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ABSTRACT

Graph sampling via crawling has been actively considered
as a generic and important tool for collecting uniform node
samples so as to consistently estimate and uncover various
characteristics of complex networks. The so-called simple
random walk with re-weighting (SRW-rw) and Metropolis-
Hastings (MH) algorithm have been popular in the litera-
ture for such unbiased graph sampling. However, an un-
avoidable downside of their core random walks – slow dif-
fusion over the space, can cause poor estimation accuracy.
In this paper, we propose non-backtracking random walk
with re-weighting (NBRW-rw) and MH algorithm with de-
layed acceptance (MHDA) which are theoretically guaranteed
to achieve, at almost no additional cost, not only unbiased
graph sampling but also higher efficiency (smaller asymp-
totic variance of the resulting unbiased estimators) than the
SRW-rw and the MH algorithm, respectively. In particular,
a remarkable feature of the MHDA is its applicability for
any non-uniform node sampling like the MH algorithm, but
ensuring better sampling efficiency than the MH algorithm.
We also provide simulation results to confirm our theoretical
findings.

Categories and Subject Descriptors: G.3 [Probability
and Statistics]: Probabilistic algorithms, Stochastic processes

General Terms: Theory, Algorithms, Performance

Keywords: unbiased graph sampling, random walks, non-
reversible Markov chains, asymptotic variance

1. INTRODUCTION
Estimating various nodal and topological properties of

complex networks such as online social networks (OSNs),
peer-to-peer (P2P) networks, and the world wide web (WWW)
has recently attracted much attention from research commu-
nity because of their ever-increasing popularity and impor-
tance in our daily life. However, the estimation of network
characteristics is a non-trivial task, as these networks are
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typically too large to measure, making a complete picture
of the network hard to obtain and even its size unknown. It
is thus infeasible to perform ‘independence sampling’ which
obtains uniform node samples (for unbiased estimation) di-
rectly and independently from such a large, unknown net-
work. Instead, graph crawling techniques – graph sam-
pling via crawling, have been widely used for that purpose.
In particular, random walk-based graph sampling methods
(or Markov chain samplers) have become popular, as they
are simple and implementable in a distributed fashion and
also able to provide unbiased graph sampling, unlike the
breadth-first-search (BFS) and its variants leading to un-
known bias [12, 20].

In the literature, the most popular random walk-based
graph sampling methods are the so-called simple random
walk with re-weighting (SRW-rw) [29, 12] and Metropolis-
Hastings (MH) algorithm [25, 16, 34, 29, 12, 15]. The former
launches a simple random walk (SRW) over a graph G, which
moves from a node to one of its neighbors chosen uniformly
at random, to collect random node samples, followed by a
re-weighting process in order to eliminate the bias caused
by the non-uniform stationary distribution of the SRW. The
other method is to rely on a Metropolis-Hastings random
walk (MHRW) crawling over G – a random walk achieving
a unform distribution constructed by the famous MH algo-
rithm [25, 16], to obtain uniform node samples.

Motivation and Contributions: While the SRW-rw and
MH algorithm ensure unbiased graph sampling, the core
components – SRW and MHRW, suffer from their slow dif-
fusion over the space, which can in turn lead to poor esti-
mation accuracy. In particular, their fully random nature
in selecting the next node, when making a transition, of-
ten cause them to go back to the previous node from where
they just came. This produces many duplicate samples for
a short to moderate time span, thereby reducing estimation
accuracy. It is apparently desirable to avoid such backtrack-
ing transitions whenever possible, so as to steer them toward
‘unvisited’ places (or to obtain new node samples), as long as
such a modification does not affect the unbiased estimation.

However, it is still uncertain how to achieve this at almost
no additional cost and whether it really results in better es-
timation accuracy. We provide affirmative answers for these
questions. Specifically, we propose non-backtracking ran-
dom walk with re-weighting (NBRW-rw) and MH algorithm
with delayed acceptance (MHDA), and prove that each of
them guarantees not only unbiased graph sampling but also
higher efficiency (smaller asymptotic variance of the esti-
mators) than the SRW-rw and the MH algorithm, respec-



tively. A notable feature of our MHDA is its generic pur-
pose: the MHDA is theoretically guaranteed to enhance the
standard MH algorithm for constructing a random walk or
a Markov chain with any arbitrarily given stationary dis-
tribution under the constraints of graph structure. Thus,
the MHDA is applied, as ‘a special case’, to construct a
random walk crawling over a graph G achieving a uniform
stationary distribution, leading to higher efficiency than the
MHRW while ensuring the unbiased estimation. To the best
of our knowledge, this is the first theoretical result to im-
prove, with proven guarantee, both SRW-rw and the MH
algorithm for unbiased graph sampling.

Related Work: Very recently, there have been a few at-
tempts to improve the estimation accuracy against the SRW-
rw (not the MH algorithm) through multiple dependent ran-
dom walks [30], a random walk on a weighted graph (with a
priori estimate of network information) [20], and the addi-
tion of random jumps (to anywhere in the graph) [5]. The
corresponding Markov chains are time-reversible, whereas
the main kernel of our proposed methods is transforming
‘any’ reversible Markov chain to its related non-reversible
chain which avoids backtracking transitions and also achieves
the same stationary distribution. Thus, our work is comple-
mentary to their approaches.

On the other hand, there is a body of research works across
many disciplines for speeding up a random walk, or Markov
chain, on a graph G in terms of its mixing time, hitting
time, and/or cover time. The fastest mixing (reversible)
Markov chain on a graph is obtained in [8] with complete
knowledge of entire graph. [9, 10] showed that certain ‘lifted’
(non-reversible) Markov chains converge to their stationary
distributions faster than their related reversible chain, and
[19, 23] subsequently applied this idea to design a fast and
efficient average consensus algorithm. It is, however, still
unknown how to construct such a ‘lifted’ Markov chain in a
distributed or decentralized manner for a general graph.

[3, 7, 17] recently undertook speeding up a SRW based
only on local information, but did not provide any direct
implication to the unbiased graph sampling. As the MH al-
gorithm is the most popular method of Markov Chain Monte
Carlo (MCMC) simulations or samplers, it has been an ac-
tive research topic to improve the MH algorithm in terms
of the sampler performance (asymptotic variance) in the
MCMC literature (e.g., [26, 14, 35]). However, most works
toward more efficient MCMC samplers (including [26, 14,
35]) do not take into account graph-topological constraints
in that transition from node i to j 6= i is allowed only when
they are neighbors of each other, and thus cannot be directly
applicable to unbiased graph sampling.

Organization: The rest of the paper is organized as fol-
lows. We first provide an in-depth overview on generic
Markov chain samplers for unbiased graph sampling in Sec-
tion 2, and then briefly review the SRW-rw and MH algo-
rithm in Section 3. In Section 4, we present a general recipe
for the transformation of a time-reversible Markov to its re-
lated non-reversible Markov chain, which forms a common
building block for our proposed NBRW-rw and MHDA. We
then explain the details of the NBRW-rw and MHDA, and
provide relevant analysis. In Section 5, we provide simula-
tion results obtained based on real graphs to support our
theoretical findings. We finally conclude in Section 6.

2. PRELIMINARIES

2.1 Unbiased Graph Sampling
Consider a connected, undirected graph G = (N ,E) with

a set of nodes (vertices) N = {1, 2, . . . , n} and a set of edges
E . We assume that 3 ≤ |N | = n < ∞. We also assume
that the graph G has no self-loops and no multi-edges. Let
N(i) , {j ∈ N : (i, j) ∈ E} be the set of neighbors of node

i ∈ N , and d(i) , |N(i)| be the degree of node i.
Unbiased graph (or node) sampling, via crawling, is to

consistently estimate nodal or topological properties of a
target graph G∗ (e.g., an overlay network or an OSN) based
upon uniform node samples obtained by a random walk (or
possibly multiple random walks) crawling over the graph G.
The goal here is to unbiasedly estimate a proportion of the
nodes with a specific characteristic. Thus, the unbiased, uni-
form graph sampling is, in principle, developing a random
walk-based “estimator” or a Markov chain sampler for the
expectation of any given, desired function f with respect
to a uniform distribution, i.e., Eu(f),

∑

i∈N f(i)/n, where

u, [u(1), u(2), . . . , u(n)] = [1/n, 1/n, . . . , 1/n]. Note that a
nodal (or topological) characteristic of interest can be spec-
ified by properly choosing a function f . For example, for
a target graph G, if one is interested in estimating its de-
gree distribution (say, P{DG = d}, d = 1, 2, . . . , n−1), then
choose a function f such that f(i) = 1{d(i)=d} for i ∈ N ,
i.e., f(i)=1 if d(i)=d, and f(i)=0 otherwise.

