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Abstract—Glauber dynamics, a method of sampling a given
probability distribution via a Markov chain, has recently made
considerable contribution to the MAC scheduling research, pro-
viding a tool to solve a long-standing open issue – achieving
throughput-optimality with light message passing under CSMA.
In this paper, we propose a way of reducing delay by studying
generalized Glauber dynamics parameterized by β∈ [0, 1], rang-
ing from Glauber dynamics (β=0) to the Metropolis algorithm
(β = 1). The same stationary distribution is sustained across
this generalization, thus maintaining the long-term optimality.
However, a different choice of β results in a significantly different
second-order behavior (or variability) that has large impact on
delay, which is hardly captured by the recent research focusing
on delay in the large n (the number of nodes) asymptotic. We
formally study such second-order behavior and its resulting delay
performance, and show that larger β achieves smaller delay. Our
results provide new insight into how to operate CSMA for large
throughput and small delay in real, finite-sized systems.

I. INTRODUCTION

Since the seminal work by Tassiulas and Ephremides
on throughput-optimal scheduling [29], referred to as Max-
Weight, a huge array of research has been made to develop
distributed MAC scheduling with high performance guarantee
and low complexity. The tradeoff between complexity and
efficiency has been, however, observed in many cases, or even
throughput-optimal algorithms with polynomial complexity
have turned out to require heavy message passing (see, e.g.,
[32]). A breakthrough has been recently made, where just
locally controlling the classical CSMA parameters, which
is modeled by Glauber dynamics∗, is enough to achieve
throughput-optimality, see e.g., [12], [15], [19], [27]. We call
this “optimal CSMA” for brevity.

In addition to throughput or utility, delay is another key
performance metric in MAC scheduling. Delay research in
MAC scheduling with performance guarantee has been studied
with mathematical tools such as large deviation theory, heavy
traffic approximation, and Lyapunov bound (see, e.g., [32]
and references therein). However, delay in Glauber-dynamics
based CSMA (or optimal CSMA) has been under-explored,
where only a small set of work has been published with
emphasis on the asymptotic results. Shah et al. [24] showed
that it is unlikely to expect a simple MAC protocol such as
CSMA to have high throughput and low delay. Motivated

∗Glauber dynamics is a Markov Chain Monte Carlo (MCMC) method for
sampling a given probability distribution by constructing a Markov chain
achieving the desired distribution as its unique stationary distribution [14].

by such a “negative” result, Shah and Shin [25] proposed a
modified CSMA requiring coloring operation that achieves
O(1) delay with throughput-optimality for networks with
geometry (or polynomial growth). Lotfinezhad and Marbach
[16] proved that a reshuffling approach, which periodically
reshuffles all on-going schedules under time synchronized
CSMA†, leads to both throughput-optimality and O(1) delay
for torus (inference) topologies. Jiang et al. [11] proved that a
discrete-time parallelized Glauber dynamics achieves O(log n)
delay for a limited set of arrival rates.

Despite these nice results on the delay asymptote for large-
scale networks, it still remains questionable how to improve
the delay performance of (standard) Glauber-dynamics based
CSMA for unscaled, fixed networks without loss of other
important metrics such as throughput and complexity. It is
also unclear which tools to use for such purpose. While mixing
time has been a popular toolkit for delay analysis [25], [11], it
was shown very recently [28] that mixing time based approach
may not be the right way to capture delay dynamics even in
the asymptotic sense. On the other hand, the development of
optimal CSMA, in principle, is equivalent to constructing a (re-
versible) Markov chain to achieve a given, desired stationary
distribution under some constraints due to the interference. We
note that Glauber dynamics is just one such instance. There
can be many other Markov chains with the same stationary
distribution (thus leading to throughput-optimality) and no
additional complexity, but potentially higher efficiency for
smaller delay under the same constraints.

