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Abstract — The average download time of a file is

an important performance metric for a user in a peer-

to-peer network. We point out that the common ap-

proach of analyzing the average download time based

on average service capacity is fundamentally flawed,

and show that spatial heterogeneity and temporal cor-

relation in the service capacity over different paths are

the two major factors that have negative impact on

the average file download time. We then propose a

simple and distributed algorithm that can completely

remove this negative impact of the two factors and

yield the smallest possible average download time for

each user in the network.

I. Introduction

The P2P file-sharing applications are becoming in-
creasingly popular and account for more than 80% of the
Internet’s bandwidth usage. Being a completely distrib-
uted system, the service capacity of a P2P network, or the
aggregated throughput, is shown to increase as the num-
ber of uploading peers increases in the network [10, 14].
Thus, in an ideal case, the available bandwidth to each
downloading peer will be constrained only by the limita-
tion of the access link at the downloading site.

However, there are many factors that prevent a peer
from fully utilizing the available bandwidth. The dis-
tribution of the data in the network, peer selection al-
gorithms, free-riders, and many other reasons impact
the performance that a downloading peer receives. It is
shown [5] that, in reality, even downloading files of less
than 10 MB in size may take from 5 minutes up to several
hours. The downloading time for a bigger file, say, 100
MB – 1 GB, can range from hours to a whole week. Fur-
ther, even when all users try to download the same file,
each of them may have very different downloading times,
depending on the available capacity fluctuation, the path
it chooses to download the file, etc.

It is a common belief that there exist a direct rela-
tionship between the file download time and the service
capacity the network can offer. The average download
time of a file of size F is simply given by F/c, where
c is the average service capacity. This approach us-
ing the average service capacity to analyze the average

download time has been a common practice in the lit-
erature [8, 4, 10, 14, 1, 2, 11]. However, the service ca-
pacity of different sources in a network is usually not the
same because of hardware limitations [13] of each com-
puter or of topological limitation of the network. Further,
the service capacity of each source is shown to vary with
time [6, 7] due to the source workload or network conges-
tion status. Both spatial heterogeneity in service capac-
ity of different sources and temporal fluctuation of service
capacity in time have significant impact on the average
download time, as we will show later in the paper. The
theoretical results obtained by the averaged value (F/c)
is often too optimistic.

In this paper, we first characterize the relationship be-
tween the heterogeneity in service capacity and the av-
erage download time for each user, and show that the
degree of diversity in service capacities has negative im-
pact on the average download time. After we formally de-
fine the download time over a stochastic capacity process,
we prove that the correlations in the capacity make the
average download time much larger than the commonly
accepted value F/c, where c is the average capacity of the
connection. It is thus obvious that the average download
time will be reduced if there exists a (possibly distributed)
algorithm that can efficiently eliminate the negative im-
pact of heterogeneity in service capacities over different
paths and the negative impact of correlations in time of
a given path.

In practice, most P2P applications try to reduce the
download time by minimizing the risk of getting stuck
in a ‘bad’ path (the connection with small service capac-
ity) by using smaller file sizes and/or having them down-
loaded over different paths (e.g., parallel download). In
other words, they try to reduce the download time by
minimizing the bytes transferred from that source with
small capacity. However, we show in this paper that this
approach has almost no benefit at all in terms of explic-
itly reducing the average download time for each user
in the network. We then propose a simple and distrib-
uted algorithm that can effectively remove the negative
impact of both the correlations in the available capac-
ity of a path and the heterogeneity in different sources
and thus achieve the smallest possible download time.
Through extensive simulations, we also verify that the
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proposed strategy consistently outperforms all the other
schemes widely used in practice under almost all network
configurations. In particular, the download time of our
proposed scheme can be several times smaller than any
other scheme when the network is heterogeneous (possi-
bly correlated) and many downloading peers coexist with
source peers, as mostly is the case in reality.

II. Characterizing the Download Time in a

Network

We consider our network as a discrete-time system with
each time slot of length ∆. For notational simplicity,
throughout the paper, we will assume that the length of
a time slot is normalized to one, i.e., ∆ = 1. Let C(t) de-
note the time-varying service capacity (available end-to-
end bandwidth) of a given path at time slot t (t = 1, 2, . . .)
over the duration of a download. Then, the download
time T for a file of size F is defined as

T = min

{

s > 0
∣

∣

∣

s
∑

t=1

C(t) ≥ F

}

. (1)

Note that T is a stopping time or the first hitting time of
a process C(t) to a fixed level F .