We below review a basic Markov chain theory which serves
as the mathematical foundation for unbiased graph sampling
via a (Markovian) random walk crawling over a graph G. De-
fine a random walk or a finite discrete-time Markov chain
{Xt ∈ N}t≥0 on the nodes of the graph G with its transi-

tion matrix P, {P (i, j)}i,j∈N in which P (i, j)=P{Xt+1 =
j|Xt = i}, i, j ∈ N , and

∑

j P (i, j) = 1 for all i. Each edge

(i, j)∈E is associated with a transition probability P (i, j)≥0
with which the chain (or random walk) makes a transition
from node i to node j. We allow the chain to include self-
transitions, i.e., P (i, i) > 0 for some i, although G has no
self-loops. Clearly, P (i, j) = 0 for all (i, j) 6∈ E (i 6= j). We
then assume that the Markov chain {Xt} is irreducible, i.e.,
every node in N is reachable in finite time with positive
probability, such that the chain has a unique stationary dis-
tribution π, [π(1), π(2), . . . , π(n)].

For any function f : N →R, define an estimator

µ̂t(f) ,
1

t

t
∑

s=1

f(Xs) (1)

for the expectation of the function f with respect to π which
is given by Eπ(f) ,

∑

i∈N f(i)π(i). Then, the following
Strong Law of Large Numbers (SLLN) (a.k.a., ergodic the-
orem) has been a fundamental basis for most of the random
walk-based graph sampling methods in the literature [34, 29,
12, 15, 30, 5, 20], and more generally, MCMC samplers [28,
26, 35, 18, 31, 27].

Theorem 1. [18, 31] Suppose that {Xt} is a finite, ir-
reducible Markov chain with its stationary distribution π.
Then, for any initial distribution P{X0= i}, i∈N , as t→∞,

µ̂t(f) → Eπ(f) almost surely (a.s.)

for any function f with Eπ(|f |) < ∞. 2

∗A target graph for sampling may be time-varying due to
node join/leave, which is beyond the scope of this paper.



The SLLN ensures that the estimator µ̂t(f) based on any
finite, irreducible Markov chain with the same π can serve
as a valid and unbiased approximation of Eπ(f).

2.2 Central Limit Theorem and Asymptotic
Variance

For a given graph G, there are potentially many (finite)
irreducible Markov chains (or different random walks) pre-
serving the same stationary distribution π, all of which
can be used to obtain asymptotically unbiased estimates of
Eπ(f), and also of Eu(f), together with proper re-weighting
if π 6= u. One important question would then be how to
compare these ‘competing’ Markov chains, or rather, which
one is ‘better’ or more efficient than the others as a Markov
chain sampler for unbiased graph sampling.

Mixing time [8, 22] can perhaps be a criterion to compare
several irreducible, aperiodic Markov chains, all with the
same stationary distribution. If the speed of convergence
to the stationary distribution is a primary concern, then
the mixing time is surely the right metric to compare dif-
ferent Markov chains with the same stationary distribution.
However, this is not the case for the unbiased graph sam-
pling. Random walk-based graph sampling methods typ-
ically adopt an initial burn-in period over which (initial)
sampled values are discarded to get rid of the dependence
on the initial position of a random walk [12]. After such
a burn-in period, the Markov chain (or random walk) will
be close to its stationary regime (well mixed), but many
samples are still yet to be obtained from this point onward.
Therefore, the primary concern should be, instead, the effi-
ciency of the estimator µ̂t(f) in deciding how many random
samples are required to achieve a certain accuracy of µ̂t(f)
in regard to Eπ(f) (and eventually to Eu(f) after proper
re-weighting if necessary).

To that end, we define by σ2(f) the asymptotic variance
of the estimator µ̂t(f) based on an irreducible Markov chain
{Xt} with its stationary distribution π, which is given by

σ2(f) , lim
t→∞

t ·Var (µ̂t(f))

= lim
t→∞

1

t
E







[

t
∑

s=1

(f(Xs)− Eπ(f))

]2






(2)

for any function f with Eπ(f
2) < ∞, where the initial po-

sition (state) X0 is drawn from the stationary distribution
π, i.e., X0 ∼ π. Note that the asymptotic variance σ2(f)
is, in fact, independent of the distribution of the initial state
X0 [28, 31]. Not only for the well-known case with i.i.d.
samples (or random variables), the Central Limit Theorem
(CLT) holds also for Markov chains, as given below.

Theorem 2. [18, 31] For a finite, irreducible Markov chain
{Xt} with its stationary distribution π,

√
t · [µ̂t(f)− Eπ(f)]

d
=⇒ N(0, σ2(f)), as t → ∞,

for any function f with Eπ(f
2) < ∞ regardless of any initial

distribution, where
d

=⇒ denotes convergence in distribution
and N(0, σ2(f)) is a Gaussian random variable with zero
mean and variance σ2(f) given by (2). 2

Note that Theorems 1–2 (SLLN and CLT) do not require
any assumption of aperiodicity [31]. However, for simplicity,
we do not consider periodic Markov chains in our analysis

throughout the paper. In addition, we focus on bounded
functions f (and thus Eπ(f

2) < ∞), which is typical in
graph sampling applications.

The CLT says that the distribution of µ̂t(f) is asymptot-
ically normal with variance σ2(f), and thus allows one to
evaluate the asymptotic variance σ2(f) in order to decide
approximately how many (correlated) samples are required
to achieve a certain accuracy of the estimator µ̂t(f). Hence,
the asymptotic variance σ2(f) has been an important crite-
rion to rank the efficiency among competing Markov chains
with the same π for the MCMC samplers [28, 26, 35, 18,
31, 27], although quantifying σ2(f) may not be easy. In
particular, by noting that the asymptotic variance is inde-
pendent of any initial distribution for which the CLT holds,
the efficiency ordering over competing Markov chains with
the same π (the smaller the asymptotic variance, the bet-
ter the estimator performance) is still in effect even when
the competing Markov chains are already in their station-
ary regimes (already ‘mixed’). Observe that from X0 ∼ π,
Xt ∼ π for all t (the chain {Xt} is in the stationary regime),
and thus (2) becomes

σ2(f) = Var(f(X0)) + 2
∞
∑

k=1

Cov(f(X0), f(Xk)), (3)

where Cov(f(X0), f(Xk))=E{f(X0)f(Xk)}−E2
π
(f) denotes

the covariance between f(X0) and f(Xk). As a special case,
if the samples {Xt} are i.i.d.and drawn directly from π, then
σ2(f) = Var(f(X0)). Also, even if the competing Markov
chains are already in their stationary regimes, the correla-
tion structure over random samples given by each of these
Markov chains can vary and significantly affect their asymp-
totic variances. Observe that reducing the temporal corre-
lation over random samples can lead to smaller asymptotic
variances. This intuition can be leveraged to improve the ex-
isting Markov chain samplers for unbiased graph sampling.

Motivated by the effectiveness of the asymptotic variance
with its connection to the CLT, in this paper, we consider the
asymptotic variance as a primary performance metric, and
develop two random walk-based graph sampling methods,
each of which guarantees the unbiased graph sampling with
smaller asymptotic variance than its corresponding coun-
terpart in the current networking literature. Before going
into details, we next briefly review the existing two random
walk-based graph sampling methods.

3. RANDOM WALK-BASED SAMPLING

3.1 Simple Random Walk with Re-weighting
We first review the SRW-rw, a.k.a., respondent-driven

sampling [33], which has been recently used in [29, 12] for un-
biased graph sampling. This method operates based upon
a sequence of (correlated) random samples obtained by a
SRW, together with a proper re-weighting process to ensure
the unbiased sampling. It is essentially a special case of the
importance sampling (a Monte Carlo method) applied for
random samples generated by a Markov chain [6, 24, 13].

Consider a SRW on G that moves from a node to one of
its neighbors chosen uniformly at random (u.a.r.). Specif-
ically, let {Xt} be the Markov chain representing the se-
quence of visited nodes by the SRW, with its transition ma-
trix P = {P (i, j)}i,j∈N given by P (i, j)=1/d(i) if (i, j)∈E ,
and P (i, j) = 0 otherwise. It is well known that P is irre-



ducible, and reversible with respect to a unique stationary
distribution π for which π(i) = d(i)/(2|E|), i ∈ N [2].