In this paper, we propose, as extensions of the Glauber
dynamics, a class of algorithms with a tunable parameter
β∈ [0, 1], named generalized Glauber dynamics, ranging from
the Glauber dynamics (β = 0) to the Metropolis algorithm
(β=1). We then show that the generalized Glauber dynamics
or corresponding reversible Markov chain achieves the same
stationary distribution regardless of the choice of β, while
the Markov chain, when β∈ (0, 1], is more efficient than that
under the Glauber dynamics (β = 0) in the sense of Peskun
ordering, i.e., a partial order between off-diagonal elements
of transition matrices of different Markov chains. Due to
the invariant stationary distribution property, the generalized
Glauber dynamics, when it comes into play for the problem
of optimal CSMA, guarantees the same long-term throughput
and also achieve throughput-optimality under mild conditions.

†Thus, this is not a Glauber-dynamics based CSMA.



Algorithm 1 Glauber Dynamics (at Time Slot t)
1: Choose a node v ∈ N uniformly at random
2: For node v:
3: if

∑
w∈Nv σw(t−1) = 0 then

4: σv(t) = 1 with probability λv
1+λv

5: σv(t) = 0 with probability 1
1+λv

6: else
7: σv(t) = 0
8: end if
9: For any node w ∈ N \ {v}: σw(t) = σw(t−1)

Despite the same long-term throughput, their ‘second-order’
behavior can be quite different. This in turn leads to different
queueing delay performance, especially under the network of
a reasonable size, which is hardly captured by any asymptotic
order-wise analysis. However, thanks to the Peskun ordering
and its relationship with efficiency ordering, we are able
to demonstrate, in theory and simulation, that the original
Glauber dynamics (β = 0) in fact gives the worst queueing
delay performance among the generalized Glauber dynamics,
and there are infinitely many different variants that have the
same long-term throughput, but with better queueing delay
performance as β increases, culminating in the ‘Metropolised’
version with β=1 for any finite-sized networks.

II. PRELIMINARIES

A. Glauber Dynamics for the Hard-core Model

Consider a connected, undirected graph G=(N , E) with a
finite set of nodes (or vertexes) N ={1, 2, . . . , n} and an edge
set E . Let Nv ={w∈N : (v, w)∈E} be the set of neighbors
of node v. We define by σ a configuration of the nodes in G,
which is given by σ={σv, v∈N} with σv∈{0, 1} for all v. A
configuration is said to be feasible if the set {v∈N : σv=1}
is an independent set of G where no two nodes in the set
are adjacent (or neighbor of each other), i.e., if σv+σw ≤ 1
for all (v, w) ∈ E . Let Ω ⊆ {0, 1}n also be the set of all
feasible configurations on G. This model under the constraint
of independent sets is called the hard-core model [14].

The (single-site update) Glauber dynamics for the hard-core
model with heterogeneous fugacities {λv, v ∈N}, defined in
Algorithm 1, leads to a (discrete-time) Markov chain achieving
the following stationary distribution π = {π(σ)} over Ω:

π(σ) =
1

Z

∏
v∈N

λσvv , (1)

with a normalizing constant Z=
∑
σ∈Ω

∏
v∈N λ

σv
v . Note that

λv > 0 for all v, ensuring that π(σ) > 0 for all σ ∈ Ω.
Specifically, σ(t) = {σv(t), v ∈ N} denotes the state of the
Markov chain (or a feasible configuration by the Glauber
dynamics) at time slot t. It is known that {σ(t)}t≥0 is an
irreducible, aperiodic Markov chain achieving the stationary
distribution π in (1) on the finite state space Ω [14], [27],
[25]. The Markov chain {σ(t)} is also reversible with respect
to π, i.e., π(σ)Q(σ,σ′) = π(σ′)Q(σ′,σ) for all σ,σ′ ∈Ω,
where Q(σ,σ′) is the transition probability from state σ to
state σ′.

σv=1

σw=0

σx=1 σy=0

σz=0σu=0

Fig. 1. Illustration of a wireless multihop scheduling driven by the Glauber
dynamics over a conflict graph G with |N | = 6. Links v, x are active while
all others are silent, forming one instance of independent set on G.