If C(t), t = 1, 2, . . . are independent and identically
distributed (i.i.d.), then by assuming an equality in (1),
we obtain from Wald’s equation [12] that

F = E

{

T
∑

t=1

C(t)

}

= E{C(t)}E{T}. (2)

The expected download time, measured in slots, then be-
comes E{T} = F/E{C(t)}. Note that (2) also holds if
C(t) is constant (over t). Thus, when the service ca-
pacity is i.i.d. over time or constant, there exists a direct
relationship between the average service capacity and the
average download time, as has typically been assumed in
the literature.

II.A Impact of Heterogeneity in Service

Capacity

We first consider the impact of heterogeneous service
capacities of different paths. In order to decouple the
effect of correlations from that of heterogeneity, in this
section, we assume that Wald’s equation holds true for
each path (i.e., the service capacity of a given path is
either constant or i.i.d. over time). But we allow the
average capacities for different paths to be different. We
will consider the impact of correlations in Section II.B.

Let N be the number of sources in the network (N
different end-to-end paths) and Ci(t) be the service ca-
pacity of path i at time slot t. We assume that Ci(t) is
either constant or i.i.d. over t such that (2) holds. Let
ci = E{Ci(t)} be the average capacity of path i. Then,
the average service capacity the network offers to a user
becomes

A(~c) =
1

N

N
∑

i=1

ci, (3)

where ~c = (c1, c2, . . . , cN ) and A(~c) is the arithmetic mean
of the sequence c1, c2, . . . , cN . Thus, one may expect that
the average download time, E{T}, of a file of size F would
be

E{T} =
F

A(~c)
. (4)

As we mentioned earlier, however, the actual service
capacity of each path remains hidden unless a network-
wide probe is conducted. So the common strategy for
a user is to randomly pick one source (path) and keep
the connection to it until the download completes. If the
user connects to path i (with service capacity Ci(t)), the
average download time over that path becomes F/ci from
(2). Since the user can choose one of N paths with equal
probability, the actual average download time in this case
becomes

E{T} =
1

N

N
∑

i=1

F

ci

=
F

H(~c)
, (5)

where H(~c) is the harmonic mean of c1, c2, . . . , cN de-

fined by H(~c) = [ 1
N

∑N

i=1
1
ci

]−1. Because A(~c) ≥ H(~c) ∗,
it follows that (5) ≥ (4). This implies that the actual
average download time in a heterogeneous network is al-
ways larger than that given by ‘the average capacity of
the network’ as in (4).

II.B First Hitting Time of a Correlated

Stochastic Process

In this section we show that the expected first hitting
time of a ‘positively correlated process’ is larger than that
of an i.i.d. counterpart. Consider a fixed path between a
downloading peer and its corresponding uploading peer
for a file of size F . Let C(t) be a stationary random
process denoting the available capacity over that path at
time slot t. We will assume that C(t) is positively corre-
lated over time. Then, as before, we can define the down-
load time of a file (or the first hitting time of the process
C(t) to reach a level F ) as Tcor, where the subscript ‘cor’
means that C(t) is a correlated stochastic process.

Suppose now that we are able to remove the correla-
tions from C(t). Let C ′(t) be the resulting process and
Tind be the stopping time for the process C ′(t) to reach
level F , where the subscript ‘ind’ now means that C ′(t)
is independent over time. Then, again from Wald’s equa-
tion, we have E{Tind} = F/E{C ′(t)} = F/E{C(t)}.

First, as introduced earlier, consider the case that C(t)
is 100% correlated over time, i.e., C(t) = C for some
random variable C for all t. Then, the download time
Tcor becomes Tcor = F/C assuming an equality in (1).
Hence, from Jensen’s inequality, we have

E{Tcor} = FE

{

1

C

}

≥
F

E{C}
= E{Tind},

i.e., the average first hitting time of an 100% correlated
process is always larger than that of an i.i.d. counterpart.

∗The arithmetic mean is always larger than or equal to the har-
monic mean, where the equality holds when all ci’s are identical.
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In order to characterize any degree of positive correlations
in C(n), we adopt the notion of ‘association’ [9, 12].

