concave, we have
x* £ I
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Examples: Discrepancy in Equilibrium

= M/M/1 type arrivals
B
p(z) = (&)
m C=10

m Fluid model is locally
stable for B=5,10,15

X* F=E X)) ] (= —2)/z
B=5 7.34 6.30 14.1%
B=10 8.47 7.11 16 %
B=15 8.93 7.35 17.7%

Do Young Eun NC STATE UNIVERSITY



Examples: Discrepancy in Equilibrium

m Brownian type arrivals
2B(C’ :13))

ZU

p(x) = exp(—

m C=10,06%2=50
m Fluid model is locally

I stable for B=50,100,300
0 2 4 6 8 10
X
x* E{X®)}| (" —2)/z"
B=50 5.92 5.28 11%
B=100 7.23 6.29 13%
B=300 8.76 7.28 17%
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Discrepancy In Equilibrium Points

For single flow case (Summary):

m Fluid approximation of original Markov process
yields (i) equilibrium point x* and (ii) stability
condition

m Ingeneral, x* + E {X(1)}

m Even for "stable” fluid models with x(t) > x*,
the x* is different from the "true average”
value.

> Then, what is x* ?
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Fluid Model for Multiple Flows

Src 1 | Dsf 7
Src 2 S i _J Dst 2
; /N,

E/Z(N ) Dsf N

\/

m Xx(1): rate (window size) of flowi (i=1,2, .

Src N

m p(-) depends only on the average rate (over N)

i1 T T N .
SCZ(t—|—]_) = (xz(t)‘l‘l) (1 —p (Z'L:l xz(t)>>+ Z(t)p (Z’Lzl ’L(t)>

N 2 N
= yn(1): Average rate on the link for each i
= un() = O+ AN +2 Dy (1)

Same as the single flow case!
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Stability of Rate-Based AQM

m Average rate y,(t) satisfies the same fluid equation as the
single flow case

» Same equilibrium point y*, = x* (regardless of N!)
» Same stability condition

m Stability condition:
> p(X) = (x/C)®B - Fixed point x* < C
> Stability condition: B < B’ (for some constant B’)

> Bounded buffer size for stability, at the cost of reduced link
utilization p < 1

» Similar observations (Kunniyur, Srikant, Deb)
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Stability of Queue-Based AQM

m The function p(-) depends on qy(1)/N, where
an(t +1) = [qn(t) + Nyn(t) — NC

m This means that, for stability, slope of the marking function p(-)
at the fixed point should be O(1/N) [Low, Srikant, Shakkottai]

Marking probability p(q) S'OP‘? = O(1/N)

1 H

v

Scalesused in  ——
—+ queue-length ¢

virtually every
fluid model O aN BN  BNN)

}-I-

—p>

m Buffer size then should be at least B(N) = O(N)
> rule-of-thumb: B(N) = NC x RTT = O(N)
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m Trade-off between buffer size and link utilization for
(linearly) stable fluid models

——
- -

ink |
utilization 1 a —o
fluid model —. @  O(<B(N)<O(N) fluid model
(rate-based) :‘ 9 ’: (queue-based)
o) .. .~ O(N)  B(N): buffer

/ """ size requirement

Linearly “unstable” for both models ™= prohibited ?
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Markovian Model for Many Flows

(Xi(t) + 1) A wimas, w.p. 1—p(Yn(t))

Xi(t+1) = {(Xz(t)/Q) V1, w.p. p(Yn (1)),

where Yy (t) := % SN LX)

m N-dimensional Markov process: (X1(t), Xo(t),..., Xn(t))
m For any given N, the above chain is ergodic.

m Since Y,(t) < w,,,, we expect that

max?

Jim E{Yy (1)} = Ex{Yn} =9yn
Regardless of initial distribution of Y (t)
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Behavior In the Steady-State

m In the steady-state, under weak-dependency among X,
we have YN X, = Njy + o(N)
error ferm
<
—> Yy = yny + 0(1) Law of large numbers

m Similarly, the average marking probability will also
converge, l.e., E{p(Yn(t))} — px
B Weexpectthat O < a<py <8<l

» Constants a, B € (0,1)

> If py = 0, then almost all flows increase rates in the next RTT—
distribution will not be stationary.

» Similar argument for the case of p =~ 1

Do Young Eun NC STATE UNIVERSITY



Behavior In the Steady-State

m Take »p(y) = (y/C)BWV)

» Poisson packet arrivals to queue with capacity NC and
buffer size B(N)

m Previous expression gives

g B(N)
(?-I-O(l)) = rk(N), where O0<a<k(N)<p<l1
avg. rate for MC error factor
= S0, | —

v =C- (K<N>B<1N> _ o<1>>

target avg. rate for full utilization
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Trade-off: Buffer Size vs. Utilization

Gy = C- (mmﬁ _ o<1>)

m x(N) >0 is bounded away from O
m yny — C aslong as B(N)—

m Achieve full link utilization for any increasing
function B(N) for the buffer size

m System is always "stochastically stable”
m No such trade-off as in the fluid modell
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Fluid vs. Stochastic Models

m Buffer size vs. Link utilization tradeoff for a
‘stable’ system with N flows and capacity NC

link
utilization 1
fluid model — y \ fluid model
(rate-based) stochastic (queue-based)
model
O(1) O(NP) O(N) buffer size

requirement
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Some Evidence from the Literature

m [Appenzeller, et. al. 04]
> Under drop-tail, high link utilization under
B(N) = O(VN)
> Empirically observed independence among flows
> Has nothing to do with stability of any kind...

m [Eun & Wang 05]

> Under various queue-based AQMs, high link utilization and low
packet loss under

B(N) = O(N%) where 0 < a < 0.5

> Based on stochastic models and stochastic stability
(ergodicity)
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Summary & Conclusion

m Fluid approach is versatile and powerful

m Actual behavior in the network is more like
“stochastic”.
m Fluid approach may be limited and result in
> Inaccurate equilibrium
> Excessive restriction of system parameters
> Tradeoff between utilization and buffer size

® No such tradeoff in stochastic approach

> Results in much wider system parameter choices with good
performance

> Evidence: Recent results on buffer sizing, etc.
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Thank You!

Questions ?