B. CSMA and Glauber Dynamics

We present how CSMA in wireless multi-hop networks
can be modeled by the Glauber dynamics. In the context of
wireless multihop scheduling (or, simply scheduling), define
a link as an (ordered) transmitter-receiver pair. It is said that
two links conflict with each other if they cannot be “active”
for communication at the same time due to the interference.
Consequently, we can define a conflict graph G = (N , E) in
which each node represents a link, while an edge between two
nodes (or links) exists if they conflict with each other. Given
a graph G, the scheduling governed by Glauber dynamics
determines which nodes to be active or available for commu-
nication, forming one instance of independent sets (feasible
configuration) over G at each time t in a distributed manner.
For each node v∈N , if σv(t)=1, then node v is active, i.e.,
the transmitter of link (or node) v can transmit a packet to its
receiver pair, and node v should be silent, if otherwise. See
Fig. 1 for an illustrative example. Throughout this paper, the
graph G refers to a conflict graph.

The Glauber dynamics in the context of scheduling is
typically considered under continuous-time (or asynchronous)
setting as used in [27], [25], which is also our target scenario.
Specifically, each node is equipped with its own Poisson
clock of rate 1, leading to the uniform node selection in
Algorithm 1, and then decides its transmission schedule (or
updates its status) accordingly. Here, the ‘master’ clock is
Poisson with rate n and each (master) clock tick corresponds
to a discrete-time slot in Algorithm 1. It is not difficult to
see that the Glauber dynamics captures the following CSMA
features: 1) random back-off : the transmitter of link v waits an
exponentially distributed period of time with mean (1+λv)/λv
before transmitting (provided that the channel is sensed ‘idle’);
2) channel holding time: once the transmitter of link v grabs
the channel for transmission, it keeps the channel for an
exponential distributed period of time with mean 1+λv . For
the sake of simplicity, our subsequent analysis is based on
the discrete-time model, which is then supported by extensive
numerical simulations under the continuous-time model.

III. COMPARING REVERSIBLE MARKOV CHAINS

There are potentially many other (discrete-time) reversible
Markov chains with the same π in (1), all of which translate
into distributed algorithms just like the one in Algorithm 1, as
will be shown later. One important question would be how to
compare these reversible Markov chains. As these algorithms
have the same π, they all guarantee the same long-term



throughput, while their ‘second-order’ behavior can be quite
different, leading to different queueing delay performance.

A. Mixing Time of Reversible Markov Chains

Mixing time has been a popular criterion to compare com-
peting reversible Markov chains with the same stationary dis-
tribution. The mixing time indicates the speed of convergence
to the stationary distribution, and is generally defined based on
the total variation distance. Consider an irreducible, reversible
Markov chain on a finite state space S = {1, 2, . . . , n}
with a transition matrix P = {P (i, j)}i,j∈S and a stationary
distribution π = {π(1), π(2), . . . , π(n)}. Let P t(i, B) be its
t-step transition probability from state i to a subset B ⊆ S ,
and let 1 = e1 > e2 ≥ · · · ≥ en ≥ −1 be the eigenvalues
of P. As shown in [5], if we define the total variation
distance ||P t(i, ·)−π||TV , maxB⊆S |P t(i, B)−πB | where
πB=

∑
j∈B π(i), then for all i ∈ S and all t ≥ 1,

||P t(i, ·)− π||TV ≤
1

2

√
1− π(i)

π(i)
e(P)t ≤ 1

2
√
πmin

e(P)t,

where e(P) = max{e2, |en|} is the second largest eigenvalue
modulus (SLEM) of P, and πmin=mini∈S π(i). If we define
the mixing time in a general form as

tmix(ε) , min{t ≥ 1 : max
i∈S
||P t(i, ·)− π||TV ≤ ε},

then tmix(ε) ≤ log(1/(επmin))/(1 − e(P)) [14]. All these
imply that the mixing time is mainly determined by the SLEM.
That is, smaller SLEM leads to smaller (faster) mixing time.