Suppose that there are t random samples {Xs}ts=1 from
the SRW. Then, for a function of interest f , choose a weight
function w : N →R such that w(i)=u(i)/π(i)=2|E|/(nd(i)),
i∈N . Observe that from the SLLN in Theorem 1, as t → ∞,

µ̂t(wf) =
1

t

t
∑

s=1

w(Xs)f(Xs) → Eπ(wf) = Eu(f) a.s.

and thus the estimator µ̂t(wf) is unbiased for Eu(f). How-
ever, this estimator itself is not practical, since n and |E|
are typically unknown a priori. Instead, another estima-
tor µ̂t(wf)/µ̂t(w) is often used as an unbiased estimator for
Eu(f). Indeed, Theorem 1 asserts that µ̂t(wf) and µ̂t(w)
converge to Eu(f) and 1 almost surely, as t → ∞, respec-
tively. This yields

µ̂t(wf)

µ̂t(w)
=

∑t

s=1 w(Xs)f(Xs)
∑t

s=1 w(Xs)
→ Eu(f) a.s.

Hence, the estimator µ̂t(wf)/µ̂t(w) can be made in such a
way that we need to know w(i) only up to a multiplicative
constant. That is, if we set w(i) = 1/d(i), i∈N , then the es-
timator µ̂t(wf)/µ̂t(w) remains intact, and is more practical
as an unbiased estimator for Eu(f). Throughout this paper,
we refer to the estimator µ̂t(wf)/µ̂t(w) with w(i) = 1/d(i)
(i ∈ N ) as the unbiased estimator for Eu(f) in the SRW-
rw [29, 12].

3.2 Metropolis-Hastings Algorithm
The MH algorithm [25, 16] was developed to construct a

transition matrix P of a time-reversible Markov chain {Xt}
with a given, desired stationary distribution π. Here, we
only discuss the MH algorithm under the topological con-
straints of a graph G in that transition from node i to j 6= i
is allowed only when they are neighbors of each other. The
MH algorithm is defined as follows. At the current state i of
Xt, the next state Xt+1 is proposed with a proposal prob-
ability Q(i, j), which is a state transition probability of an
arbitrary irreducible Markov chain on the state space N ,
where Q(i, j) > 0 if and only if Q(j, i) > 0, and Q(i, j) = 0

for all (i, j) 6∈ E (i 6= j). Let Q , {Q(i, j)}i,j∈N be a pro-
posal (transition) matrix. The proposed state transition to
Xt+1=j is accepted with an acceptance probability

A(i, j) = min

{

1,
π(j)Q(j, i)

π(i)Q(i, j)

}

, (4)

and rejected with probability 1−A(i, j) in which case Xt+1=
i. Thus, the transition probability P (i, j) becomes, for i 6=j,

P (i, j) = Q(i, j)A(i, j) = min

{

Q(i, j), Q(j, i)
π(j)

π(i)

}

, (5)

with P (i, i) = 1−∑

j 6=i
P (i, j), which ensures that P is re-

versible with respect to π. Note that the uniqueness of π
is granted due to the irreducibility of Q (so is P) and the
finite state space.

The MH algorithm, in addition to its popular applications
for MCMC simulation, has been also widely used as a means
for unbiased graph sampling [34, 29, 12, 15]. Specifically, the
MH algorithm has been applied to construct a MHRW on
G achieving a uniform stationary distribution, i.e., π = u.
This is done with transition probabilities of a SRW as the

proposal probabilities, i.e., Q(i, j) = 1/d(i) if (i, j) ∈ E , and
Q(i, j) = 0 otherwise. The resulting transition probability
of the MHRW on G becomes

P (i, j) =

{

min
{

1
d(i)

, 1
d(j)

}

if (i, j) ∈ E ,
0 if (i, j) 6∈ E , i 6= j,

(6)

and P (i, i) = 1−∑

j 6=i
P (i, j). Thus, P is reversible with

respect to π = u, implying that for any function f , the esti-
mator µ̂t(f) based upon random samples by the MHRW is
unbiased for Eu(f). This version of MH algorithm is sum-
marized in Algorithm 1, where Xt ∈ N denotes the location
of the MHRW at time t, and d(Xt) denotes the degree of
node Xt. Here, X0 can be arbitrarily chosen.

Algorithm 1 MH algorithm for MHRW (at time t)

1: Choose node j u.a.r. from neighbors of Xt, i.e., N(Xt)
2: Generate p ∼ U(0, 1)

3: if p ≤ min
{

1, d(Xt)
d(j)

}

then

4: Xt+1 ← j
5: else
6: Xt+1 ← Xt

7: end if

Remark 1. The MH algorithm (Algorithm 1) does not
need to know the self-transition probabilities P (i, i) explic-
itly, nor does it require all the neighbors’ degree informa-
tion of the current node Xt at each time t. Instead, only
the degree information of the randomly chosen neighbor j is
enough for making decision whether or not to move to j.

Recall that the above unbiased estimators are based on t
random, consecutive samples obtained under SRW or MHRW,
respectively. Observe that the SRW, currently at node i at
time s can ‘backtrack’ to the previously visited node with
probability 1/d(i), i.e., Xs+1 = Xs−1, trapping the SRW
temporarily in a local region. The situation can be worse
for the regions in which nodes have small degrees (so higher
chance of backtracking). Similarly, the MHRW at node i
can also backtrack to the previously visited node after stay-
ing at node i for some random time. This slow ‘diffusion’
of SRW/MHRW over the space can, in turn, lead to highly
duplicated random samples for a short to moderate time du-
ration, thereby increasing the variance of the unbiased esti-
mators. Recall that the asymptotic variance in (3) involves
covariance terms Cov(f(X0), f(Xk)). Thus, it would be ben-
eficial for both SRW and MHRW (or precisely, their vari-
ants) to avoid backtracking to the previously visited node
up to the extent possible in order to reduce the temporal
correlation over random consecutive samples, while main-
taining the same stationary distribution so that the afore-
mentioned mathematical framework for the unbiased esti-
mation remains intact. Thus motivated, for the rest of this
paper, we investigate how to achieve this at almost no addi-
tional cost, and rigorously prove that our proposed sampling
methods give smaller (no worse) asymptotic variance than
the SRW (with re-weighting) and MHRW-based ones, re-
spectively.

4. AVOID BACKTRACKING TO PREVIO-

USLY VISITED NODE
In this section, we propose two random walk-based graph

sampling methods – (i) non-backtracking random walk



with re-weighting and (ii) MH algorithm with de-
layed acceptance, each of which theoretically guarantees
unbiased graph sampling with smaller asymptotic variance
than the SRW-rw and the (original) MH algorithm, respec-
tively. In particular, our proposed sampling methods require
almost no additional cost, or more precisely, just remember-
ing where the underlying random walk came from, when
compared to the conventional methods. The reasoning be-
hind the improvement of asymptotic variance is to modify
each of SRW and MHRW, when making a transition from
the current node to one of its neighbors, to reduce bias to-
ward the previous state (one of the neighbors of the current
node), while maintaining the same stationary distribution.
Note that such directional bias breaks the time-reversibility
of the SRW and MHRW. Thus, a common building block for
our proposed sampling methods will be, for a given reversible
Markov chain with its stationary distribution π, to construct
a non-reversible Markov chain preserving the same π while
avoiding (to the extent possible) transitions that backtrack
to the state from which the chain just came. Our challenge
here is to construct such a non-reversible chain with only
one-step memory and theoretical guarantee for higher ef-
ficiency (smaller asymptotic variance). In what follows, we
first explain a basic setup for this transformation and several
relevant issues, and then present the details of our proposed
methods.

4.1 From Reversible To Non-reversible Chains
Consider a generic random walk on G, or a finite, irre-

ducible, time-reversible Markov chain {Xt∈N}t≥0, with its
transition matrix P = {P (i, j)}i,j∈N and stationary distri-
bution π = [π(i), i ∈ N ]. Our goal here is to construct its re-
lated new random walk or a finite, irreducible, non-reversible
Markov chain with the same π which avoids backtracking to
the previously visited node, which in turn produces a smaller
asymptotic variance than the original reversible chain. An
important requirement is that this transformation should
be done at no additional cost and in a distributed man-
ner. It is worth noting that there have been other works [9,
10] showing that certain non-reversible Markov chains or
lifted Markov chains mix substantially faster than their re-
lated reversible chains. While this concept has been also
applied to design a fast and efficient average consensus al-
gorithm [19, 23], it is still unknown how to construct such
a non-reversible chain or lifted Markov chain in a fully dis-
tributed or decentralized fashion, not to mention how to do
so for any arbitrarily given target stationary distribution π.