The set of associated processes comprises a large class
of processes, and the most popular example is of the fol-
lowing type:
Theorem 4.3.13. in [9]: Let {X(t)} be a stochastic
process with static space S = R

d of the form

X(t + 1) = ϕ(X(t), Z(t)), for t = 0, 1, . . . (6)

If the {Z(t)} are mutually independent and independent
of X(0), then {X(t)} is associated if ϕ(x, z) is increasing
in x. 2

Stochastic processes of the form (6) constitute large
portion of Markov processes. For example, any auto-
regressive type model with positive correlation coefficient
can be written in the form of (6). Specifically, for an
AR-1 sequence X(t) defined by

X(t + 1) = ρX(t) + bξ(t),

where 0 < ρ < 1 and ξ(t) (t = 0, 1, . . .) is a sequence of
i.i.d. random variables and independent of X(0), we can
write X(t + 1) = ϕ(X(t), ξ(t)) where ϕ(x, ξ) = ρx + bξ.
Since ϕ is increasing in x, the process {X(t)} is associ-
ated.

We below present our theorem. Due to space con-
straint, we refer to our technical report [3] for all the
proofs.

Theorem 1 Suppose that {C(t), t ≥ 1} is associated.
Then, we have

E{Tcor} ≥ E{Tind}. (7)

2

Theorem 1 states that the average download time of a
file over a path with correlated service capacity is always
larger than that of an i.i.d. counterpart. In the subse-
quent section, we show the relationship between the de-
gree of correlation of a process and the average first fitting
time of that process, and illustrate how much E{Tcor} can
be larger than E{Tind}.

II.C First Hitting Time and Degree of

Correlation

Suppose that C(t) is given by a stationary first-order
autoregressive process (AR-1), i.e.,

C(t + 1) = ρ · C(t) + ε(t) + α. (8)

Here, ε(n) is a sequence of i.i.d. random variables with
zero mean, which represents a noise term of the process.
Then, from the stationarity of the process, we get

E{C(t)} = µ = α/(1 − ρ). (9)

We vary the constant α such that the average capac-
ity is always fixed to E{C(t)} = µ = 10 under differ-
ent ρ. Since the available bandwidth cannot be nega-
tive, we impose restriction on the range of C(t) such that

C(t) ∈ [0, 20], while keeping the mean still the same. The
file size is F = 250 and the noise term, ε(t), is chosen to
be uniformly distributed over [−1, 1], [−5, 5], and [−9, 9]
to see how the noise term affects the average download
time.
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Figure 1: Relationship between the average download
time and different degrees of correlation ρ under different
noise term ε(t) in (8).

Figure 1 shows the relationship between the average
download time and the degree of correlation of the process
(8) for different ρ and ε(t). As the degree of correlation
increases, the average download time increases. In partic-
ular, for a heavily correlated process, the average down-
load time can be about 40% larger than for uncorrelated
or lightly correlated process, regardless of different noise
terms. In real data networks, the available capacity of a
connection typically shows wild fluctuation; it becomes
very low when congestion occurs, and it can reach up
to the maximum link bandwidth when things go well. In
addition, as technology advances, people are getting links
of higher and higher speed, hence the range of available
capacity fluctuation is also likely to increase. Therefore,
it is very important to consider the effect of correlation in
capacity over time when we calculate the average down-
load time of a file transfer.

III. Minimizing Average Download Time Over

Stochastic Channels

Given the characterization of the average download
time in Section II, we can now analyze the performance of
different strategies that help reduce the average download
time for each user. In this section we will analyze the per-
formance of (i) random chunk-based switching, and (ii)
random time-based (periodic) switching. Both methods
allow only one active link simultaneously. Although par-
allel downloading is another commonly used method to
reduce file download time, as we will show in the sim-
ulation section, parallel downloading performs well only
when there are very few users in the network and almost
no heterogeneity in service capacity. In all other cases
as in reality, the parallel downloading may even perform
worse than single-link download. Hence we will focus on
the performance analysis of single-link download strate-
gies.
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III.A Random Chunk-based Switching

In the random chunk-based switching, the file of inter-
est is divided into many small chunks. A user downloads
chunks sequentially one at a time. Whenever a user com-
pletes a chunk from its current source, the user randomly
selects a new source and connects to it to retrieve a new
chunk. In order to analyze its performance, we assume
that Wald’s equation holds as in (2) for each given path.
A file of size F is divided into m chunks of equal size, and
let tj be the download time for chunk j. Then, the total
download time, Tchunk, is Tchunk =

∑m

j=1 tj . Since each
chunk randomly chooses one of N sources (with equal
probability), the expected download time will be

E{Tchunk} =

m
∑

j=1

E{tj} =

m
∑

j=1

1

N

N
∑

i=1

F/m

ci

=
F

H(~c)
.

(10)
The result in (10) is identical to the download time given
in (5) where a user downloads the entire file from an ini-
tially randomly chosen source. Downloading the entire
file from one randomly chosen source or switching sources
for different chunks makes no difference. Hence, the ran-
dom chunk-based switching would not give us better per-
formance in terms of per-user average download time in
a multi-source network.

So far in this section, we have assumed that the service
capacities in the network are heterogeneous, and Wald’s
equation holds true for a given path, i.e., the service ca-
pacity is either constant or i.i.d. over time. In this case,
the random chunk-based switching does not give us any
benefit. However, if the service capacity is correlated over
time for each given path, switching sources may still help
reduce the correlations. When there exist strong corre-
lations, if we get stuck in a source with very low service
capacity, it is likely that the service capacity from that
source remains low for a while. Thus, instead of wait-
ing until we finish downloading a fixed amount of data
(chunk or file), we may want to get out of that bad source
after some fixed amount of time. In other words, we can
also think about random switching based on time. In the
subsequent section, we will investigate the performance
of this random switching based on time, and show that it
outperforms all the previous schemes in the presence of
heterogeneity of service capacities over space and tempo-
ral correlations of service capacity over each path.

III.B Random Periodic Switching

In this section, we propose a very simple, distributed
algorithm and show that it effectively removes correla-
tions in the capacity fluctuation and the heterogeneity in
space, thus greatly reducing the average download time.
Figure 2 shows a simplified model with multiple down-
loading users. We assume that each user can obtain a list
of available sources through some search algorithm. As
our algorithm will be implemented at each downloading
peer in a distributed fashion, without loss of generality,

Figure 2: System model for file download operation in
P2P networks

we only focus on a single downloader throughout this sec-
tion.

In our model, there are N possible paths (source peers)
for a fixed downloader. Let Ci(t) (t = 0, 1, 2, . . . and
i = 1, 2, . . . , N) denote the available capacity during time
slot t over path i (the connection between the fixed down-
loader and the ith source peer). Let U(t) ∈ {1, 2, . . . , N}
be a path selection function for the downloader. If
U(t) = i, this indicates that the downloader selects path
i and the available capacity it receives is Ci(t) during
the time slot t. For example, the solid arrow in Fig-
ure 2 represents a realization of the path selection func-
tion U(t) at time t for a fixed downloader C. We assume
that each Ci(t) is stationary in t and Ci(t) over different
paths i = 1, 2, . . . , N are independent.† We however allow
that they have different distributions, i.e., E{Ci(t)} = ci

are different for different i (heterogeneity). For any given
i, the available capacity Ci(t) is correlated over time t.
As before, when each connection has the same probabil-
ity of being chosen, the average service capacity of the
network is given by A(~c) = 1

N

∑N

i=1 ci.
In this setup, we can consider the following two

schemes: (i) permanent connection, and (ii) random pe-
riodic switching. For the first case, the path selection
function does not change in time t. When the search-
ing phase is over and a list of available source peers
is given, the downloader will choose one of them ran-
domly with equal probability. In other words, U(t) = U
where U is a random variable uniformly distributed over
{1, 2, . . . , N}. For example, if the downloader chooses u
(u ∈ {1, 2, . . . , N}) at time 0, then it will stay with that
path permanently (U(t) = u) until the download com-
pletes.

C1(t)

C2(t)

CN(t)

 U(1)=1

U(2)=N

U(3)=2

U(t)

U(4)

So
ur

ce
s 

(I
nd
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)

Time (correlated)

. . . .

Figure 3: The operation of path selection function U(t)

†We note that different paths (overlay) may share the same link
at the network core, but still, the bottleneck is typically at the end
of network, e.g., access network type, or CPU workload, etc. Thus,
the independence assumption here is reasonable.
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For the periodic random switching, the downloader
randomly chooses a path at each time slot, independently
of everything else. In other words, the path selection
function U(t) forms an i.i.d. sequence of random vari-
ables, each of which is again uniformly distributed over
{1, 2, . . . , N}. Figure 3 illustrates the operation of the
path selection function U(t) for random periodic switch-
ing. In this figure, path 1 is selected at time 1, path N is
selected at time 2, and so on.