A general recipe for constructing a non-reversible Markov

chain in an augmented state space: Let X ′
t ∈ N , t =

0, 1, 2 . . ., be the location of a new random walk at time
t. At the current node X ′

t, the next node X ′
t+1 is decided

based upon not only the current node X ′
t but also the pre-

vious node X ′
t−1 so as to avoid backtracking. Due to the

dependency (memory) to the previous node, {X ′
t}t≥0 itself

cannot be a Markov chain on the state space N , regard-
less of the choice of transition matrix. This walk, however,
can still be made Markovian on an augmented state space
instead, defined by

Ω , {(i, j) : i, j ∈ N s.t. P (i, j) > 0} ⊆ N×N (7)

with |Ω|<∞, and Z′
t , (X ′

t−1, X
′
t)∈Ω for t≥ 1. For nota-

tional simplicity, let eij denote state (i, j) ∈ Ω. Note that

eij 6= eji. It is also possible that eii ∈ Ω for some i. A
similar interpretation of a weighted random walk (or a re-
versible Markov chain) on the augmented state space can be
also found in [2, Ch.3], although its purpose is not for the
construction of a related non-reversible chain.

Let P′ , {P ′(eij , elk)}eij ,elk∈Ω be the transition matrix
of an irreducible Markov chain {Z′

t ∈ Ω}t≥1 on the state
space Ω. Here, by definition, P ′(eij , elk)=0 for all j 6= l. If

the unique stationary distribution π
′ , [π′(eij), eij ∈ Ω] of

the chain {Z′
t} is given by

π′(eij) = π(i)P (i, j), eij ∈ Ω, (8)

implying that π′(eij) = π′(eji) from the reversibility of the
original chain {Xt}, then the probability of the new random
walk {X ′

t} being at node j in the steady-state is the same
as π(j) for all j (the stationary distribution of the original
reversible chain {Xt}). To see this, note that

∑

i∈N :eij∈Ω

π′(eij) =
∑

i∈N

π(i)P (i, j) = π(j), ∀j ∈ N , (9)

where the first equality follows from P (u, v)=0, ∀(u, v) 6∈Ω.
In particular, for any original function of interest f : N →R,
choose another function g : Ω→R such that g(eij) = f(j),
and observe

E
π

′(g) =
∑

eij∈Ω

g(eij)π
′(eij) =

∑

j∈N

∑

i∈N

f(j)π(i)P (i, j)

=
∑

j∈N

f(j)π(j) = Eπ(f).

Then, the SLLN in Theorem 1 gives

1

t

t
∑

s=1

g(Z′
s) =

1

t

t
∑

s=1

f(X ′
s) → E

π
′(g) = Eπ(f) a.s., (10)

i.e.,
∑t

s=1 g(Z
′
s)/t is a valid unbiased estimator for Eπ(f).

We thus define, for any given function f : N →R,

µ̂′
t(f) ,

1

t

t
∑

s=1

f(X ′
s) (11)

to be clearly distinguished from µ̂t(f) in (1) defined based
on the original chain {Xt}, while µ̂′

t(f) and µ̂t(f) are both
unbiased estimators for Eπ(f). In addition, the CLT in The-
orem 2 implies

√
t ·

[

1

t

t
∑

s=1

g(Z′
s)− E

π
′(g)

]

=
√
t · [µ̂′

t(f) − Eπ(f)]

d
=⇒ N(0, σ′2(f)), (12)

where σ′2(f) denotes the asymptotic variance of µ̂′
t(f) (and

also of
∑t

s=1 g(Z
′
s)/t). Throughout the paper, we use the

prime symbol (′) for any notation related to a newly defined
process (e.g., {X ′

t}) to differentiate it from its counterpart
defined on the original process (e.g., {Xt}).

While there are infinitely many different transition matri-
ces P′ leading to the unbiased estimator µ̂′

t(f) for Eπ(f),
our primary goal is, at (almost) no additional cost and in
a distributed manner, to find a transition matrix P′ that
also guarantees smaller asymptotic variance. Under a rather
restricted setting, R. Neal gave a partial answer to this
in [27] saying that less backtracking (rendering the resulting



Markov chain {Z′
t} non-reversible) can result in a smaller

asymptotic variance. We restate his finding below.

Theorem 3. [27, Theorem 2] Suppose that {Xt} is an ir-
reducible, reversible Markov chain on the state space N with
transition matrix P = {P (i, j)} and stationary distribution
π. Construct a Markov chain {Z′

t} on the state space Ω with
transition matrix P′ ={P ′(eij , elk)} in which the transition
probabilities P ′(eij , elk) satisfy the following two conditions:
for all eij , eji, ejk, ekj ∈ Ω with i 6= k,

P (j, i)P ′(eij , ejk) = P (j, k)P ′(ekj , eji), (13)

P ′(eij , ejk) ≥ P (j, k). (14)

Then, the Markov chain {Z′
t} is irreducible and non-reversible

with a unique stationary distribution π
′ in which π′(eij) =

π(i)P (i, j), eij ∈ Ω. Also, for any function f , the asymp-
totic variance of µ̂′

t(f) is no greater than that of µ̂t(f), i.e.,

σ′2(f) ≤ σ2(f). 2

Remark 2. The condition in (13) ensures that the result-
ing transition matrix P′ is stationary with respect to π

′ in
(8) and, in turn, leads to the unbiased estimator µ̂′

t(f) for
Eπ(f). Together with this condition, the condition in (14)
– less backtracking to the previously visited node, brings out
the improvement of asymptotic variance.

Theorem 3 is quite versatile and provides a guideline on
how to choose the transition matrix P′ of a Markov chain
{Z′

t} leading to smaller asymptotic variance, and thus will
play an essential role in developing our graph sampling meth-
ods and subsequent analysis. Despite this large degree of
freedom, it is still uncertain how to choose such a transition
matrix P′ at no additional cost. While R. Neal suggested a
procedure to find P′, it generally poses significant cost, espe-
cially for improving the MH algorithm, as admitted in [27].
(See pp. 9–10 therein.) Recall that the MH algorithm (Al-
gorithm 1) for MHRW only needs the degree information of
a randomly chosen neighbor j of the current node Xt to de-
cide whether or not to move j, as mentioned in Remark 1.†

However, the procedure by R. Neal necessitates the explicit
knowledge of all P (i, i)’s [27]. That is, the corresponding
modified MHRW would require all the neighbors’ degree in-
formation of the current node X ′

t at each time t in order to
choose the next node X ′

t+1. Imagine such modified MHRW
crawling over an OSN (say, Facebook) and located at a cer-
tain user’s page. To simply decide where to go, the walk
would have to visit all his/her friends’ pages first and collect
all their degree information (i.e., the number of friends) be-
fore making decision to move. This is clearly impractical for
our graph sampling purpose. Therefore, in this paper, we
set out to develop our own graph samplers with higher effi-
ciency without any such overhead, by leveraging Theorem 3
as a building block.

4.2 Non-backtracking Random Walk with Re-
weighting

We first introduce non-backtracking random walk with
re-weighting (NBRW-rw) that ensures unbiased graph sam-
pling, and then prove that NBRW-rw guarantees a smaller

†More generally, in the MH algorithm with any proposal
matrix Q, it is often unnecessary to know self-transition
probabilities P (i, i) explicitly, or does not require summing
the probabilities of rejection for all possible proposals just
to compute P (i, i)=Q(i, i)+

∑

j 6=i Q(i, j)(1−A(i, j)).

1/3

1/3

1/3

i j

Figure 1: Illustrating the transitions of an NBRW. The

walker is currently located at node j (with d(j)=4) and

just came from node i. From j, it will move to one of its

neighbors except node i with equal probability.

asymptotic variance than SRW-rw. The non-backtracking
random walk (NBRW) is a discrete-time random walk which
‘never’ backtracks (thus named non-backtracking) to the
previous node (whenever possible) while preserving the same
stationary distribution as that of a SRW. Thus, the proposed
sampling method is to use an NBRW, instead of a SRW, to
collect a sequence of samples by crawling over a target G,
and at the same time, to employ the same re-weighting pro-
cess as is done for SRW in order to eliminate sampling bias
induced from its non-uniform stationary distribution.

Consider an irreducible, reversible Markov chain {Xt}t≥0

(a sequence of visited nodes) by the SRW, with its transition
matrix P and stationary distribution π. Then, the NBRW is
defined as follows. A (discrete-time) random walk at the cur-
rent node j with d(j)≥2 moves to the next node k, chosen
u.a.r. from the neighbors of node j except the previous node
i. If the current node j has only one neighbor (d(j)=1), the
walk always returns to the previous node i. Figure 1 depicts
this non-backtracking nature of the NBRW in its transitions
over the nodes of G. Here, an initial position of the NBRW
can be arbitrarily chosen. The NBRW initially moves from
the initial position to one of its neighbors with equal prob-
ability due to the absence of its ‘previous node’, and then
proceeds as defined above thereafter.

Let X ′
t∈N , t=0, 1, 2, . . ., be the location of an NBRW. As

before, we construct a Markov chain {Z′
t = (X ′

t−1, X
′
t)}t≥1

with its transition matrix P′ = {P ′(eij , elk)}eij ,elk∈Ω given
by, for all eij , ejk ∈ Ω with i 6= k (d(j) ≥ 2),

P ′(eij , ejk) =
1

d(j) − 1
>

1

d(j)
= P (j, k), (15)

implying that P ′(eij , eji) = 0. Also, P ′(eij , eji) = 1 for any
j with d(j) = 1. All other elements of P′ are zero. Clearly,
P′ satisfies the conditions in (13)–(14). From Theorem 3,
the Markov chain {Z′

t} is irreducible and non-reversible with
a unique stationary distribution

π′(eij) = π(i)P (i, j) =
1

2|E| , eij ∈ Ω. (16)

That is, the probability of the NBRW being at node j in the
steady-state is the same as π(j). See (9). From (10)–(11)
and Theorem 3, we also know that for any given function
f of interest, µ̂′

t(f) and µ̂t(f) are both unbiased estimators
for Eπ(f), and the asymptotic variance of µ̂′

t(f) (based on
the random samples by the NBRW) is no larger than that

of µ̂t(f) (by the SRW), i.e., σ′2(f)≤σ2(f).
However, both unbiased estimators µ̂′

t(f) and µ̂t(f) are
for Eπ(f), not Eu(f). It is unclear whether such improve-
ment for the asymptotic variance remains true even after
a proper re-weighting to obtain unbiased samples. As ex-
plained in Section 3.1, the SRW-rw is to use the estimator
µ̂t(wf)/µ̂t(w) with w(i)=1/d(i) (i∈N ) in order to consis-



tently estimate Eu(f). Since the stationary distribution of
the NBRW remains the same as that of the SRW, we can also
use the estimator µ̂′

t(wf)/µ̂′
t(w) with the same weight func-

tion w, as a valid approximation of Eu(f). Let σ2
W(f) and

σ′2
W(f) denote the asymptotic variances of the estimators

µ̂t(wf)/µ̂t(w) and µ̂′
t(wf)/µ̂′

t(w), respectively. To proceed,
we need the following.

Theorem 4 (Slutsky’s theorem). [4, pp.332]
Let {At} and {Bt} be the sequences of random variables. If

At
d

=⇒ A, and Bt converges in probability to a non-zero

constant b, then At/Bt
d

=⇒ A/b. 2

Now we state our main result.

Theorem 5. For any function f : N → R, the asymp-
totic variance of µ̂′

t(wf)/µ̂′
t(w) is no larger than that of

µ̂t(wf)/µ̂t(w), i.e., σ′2
W(f) ≤ σ2

W(f), where the weight func-
tion w is given by w(i) = 1/d(i), i ∈ N . 2

Proof. Since the estimator µ̂t(wf)/µ̂t(w) remains in-
variant up to a constant multiple of w, without loss of gen-
erality, we can set w(i) = u(i)/π(i) = 2|E|/(nd(i)). For any
given f , observe that

√
t

[

µ̂t(wf)

µ̂t(w)
− Eu(f)

]

=
√
t

[

∑t

s=1 w(Xs)f(Xs)
∑t

s=1 w(Xs)
− Eu(f)

]

=
t

∑t

s=1 w(Xs)

√
t

[

∑t

s=1w(Xs)(f(Xs)−Eu(f))

t

]

. (17)

Define another function h : N →R such that

h(i) , w(i)(f(i) − Eu(f)), i ∈ N ,

implying Eπ(h) =
∑

i∈N h(i)π(i) = 0. Then, from Theo-
rems 1 and 2, we have, as t → ∞,

1

t

t
∑

s=1

w(Xs) → 1 a.s., and
√
t

[

1

t

t
∑

s=1

h(Xs)

]

d
=⇒ N(0, σ2(h)).

Since almost sure convergence implies convergence in prob-
ability [4], by Slutsky’s theorem, from (17), we have

√
t

[

µ̂t(wf)

µ̂t(w)
− Eu(f)

]

d
=⇒ N(0, σ2(h)), as t→∞.

Together with (10) and (12), following the same lines above,
we similarly have

√
t

[

µ̂′
t(wf)

µ̂′
t(w)

− Eu(f)

]

d
=⇒ N(0, σ′2(h)), as t→∞.

Hence, for a given f , the asymptotic variance of the estima-
tor µ̂t(wf)/µ̂t(w) is nothing but σ2

W(f) = σ2(h). Similarly,

σ′2
W(f) = σ′2(h). Therefore, since Theorem 3 says that for

any function f , σ′2(f) ≤ σ2(f), we also have σ′2
W(f) ≤

σ2
W(f). That is, the asymptotic variance of µ̂′

t(wf)/µ̂′
t(w) is

no larger than that of µ̂t(wf)/µ̂t(w).

Remark 3. In [3], the NBRW was originally considered
for regular graphs with d(i) = d > 3, ∀i ∈ N , and shown to
lead to faster mixing rate (i.e., faster rate of convergence to
its stationary distribution) than that of the SRW. In con-
trast, for any general (connected, undirected, not necessarily
regular) graph G, we show that the NBRW-rw ensures not
only the unbiased graph sampling but also smaller asymp-
totic variance than the SRW-rw.

4.3 Metropolis-Hastings Algorithm with De-
layed Acceptance

We turn our attention to improving the MH algorithm.
For any given, desired stationary distribution π, we pro-
pose Metropolis-Hastings algorithm with delayed acceptance
(MHDA), which theoretically guarantees smaller asymptotic
variance than the (generic) MH algorithm with proposal ma-
trix Q that constructs a reversible Markov chain with arbi-
trary π. In particular, we demonstrate that MHDA can be
applied, as a special case, to construct a (non-Markovian)
random walk on a graph G which not only achieves a uni-
form stationary distribution π=u for unbiased graph sam-
pling, but leads to higher efficiency than MHRW by the MH
algorithm (Algorithm 1). We emphasize that the only addi-
tional overhead here is remembering the previously visited
node (one of the neighbors of the current node) from which
the random walk came.

Interpreting a reversible MH Markov chain as a semi-

Markov chain: Consider an irreducible, reversible Markov
chain {Xt ∈ N}t≥0 by the MH algorithm with its transi-
tion matrix P= {P (i, j)}i,j∈N given by (5), and any arbi-
trarily given target stationary distribution π. Recall that
the MH algorithm is nothing but a repetition of proposing
a state transition with proposal probability Q(i, j) that is
then accepted with an acceptance probability A(i, j) in (4)
or rejected otherwise. Observe that the process {Xt}, after
entering into state (node) i, stays at state i for a geomet-
rically distributed time duration with mean 1/(1 − P (i, i)),
and then moves to another state j ∈ N(i). Formally, define

a Markov chain {X̃m ∈ N}m≥0 with its transition matrix

P̃,{P̃ (i, j)}i,j∈N given by, for j 6= i,

P̃ (i, j) =
P (i, j)

1− P (i, i)
=

Q(i, j)A(i, j)
∑

j 6=i Q(i, j)A(i, j)

=
min{Q(i, j), Q(j, i)π(j)/π(i)}

∑

j 6=i
min{Q(i, j), Q(j, i)π(j)/π(i)} , (18)

with P̃ (i, i) = 0. It is not difficult to see that the chain

{X̃m} is irreducible, and reversible with respect to a unique

stationary distribution π̃, [π̃(i), i∈N ], given by

π̃(i) ∝ π(i)(1−P (i, i)), i∈N .