Let us define an indicator function

Iu(t) =

{

1, if U(t) = u

0, otherwise.

Then, since U(t) can take values only from {1, 2, . . . , N},
the actual available capacity at time t can be written as

X(t) = CU(t)(t) =

N
∑

u=1

Cu(t)Iu(t)

for both the permanent connection and the random peri-
odic switching strategies. Since each downloader chooses
a path independently of the available capacity, U(t) is
also independent from Cu(t), and so is Iu(t). Note that,
from E{Iu(t)} = 1/N for any u, we have

E{X(t)} =

N
∑

u=1

E{Cu(t)}E{Iu(t)} =

N
∑

u=1

cu

N
= A(~c),

i.e., the average available capacity for the two path selec-
tion strategies are the same.

In order to analyze how the two different strategies
affect the correlation in X(t), we consider the correlation
coefficient of X(t) defined as

r(τ) =
Cov{X(t),X(t + τ)}

Var{X(t)}
.

Then, we have the following result.

Proposition 1 Let rper(τ) and rran(τ) denote the corre-
lation coefficient of X(t) under the permanent connection
and the random periodic switching, respectively. Then, we
have

rran(τ) =
1

N
rper(τ), ∀ t ≥ 1.

2

From Proposition 1, we see that under the random
periodic switching strategy, the correlation of X(t) is N
times smaller than that of permanent connection strat-
egy. For example, when each downloader has about 10
available source peers (N = 10), the correlation coeffi-
cient of the newly obtained capacity process under our
random periodic switching is no more than 0.1 regardless
of the correlations present in the original capacity fluc-
tuation. So, by using our random periodic switching, we
can always make the capacity process very lightly corre-
lated, or almost independent. From Figure 1, we see that

the average download time for a lightly correlated process
is very close to that given by Wald’s equation. It is thus
reasonable to assume that Wald’s equation holds for the
lightly correlated process X(t) under our random peri-
odic switching strategy. Specifically, if we define Tran as
the download time for a file of size F under the random
periodic switching, we have

F = E

{

Tran
∑

n=1

CU(t)(t)

}

= E{Tran}E{CU(t)(t)}

= E{Tran}E
{

E
{

CU(t)(t) | U(t)
}}

= E{Tran}
1

N

N
∑

u=1

E{Cu(t)}

= E{Tran}
1

N

N
∑

u=1

cu = E{Tran}A(~c). (11)

We then have the following comparison result between
the permanent connection and periodic switching.

Proposition 2 Suppose that the process Cu(t) for each
u is associated (i.e., it is correlated over time t). Let Tper

and Tran be the download time for the permanent connec-
tion and for the random periodic switching, respectively.
Then, we have

E{Tper} ≥ E{Tran}.

2

Proposition 2 shows that our random periodic switch-
ing strategy will always reduce the average download time
compared to the permanent strategy and that the aver-
age download time under the random periodic switching
is given by F/(~c) (see (4)). Note that this was made
possible since the random periodic switching removes the
negative impact of both the heterogeneity and the cor-
relations. In addition, our algorithm is extremely simple
and does not require any information about the system.

IV. Numerical Results

In this section we provide numerical results to support
our analysis and compare the performance of the four
schemes for file download under various network configu-
rations. In any case, in our configuration, different paths
have different average service capacities, and the service
capacity of each path is correlated in time. We consider a
single downloading peer as well as multiple downloading
peers to allow competition among the downloading peers
for limited service capacity of each source peer.

IV.A Single Downloader with Heterogeneous

Path Characteristics

We first show the impact of both heterogeneity and
correlations in service capacities on the average download
time when there is a single user (downloader) in the net-
work. There are N = 4 source peers in the network, each
offering different average service capacities. Let ci be the
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average service capacity of source i and ~c = (c1, c2, c3, c4).
The average service capacity of the whole network is then
A(~c) = (c1 + c2 + c3 + c4)/4. We change the heterogene-
ity in service capacity by changing each ci, while keeping
A(~c) = 200kbps the same. We measure the degree of het-
erogeneity in term of δ =

√

Var{~c}/A(~c), the normalized
standard deviation. We set δ to range from 0.05 to 0.7.