Also, we define a function γ : N → R such that, for i ∈ N ,

γ(i) , 1−P (i, i)=
∑

j 6=i

min{Q(i, j), Q(j, i)π(j)/π(i)}, (19)

and define a sequence {ξm}m≥0 for which ξm depends solely

on {X̃m}m≥0 and is geometrically distributed with param-

eter γ(X̃m). It thus follows that E{ξm|X̃m = i} = 1/γ(i),
i∈N . The process {Xt} can now be interpreted as a semi-

Markov chain with embedded Markov chain {X̃m} and re-
spective sojourn times {ξm}. Suppose that the random walk
by the MH algorithm (or the process {Xt}) enters node j of
a graph G, depicted in Figure 2, at time t=1 (X1=j). If we
consider a sample path (X1, X2, . . . , X7) = (j, j, j, i, i, j, k),

then we have corresponding sequences (X̃1, X̃2, X̃3, X̃4) =
(j, i, j, k) and (ξ1, ξ2, ξ3) = (3, 2, 1). Note that the standard
definition of a semi-Markov process allows the sojourn time
ξm to depend on both X̃m and X̃m+1 (and so we are deal-
ing with a special case). From the theory of semi-Markov
processes (e.g., [32]), one can easily recover the stationary
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Figure 2: An example graph G

distribution π as

π(i) ∝ π̃(i)/γ(i), i ∈ N . (20)

The above interpretation has been similarly given in the
MCMC literature [24, 11]. In particular, it is known that,
for any given function f : N →R,

µ̂m,MH(f) ,

∑m

l=1 ξlf(X̃l)
∑m

l=1 ξl
(21)

converges almost surely to Eπ(f), as m → ∞, and thus
µ̂m,MH(f) is also an unbiased estimator for Eπ(f) [24]. This
definition of µ̂m,MH(f) enables more tractable analysis on
its asymptotic variance, denoted as σ2

MH(f), by connecting
it to its counterpart in the importance sampling for Markov
chains [24, 11]. Note that for sufficiently large t (also m),
the (original) unbiased estimator µ̂t(f)=

∑t

s=1 f(Xs)/t can
be written as µ̂m,MH(f) plus some negligible term (after set-

ting the same initial point X̃1 = X1), because it is always
possible to find m such that

∑m

l=1 ξl ≤ t <
∑m+1

l=1 ξl. Also,
in the limit t,m → ∞, µ̂t(f) and µ̂m,MH(f) are the same.
We thus focus on estimators in the form of µ̂m,MH(f) in our
subsequent analysis.

Consider a sequence of pairs (X̃m, ξm). From the success
in the NBRW-rw, one may ask what if the reversible embed-
ded Markov chain {X̃m}m≥0 is replaced by a related stochas-

tic process {X̃ ′
m∈N}m≥0, or more precisely, a non-reversible

Markov chain {(X̃ ′
m−1, X̃

′
m)}m≥1 on the augmented state

space Ω, which avoids backtracking transitions to the extent
possible, while preserving the same stationary distribution
π̃. Another question can be whether this transformation
guarantees that the estimator in (21) based on (X̃ ′

m, ξm)
remains unbiased for Eπ(f) and also have higher efficiency
than the original one. Our answer is in the affirmative, and
this is the reasoning behind the improvement of our pro-
posed MHDA over the standard MH algorithm. We stress
here that, in contrast to the NBRW, backtracking transi-
tions in the process {X̃ ′

m} should be avoided only up to the
extent possible‡ so as to maintain the arbitrarily given origi-
nal stationary distribution π̃. Thus, the extension from the
MH algorithm to our proposed MHDA becomes necessarily
more involved than the case of NBRW.

Description of MHDA: Let X ′
t ∈ N , t = 0, 1, 2, . . ., be

the position of a random walk (or the state of a stochastic
process). We also define the augmented state space Ω in

(7) based on the reversible embedded Markov chain {X̃m},
where P̃ (i, i)=0 and so eii 6∈ Ω for all i.

MHDA is described as follows. Suppose that node i is the
previous node from which the walk came. MHDA first oper-
ates just like the MH algorithm. At the current node (state)
X ′

t = j 6= i, the next node X ′
t+1 = k ∈ N(j) is proposed

with probability Q(j, k) (j 6= k). Then, the proposed tran-
sition to k is accepted with probability A(j, k) in (4), and

‡If {X̃ ′
m} is made purely non-backtracking just like we did

for NBRW, then we lose unbiasedness for the resulting MH-
based estimator in general.

P (j, k)

i
j

k

(a) MH algorithm

P (j, k)+P (j, i)Q′(eij , ejk)A
′(eij , ejk)

i
j

k

(b) MHDA

Figure 3: Illustrating a difference between MH algo-

rithm and MHDA: a walker moves from node j to node

k with probability P (j, k) in the MH algorithm, but with

larger probability P (j, k) + P (j, i)Q′(eij , ejk)A
′(eij , ejk) in

the MHDA.

rejected with probability 1−A(j, k) in which case X ′
t+1= j.

Here, in contrast to the MH algorithm, MHDA renders the
accepted transition to X ′

t+1 = k temporarily pending, and
applies another procedure to proceed with the actual tran-
sition to k.§

Specifically, for the accepted transition to k, if k 6= i, then
the ‘actual’ transition takes place, i.e., X ′

t+1=k, with prob-
ability P (j, k)=Q(j, k)A(j, k) as in the MH algorithm. On
the other hand, if k = i, then the transition to node i is
delayed (thus named ‘delayed acceptance’). The next node
X ′

t+1 is again proposed with another proposal probability
Q′(eij , ejk), which is a transition probability of an arbitrary
Markov chain on the state space Ω, where Q′(eij , elk) = 0
for all j 6= l, and Q′(eij , ejk)>0 if and only if Q′(ekj , eji)>
0. The (second) proposed transition to X ′

t+1 = k is ac-
cepted with another acceptance probability A′(eij , ejk), and
rejected with probability 1−A′(eij , ejk) in which case X ′

t+1=
i (backtracking occurs). That is, transition probability P (j, i)=
Q(j, i)A(j, i) in the MH algorithm is leveraged to create an-
other transition opportunity from j to k 6= i in the MHDA.
So, the transition from j to k 6= i occurs with larger prob-
ability P (j, k)+P (j, i)Q′(eij , ejk)A

′(eij , ejk) than the MH
algorithm (w.p. P (j, k)). This is also illustrated in Figure 3
where the thickness of arrows represents the corresponding
transition probabilities from node j to other node (including
self-transition). The new acceptance probability A′(eij , ejk)
will be specified shortly.

In summary, under MHDA, the walker stays at each node
for the same random amount of time as it would be under the
MH algorithm, while reducing the bias toward the previous
node when making transitions to one of its neighbors.

Analysis of MHDA: Let X̃ ′
m, m ≥ 0, be the sequence of

nodes visited by the walk, which moves over G according
to the MHDA. The process {X̃ ′

m} is clearly different from

the reversible, embedded Markov chain {X̃m} for the MH
algorithm. Also, let ξ′m, m ≥ 0, be the respective sojourn
time at node X̃ ′

m. Note that the MHDA behaves differ-
ently from the MH algorithm (performs the additional pro-
cedure) only when a proposed transition from node j to
node k 6= j (occurring with probability Q(j, k)) is accepted
with probability A(j, k) in the MH algorithm. Thus, ξ′m is

also geometrically distributed with parameter γ(X̃ ′
m). See

(19) for γ(·). That is, given that X̃ ′
m1

= X̃m2
= i, the so-

journ times ξ′m1
and ξm2

have identical distributions. There-

§If the transition to k=j was accepted after a proposal with
Q(j, j)>0, then the MHDA accepts the transition as in the
MH algorithm without any further action.



fore, the MHDA, similar to the MH algorithm, can be also
characterized by a sequence of the pairs (X̃ ′

m, ξ′m). As an
example, if the random walk by the MHDA (or the pro-
cess {X ′

t}) enters node i in Figure 2 at time t = 1 (X ′
1 =

i) and (X ′
1, X

′
2, . . . , X

′
7) = (i, i, l, j, j, j, k), then we conse-

quently have (X̃ ′
1, X̃

′
2, X̃

′
3, X̃

′
4) = (i, l, j, k) and (ξ′1, ξ

′
2, ξ

′
3) =

(2, 1, 3). We define, for any given f : N →R,

µ̂′
m,MHDA(f) ,

∑m

l=1 ξ
′
lf(X̃

′
l )

∑m

l=1 ξ
′
l

. (22)

We prove below that µ̂′
m,MHDA(f) converges almost surely to

Eπ(f), implying that µ̂′
m,MHDA(f) is an unbiased estimator

for Eπ(f). We also prove that, after showing the CLT holds
for µ̂′

m,MHDA(f), the asymptotic variance of µ̂′
m(f), denoted

as σ′2
MHDA(f), is smaller than its counterpart σ2

MH(f) for the
MH algorithm.

To this end, we first explain how to properly choose the
new acceptance A′(eij , ejk) so that the process {X̃ ′

m} has
the same stationary distribution as that of the reversible
embedded chain {X̃m}, while, at the same time, the process

{X̃ ′
m} reduces backtracking transitions. Instead of the pro-

cess {X̃ ′
m}, we deal with its related non-reversible Markov

chain defined on the augmented state space Ω by consulting
the general recipe for this purpose in Section 4.1. Recall the
state space Ω in (7) obtained from the transition matrix P̃=

{P̃ (i, j)} of the chain {X̃m}. We define Z̃′
m,(X̃ ′

m−1, X̃
′
m)∈

Ω for m≥1, and P̃′ ,{P̃ ′(eij , elk)}eij ,elk∈Ω to be the tran-

sition matrix of a Markov chain {Z̃′
m}m≥1. For instance,

consider a sample path (X̃ ′
1, X̃

′
2, X̃

′
3, X̃

′
4) = (i, l, j, k) in the

above example. We have (Z̃′
2, Z̃

′
3, Z̃

′
4) = ((i, l), (l, j), (j, k)).

If the chain {Z̃′
m} has a unique stationary distribution π̃

′,

[π̃′(eij), eij ∈Ω] given by

π̃′(eij) = π̃(i)P̃ (i, j), eij ∈ Ω, (23)

implying that π̃′(eij) = π̃′(eji) from the reversibility of the

embedded chain {X̃m}, then the steady-state probability of

the process {X̃ ′
m} being at node j is the same as π̃(j) for

all j. From the description of MHDA, observe that, for all
eij , ejk∈Ω with i 6= k (d(j) ≥ 2),

P̃ ′(eij , ejk) = P̃ (j, k) + P̃ (j, i)Q′(eij , ejk)A
′(eij , ejk), (24)

while P̃ ′(eij , eji) = 1−∑

k 6=i P̃
′(eij , ejk), as is also shown

in Figure 3(b). Note that P̃ ′(eij , ejk) specifies the next
node of the random walk by MHDA, given that the walk
has to move from the current node to one of its neighbors
(its sojourn time is over). Thus, P̃ (j, k) and P̃ (j, i) are used
here instead of P (j, k) and P (j, i), respectively. In addition,

for any j with d(j) = 1, we have P̃ ′(eij , eji) = P̃ (j, i) = 1,
(i, j) ∈ E , since Q′(eij , eji)=1 (due to the stochastic matrix
{Q′(eij , elk}) and A′(eij , eji)=1 which is shown below.

Among many possible choices for the acceptance proba-
bility A′(eij , ejk) in the MHDA, we have the following.

Proposition 1. For any given {Q′(eij , elk)}, suppose that
the acceptance probability A′(eij , ejk) is given by

A′(eij , ejk) = min

{

1,
P 2(j, k)Q′(ekj , eji)

P 2(j, i)Q′(eij , ejk)

}

. (25)

Then, the resulting transition matrix P̃′, and P̃ satisfy con-
ditions (13)–(14). 2

Proof. See our technical report [21].

From Theorem 3 and Proposition 1, the Markov chain
{Z̃′

m} with its transition matrix P̃′ as in (24) and (25), is
irreducible and non-reversible with a unique stationary dis-
tribution π̃

′ in (23). This also implies that the process {X̃ ′
m}

has the same stationary distribution π̃, as explained before.
We now present our main result.

Theorem 6. Consider a given, desired stationary distri-
bution π = [π(i), i ∈N ]. Under the MHDA with any given
{Q′(eij , elk)} and its corresponding A′(eij , ejk) in (25), for
any given function f : N → R, as m → ∞, µ̂′

m,MHDA(f)
converges almost surely to Eπ(f), and also the asymptotic
variance of µ̂′

m,MHDA(f) is no larger than that of µ̂m,MH(f),

i.e., σ′2
MHDA(f)≤σ2

MH(f). 2

Proof. See our technical report [21].

An application of MHDA for unbiased graph sampling:

We explain how MHDA can be applied for unbiased graph
sampling applications. In particular, we present how to
construct a (discrete-time) random walk by MHDA, named
Metropolis-Hastings Random walk with Delayed Acceptance
(MHRW-DA), on G that achieves the uniform stationary
distribution, i.e., π=u. The MHRW-DA here operates as
an extension of Algorithm 1 with the following choice of
{Q′(eij , elk)}: for all eij , ejk ∈ Ω with i 6= k (d(j) ≥ 2),

Q′(eij , ejk) = 1/(d(j) − 1), (26)

implying that Q′(eij , eji) = 0. Also, Q′(eij , eji) = 1 for
any j with d(j) = 1. All other elements are zero. While
{Q′(eij , elk)} is the same as the transition matrix of NBRW,
a ‘Metropolizing’ step, which is done with A′(eij , ejk) in
(25), must follow in order to ensure that the stationary dis-
tribution is uniform and the resulting estimator is unbiased.
In other words, A′(eij , ejk) in (25) becomes

A′(eij , ejk)=min

{

1,min

{

1

d(j)2
,

1

d(k)2

}

/

min

{

1

d(j)2
,

1

d(i)2

}}

.

This version of the MHDA is summarized in Algorithm 2,
where X ′

t ∈N is the location of MHRW-DA at time t and
Yt∈N indicates the previous node from which the MHRW-
DA came (Yt 6= X ′

t). Here, X ′
0 can be chosen arbitrarily.

Since there is no notion of ‘previous node’ Y0 at time t=0,
MHRW-DA initially behaves the same as MHRW until it
moves from the initial position to one of its neighbors, and
then proceeds as described in Algorithm 2 thereafter.

Theorem 6 states that the MHDA works for any given sta-
tionary distribution π, while allowing us to freely choose the
new proposal probabilities {Q′(eij , elk)} as desired. Thus,
Algorithm 2 for MHRW-DA is nothing but a ‘special case’
of the MHDA. Theorem 6 asserts that MHRW-DA produces
unbiased samples with higher efficiency than the correspond-
ing MHRW (Algorithm 1). Again, we emphasize that the
only additional overhead for MHRW-DA, compared to the
MHRW, is remembering where it came from, Yt. Note that
the degree of the previous node Yt is already known and can
easily be retrieved, while the degree information of another
randomly chosen neighbor is also necessary anyway even in
the MH algorithm (to decide whether or not to move there).

5. SIMULATION RESULTS
In this section, we present simulation results to support

our theoretical findings. To this end, we use the following



Algorithm 2 MHDA for MHRW-DA (at time t)

1: Choose node i u.a.r. from neighbors of X′
t, i.e., N(X′

t)
2: Generate p ∼ U(0, 1)

3: if p ≤ min
{

1,
d(X′

t)

d(i)

}

then

4: if Yt = i and d(X′
t) > 1 then

5: Choose node k u.a.r. from N(X′
t) \ {i}

6: Generate q ∼ U(0, 1)

7: if q ≤ min

{

1,min

{

1,
(

d(X′

t)

d(k)

)2
}

max

{

1,
(

d(i)
d(X′

t)

)2
}}

then
8: X′

t+1 ← k and Yt+1 ← X′
t

9: else
10: X′

t+1 ← i and Yt+1 ← X′
t

11: end if
12: else
13: X′

t+1 ← i and Yt+1 ← X′
t

14: end if
15: else
16: X′

t+1 ← X′
t and Yt+1 ← Yt

17: end if

real-world network datasets [1]: AS-733 – an undirected
graph of autonomous systems (ASs) composed of 6474 nodes
and 13233 edges, where nodes represent ASs and edges ex-
ist according to AS-AS peering relationships; Road-PA
– a road network of Pennsylvania, forming an undirected
graph with 1088092 nodes and 3083796 edges, where nodes
represent intersections and endpoints and edges represent
the roads connecting them; Web-Google – a directed web
graph with 875713 nodes and 5105039 edges, where nodes
represent web pages and directed edges represent hyperlinks
between them. For our simulation, we use an undirected ver-
sion of this web graph. To ensure graph connectivity, we also
use the largest connected component (LCC) of each graph,
where the LCC sizes of AS-733, Road-PA, and Web-Google
graphs are 6474, 1087562, and 855802, respectively. Here,
the average degrees of AS-733, Road-PA, and Web-Google
graphs are 4.09, 2.83, and 10.03, while their maximum de-
grees are 1459, 9, and 6332, respectively.

As a test case, we consider the estimation of the degree
distribution of each graph – P{DG =d} (pdf) and P{DG >d}
(ccdf), to evaluate and compare our proposed NBRW-rw and
MHRW-DA (MHDA in Algorithm 2) against SRW-rw and
MHRW (MH algorithm in Algorithm 1), respectively. As
mentioned before, to estimate P{DG = d}, we just need to
choose a function f(i)=1{d(i)=d}, i∈N , for the correspond-
ing estimators. Similarly, we choose f(i) = 1{d(i)>d} for
P{DG >d}. To measure the estimation accuracy, we use the
following normalized root mean square error (NRMSE) [5,

30, 20],
√

E{(x̂(t)− x)2}/x, where x̂(t) is the estimated
value out of t samples and x is the (ground-truth) real value.
(x = limt→∞ x̂(t) from unbiasedness.) In all simulations, an
initial position of each random walk is drawn from its sta-
tionary distribution as similarly used in [5], unless otherwise
specified. In practical implementations, one can employ a
‘burn-in’ period to drive the random walk close to its steady-
state [12]. Each data point reported here for AS-733 graph is
obtained from 104 independent simulations, while, for Road-
PA and Web-Google graphs, the data points are based on
105 and 5 · 105 simulations, respectively.