To demonstrate the impact of correlation in each fixed
path, we use a class of AR-1 random processes to model
the stochastic fluctuation in the service capacity. The
values of ρ and ε(t) in (8) represents the degree of corre-
lation and the noise term of the process respectively. It is
reasonable to assume that if the average service capacity
is large, the service capacity is more likely to fluctuate
over a wider range. In this regard, we assume that the
amount of fluctuation in Ci(t) is proportional to its mean
value ci. Specifically, for path i, we set εi(t) to be uni-
formly distributed over [ci − θi, ci + θi] where θi is chosen
such that

√

Var{Ci(t)}/E{Ci(t)} remains the same for
all i.

In our simulation, the network is modeled as a dis-
crete time system where the length of each time slot (one
period) is chosen to be 5 minutes. In reality, it is ex-
pected that within such a period, there is no major event
that triggers dramatic fluctuation in the service capacity.
There may be small short-term fluctuations, on the order
of seconds, in the service capacity due to the nature of
the network protocol, such as TCP congestion window
changes, or OS interrupt handling, etc. These changes
however do not impose serious impact on the service ca-
pacity. Thus, we are not interested in such small short-
term variation, but are more interested in the fluctuation
on a longer time scale caused by change in the number
of connections at the source or change in network con-
gestion status, which all usually last for longer time (say,
minutes to hours).

We set the file size to 150MB, which is the typical size
of some small video clips or multimedia files. As the av-
erage service capacity (of the network) is 200kbps, we set
the chunk-size for chunk-based switching to be 7.5 MB (=
200kbps × 5 minutes) to allow fair comparison between
periodic switching and chunk-based switching. Although
many modern P2P systems make the size of a “chunk” to
be around 256KB or so, it is unlikely for a peer to switch
to different peers after each chunk. Rather, a download-
ing peer may receive several “chunks” consecutively from
the same source peer. Hence the real data size down-
loaded from the same source is not just 256KB, but will
be usually larger.

We consider four possible download strategies, perma-
nent, periodic switching, chunk-based switching and par-
allel downloading. For permanent connection, the user
initially choose one of four sources randomly and stay
there until the download completes. For chunk-based
switching, the peer switches to a new randomly selected
source whenever a chunk is completed. Although we sim-
ulate the system as a discrete time system, the user is

allowed to switch to a new source anytime within a time
slot whenever it finishes the current chunk. For paral-
lel download, the file is divided into 4 equal-sized pieces
and the downloading peer connects to all 4 source and
download each piece from each source peer simultane-
ously. Finally, for periodic switching, a user switches to
a new randomly chosen source every 5 minute to further
download the remaining parts of the file.
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Figure 4: Average download time vs. degree of hetero-
geneity under different download strategies and different
degree of correlations.

Figures 4 (a)–(b) show the average download time vs.
the degree of heterogeneity in the average service capac-
ities (δ) when there is a single downloader in the net-
work. Dashed lines are for strong correlations (ρ = 0.95)
and solid lines represent the case of light correlations
(ρ = 0.5). In Figure 4(a), when the degree of heterogene-
ity is small, all three single-link download strategies (per-
manent, chunk-based, periodic) under light correlations
perform the same. This is well expected since the service
capacities of all paths are almost i.i.d. over space and
time, so switching doesn’t make any difference and the av-
erage download time becomes F/A(~c) = 150MB/200kbps
= 100 minutes, as commonly used in practice. On the
other hand, when there exists strong correlations in the
service capacity, the download time is longer for all strate-
gies except the periodic switching. For example, when
δ = 0.1, the correlation alone can cause more than 20%
of increase in the average download time. Thus, when
the network is more like homogeneous (i.e., small δ), the
temporal correlation in the service capacity of each path
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becomes a major factor that renders the average down-
load time longer. However, the average download time
remains the same under the random periodic switching.

Figure 4 (a) also shows the performance of parallel
downloading. Intuitively, parallel downloading should
perform better than single link downloading because (i)
it utilizes more than one link at the same time and (ii)
if the connection is poor, parallel downloading reduces
the amount of data getting through that bad path. Since
there is only a single user, it utilizes all the service capac-
ity the network can provide (c1 + c2 + c3 + c4). In this
case, the average download time should be 150MB/(c1 +
c2 + c3 + c4) = 150MB/800kbps ≈ 25 minutes. We see
from Figure 4(a) that parallel downloading can actually
achieve the performance close to our expectation when
the service capacities of different paths are close to i.i.d.
Still, parallel downloading is prone to the negative effect
of correlations.

As the degree of heterogeneity increases, the average
download time sharply increases for all the schemes ex-
cept the periodic switching. Figure 4 (b) shows this when
δ is between 0.4 and 0.7. Permanent and chunk-based
switching both suffer from the negative effect of hetero-
geneity. When both heterogeneity and correlation are
high (δ = 0.65 and ρ = 0.95), permanent connection
takes about 350 minutes to complete the download. This
time is about 250 minutes, or 4 hours more than using
the periodic switching! Even the chunk-based switching
yields the average download time almost as twice much
as the periodic switching. Further, the performance of
parallel downloading degrades very fast as the degree of
heterogeneity increases. At some point, even for a sin-
gle downloading peer in the network, the performance
of parallel downloading becomes worse than the chunk-
based switching (single-link download) and close to that
of permanent connection. When there is a large degree
of heterogeneity, it is more likely that one of the parallel
connections is ‘poor’ with very small capacity. Thus, even
though the size of chunk over each path is smaller than
the whole file (hence reducing the risk of staying with the
bad path for too long), this is still not as good as the
idea of averaging capacities all the time, as used in the
periodic switching. We note that temporal correlations
still negatively affect in all these three schemes. How-
ever, it should be pointed out that the random periodic
switching performs the same regardless of heterogeneity
and correlations, and in fact it outperforms all the other
schemes when the network is heterogeneous with a wide
range of service capacities as in the current network.

IV.B Multiple Downloaders with Competition

As seen earlier, when there is only one downloading
peer in the network, the average download time can be
reduced by randomly switching connections among paths
with different average capacities. However, there are al-
ways multiple users in a network and competition among
peers is obvious. In this section, we consider the perfor-
mance of different download strategies under a multi-user

environment. In the multi-user scenario, we set the num-
ber of source peers to N = 100. The sources are divided
into 4 groups and each source within the same group will
have the same average service capacity. We set the cor-
relation coefficient of each source to 0.5, which indicates
light temporal correlations in the service capacity. The
distribution of service capacity of each group is chosen to
make δ = 0.6. In our simulation, if m users connect to a
source offering service capacity C(t), then each of those
m users receives service capacity of C(t)/m. The effect
of dividing capacity among users gives us an idea of how
different strategies will perform when users compete for
limited resources in the network. To represent the level
of competition, we use the source-user ratio, i.e. the ra-
tio between the number of source peers to the number of
users (downloading peers).
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Figure 5: Performance of different download strategies
under if different levels of competition.

Figure 5 shows the average download time under differ-
ent strategies as the number of downloaders increases (dif-
ferent levels of competition). Because the total amount
of service capacity in the network is fixed, users have to
share this fixed amount of capacity and thus the aver-
age download time will increase as the number of down-
loaders increases for all possible strategies. In Figure 5,
the periodic switching always yields the smallest average
download time than all the other strategies regardless of
the level of competition among downloading peers. Even
under heavy competition, when the number of users is 4
times of the number of sources, periodic switching can re-
duce at least 50% of the average download time compared
to other strategies.

It is interesting to see that under heavy competition,
parallel downloading is even worse than the single link
download. As discussed earlier, in parallel downloading,
the download time is determined by the chunk that fin-
ishes the last. In other words, the download is complete
when the chunk from the source offering the ‘worst’ ser-
vice capacity is done. Under heavy competition, paral-
lel downloading actually makes more users to share the
‘worst’ source, thus increasing the download time further.
Thus, our study shows that, contrary to the common be-
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lief, parallel downloading is far from being optimal in
terms of reducing the download time. Its performance is
very much dependent upon the heterogeneity in service
capacities in the network and upon the degree of competi-
tion in the network. In a network consisting of many het-
erogeneous sources (as in current P2P networks), we are
better off keeping fewer connections so that not every user
gets stuck in the bad sources. Overall, from Figures 4, it
is evident that the random periodic switching generally
performs the best. Although it may not compete with
parallel downloading in the case where all sources offer
the same service capacity with very light competition,
those conditions are not practical in most cases. For all
other situations with realistic heterogeneity, competition
among peers, as well as with temporal correlations in each
path, the random periodic switching gives the most stable
and optimal performance in the sense that its download
time is minimal, robust with respect to network config-
urations, and consistent for different users in a random
environment.
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