We first present the simulation results for AS-733 graph
whose ‘actual’ degree distribution is almost a ‘power-law’ as
depicted in Figure 5 (insets). Figure 4 shows that NBRW-rw
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we vary the number of samples; the insets are for smaller

samples.
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Figure 5: AS-733 graph. NRMSE ratio (per degree d)

when estimating P{DG = d} with 104 samples; the insets

represent the ‘actual’ degree distribution (ccdf) in (a)

log-log scale, (b) semi-log scale.

(resp. MHRW-DA) outperforms SRW-rw (resp. MHRW) in
terms of the required number of samples (cost) to achieve the
same level of estimation error when estimating P{DG = d},
as expected from our theoretical results. Here, the NBRW-
rw (resp. MHRW-DA) brings out about 35% (resp. 14%)
cost saving on average, when compared to the SRW-rw (resp.
MHRW). In addition, we plot, in Figure 5, the NRMSE ratio
of SRW-rw (resp. MHRW) to the case of NBRW-rw (resp.
MHRW-DA) for every degree d when estimating P{DG =d}
with 104 samples. It clearly shows the improvement of our
proposed methods for each degree d (all data points are
above one). We also provide the NRMSE curve (with its
ratio), in Figure 6, for the comparison between NBRW-rw
(resp. MHRW-DA) and SRW-rw (resp. MHRW) when esti-
mating P{DG >d} with 104 samples, which is again clearly
consistent with our theoretical findings. In addition, we con-
duct another simulation to see the impact of non-stationary
start for each random walk on the sampling accuracy, for
which an initial position of each SRW and NBRW is drawn
from a uniform distribution, while the initial position for
MHRW and MHRW-DA is chosen with a probability pro-
portional to node degree. Under this setting, we measure
NRMSE of the estimator of P{DG = d}, and observe that
NBRW-rw and MHRW-DA still outperform SRW-rw and
MHRW, respectively, as shown in Figure 7. Note that there
is not much difference between the stationary start and non-
stationary start cases. (See Figures 4 and 7.)

We next present the simulation results for Road-PA graph
in which every node has small degree, ranging from 1 to 9,
and the actual degree distribution (pdf) is given in Figure 9
(inset). As seen from Figure 8, SRW-rw (resp. MHRW)
requires more than twice larger samples than the case of
NBRW-rw (resp. MHRW-DA) to attain the same level of
accuracy for the estimation of P{DG = d}. Specifically, the
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NBRW-rw and MHRW-DA leads to about 60% and 54%
cost saving on average. Also, as before, Figure 9 shows
the NRMSE ratio of SRW-rw (resp. MHRW) to the case
of NBRW-rw (resp. MHRW-DA) for every degree d when
estimating P{DG = d} with 5 · 105 samples, and Figure 10
depicts the NRMSE curve (with its ratio) for the estimation
of P{DG > d} with 5 · 105 samples, which are all in good
agreement with our theoretical findings. We observe that
the NBRW-rw and MHRW-DA are remarkably effective for
Road-PA graph, as the graph structure with small node de-
grees makes the less-backtracking feature more favorable.

We finally provide the simulation results for Web-Google
graph whose actual degree distribution is more like a power-
law as shown in Figure 12 (insets). Figure 11 demonstrates
that NBRW-rw (resp. MHRW-DA) surpasses SRW-rw (resp.
MHRW) overall for the estimation of P{DG = d}, although
their improvements are not as large as before. Again, Fig-
ure 12 shows the NRMSE ratio of SRW-rw (resp. MHRW) to
the case of NBRW-rw (resp. MHRW-DA) for every degree d
in estimating P{DG =d} with 5 · 105 samples, and Figure 13
depicts the NRMSE curve (with its ratio) for the estimation
of P{DG >d} with 5 · 105 samples. Clearly, NBRW-rw per-
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Figure 9: Road-PA graph. NRMSE ratio (per degree d)

when estimating P{DG =d} with 5 · 105 samples; the inset

represents the ‘actual’ degree distribution (pdf).
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forms better than SRW-rw for each degree d (all data points
are above one), as expected from our theoretical results. We
also observe similar results when comparing MHRW-DA and
MHRW. There is, however, just one data point below one (in
the ratio) for the estimation of P{DG = d}. We admit that
such an ‘outlier’ may be possible, since our theoretical re-
sults hold in the asymptotic sense. Nonetheless, MHRW-DA
leads to an overall performance improvement (over all pos-
sible d). Due to space constraints, we refer to our technical
report [21] for more simulation results including the impact
of non-stationary start for each random walk on the estima-
tion accuracy under Road-PA and Web-Google graphs.

It is also worth noting that a direct comparison between
SRW-rw (or NBRW-rw) and MH algorithm (or MHDA)
may not be appropriate. Recently, [12] numerically shows
a counter-example that MHRW can be more efficient, al-
though SRW-rw has been shown to be better than the MHRW
over several numerical simulations [29, 12]. In addition, [6]
proved, through several examples, that there is no clear win-
ner between the importance sampling for reversible Markov
chains (whose special case is the SRW-rw) and the MH algo-
rithm. The MH algorithm also is valuable because it can be
used to construct a reversible chain with any given station-
ary distribution. We thus have focused on improving each
of the SRW-rw and the MH algorithm separately.

6. CONCLUDING REMARKS
We demonstrated, in theory and simulation, that our pro-

posed NBRW-rw andMHDA guarantee unbiased graph sam-
pling, while also achieving higher sampling efficiency than
SRW-rw and MH algorithm, respectively. While the focus
of this paper was on the unbiased graph sampling, we can-
not stress enough the versatile applicability of the MHDA
for any non-uniform node sampling (e.g., intentionally cre-
ating a known bias toward preferable nodes), not to mention



2 2.5 3 3.5 4

x 10
5

0.35

0.4

0.45

0.5

0.55

# of samples

N
R

M
S

E

Web−Google

 

 

SRW−rw

NBRW−rw

2 3 4

x 10
4

1.2

1.4

1.6

(a) SRW-rw vs. NBRW-rw

2 2.5 3 3.5 4

x 10
5

1.5

1.6

1.7

1.8

1.9

2

2.1

# of samples

N
R

M
S

E

Web−Google

 

 

MHRW

MHRW−DA

2 3 4

x 10
4

4.5

5

5.5

6

(b) MHRW vs. MHRW-DA

Figure 11: Web-Google graph. NRMSE (averaged over

all possible d) of the estimator of P{DG =d} with different

number of samples; the insets are for smaller samples.

10
0

10
1

10
2

10
3

10
4

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Degree

N
R

M
S

E
 (

R
a

ti
o

)

Web−Google

10
0

10
2

10
4

10
−4

10
−2

10
0

(a) SRW-rw vs. NBRW-rw

10
0

10
1

10
2

10
3

10
4

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Degree

N
R

M
S

E
 (

R
a

ti
o

)

Web−Google

0 1000 2000
10

−4

10
−2

10
0

(b) MHRW vs. MHRW-DA

Figure 12: Web-Google graph. NRMSE ratio (per de-

gree d) when estimating P{DG=d} with 5·105 samples; the

insets represent the ‘actual’ degree distribution (ccdf) in

(a) log-log scale, (b) semi-log scale.

10
0

10
1

10
2

10
3

10
4

0

0.05

0.1

0.15

0.2

0.25

Degree

N
R

M
S

E

Web−Google

 

 

SRW−rw

NBRW−rw

10
0

10
2

10
4

1

1.1

1.2

(a) SRW-rw vs. NBRW-rw

10
0

10
1

10
2

10
3

10
4

0

0.5

1

1.5

Web−Google

Degree

N
R

M
S

E

 

 

MHRW

MHRW−DA

10
0

10
2

10
4

1

1.02

1.04

1.06

(b) MHRW vs. MHRW-DA

Figure 13: Web-Google graph. NRMSE (per degree d)

when estimating P{DG >d} with 5 ·105 samples; the insets

show NRMSE ratio.

its improvement over the famous MH algorithm in sampling
efficiency. We expect that the MHDA can be applied to
many other problems beyond the unbiased graph sampling.
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