The mixing time has been also used to determine the upper
bound of the average queue length (or delay) in [11]. They
show that the mixing time of the parallel Glauber dynamics,
which allows parallel updates of node status at each time
slot (in contrast to the single-site update Glauber dynamics),
is O(log n), and in turn, the average queue length is also
O(log n) for a limited set of arrival rates. On the other
hand, it is known that the mixing time of the (single-site
update) Glauber dynamics is at least Ω(n log n) [10], while
its asymptotic upper bound is O(n log n) [31]. As mentioned
before, the Glauber dynamics (not limited to the context of
scheduling) is widely considered under an asynchronous or
continuous-time setting [10], [27], [25]. In the continuous-time
setting (with Poisson clock of rate 1), since the master clock
rate is n, the time scale is scaled down by a factor of 1/n,
implying the similar parallel-update effect to the discrete-time
parallel Glauber dynamics in [19], [11]. It is also shown in [10]
that the mixing time of the continuous-time Glauber dynamics
is at least Ω(log n). Thus, in principle, there is no difference
between the discrete-time parallel Glauber dynamics and its
continuous-time counterpart, other than whether the system is
synchronized or not.

It is worth noting that the asymptotic lower bounds obtained
in [10] generally hold for any update rule from which the
transition probabilities satisfy the reversibility condition with
respect to π in (1). Thus, among all reversible chains with the
same π (the same long-term throughput), it is impossible to
obtain a chain with smaller mixing time than O(n log n) for

discrete-time single site update (or O(log n) for continuous-
time) by extending the Glauber dynamics. However, it is
yet unknown whether such extensions lead to better “actual”
queueing delay performance (not an asymptotic order-wise up-
per bound via mixing time) when they are used as distributed
CSMA algorithms, which is the main thrust of this paper. This
problem is quite important, since it was shown in [28] that
the queueing delay of Glauber-dynamics based CSMA can be
bounded independently of the network size n for a certain set
of arrival rates, implying that delay bounds based on mixing
time analysis may be loose.

B. Peskun Ordering and Efficiency Ordering

We look at the comparison of reversible Markov chains from
a different, but important perspective. This is done based on
a partial order called the Peskun ordering [20]. The Peskun
ordering can order reversible Markov chains with the same π
in terms of the asymptotic variance and eigenvalues of their
transition matrices.

Definition 1 (Peskun ordering): [20] For two irreducible
Markov chains on a finite state space S with transition matrices
P = {P (i, j)}i,j∈S and P̃ = {P̃ (i, j)}i,j∈S , it is said that
P̃ dominates P off the diagonal, written as P � P̃, if
P (i, j) ≤ P̃ (i, j) for all i, j ∈ S (i 6= j). 2

Let {X(t)}t≥0 and {X̃(t)}t≥0 be irreducible Markov
chains on a finite state space S={1, 2, . . . , n} with transition
matrices P and P̃, respectively. Suppose that the Markov
chains {X(t)} and {X̃(t)} have the same stationary distri-
bution π={π(1), π(2), . . . , π(n)}. For a function f : S→R,
define an estimator µ̂m,

∑m
t=1 f(X(t))/m for µ=Eπ(f) =∑

i∈S f(i)π(i). It is well known that limm→∞ µ̂m = µ for
any function f with Eπ(|f |)<∞ [13], [14]. The asymptotic
variance of the estimate µ̂m is defined as

ν(P, f) , lim
m→∞

m · VAR (µ̂m) , (2)

which is independent of the distribution of the initial state
X(0) [20]. We similarly define ν(P̃, f) for the chain {X̃(t)}
with P̃. As mentioned before, the estimate µ̂m based on
any finite, irreducible Markov chain with the same π always
becomes µ, as m goes to infinity. However, since the asymp-
totic variance decides approximately how many samples are
required to achieve a certain accuracy of the estimate µ̂m,‡ it
has been an important criterion to rank the efficiency among
competing Markov chains with the same π, especially for
the MCMC samplers [20], [18]. It is also said that {X̃(t)}
is at least as efficient as {X(t)} if ν(P, f) ≥ ν(P̃, f) for
any f with VARπ(f)<∞ [18]. In particular, this efficiency
ordering is still in effect even when both chains are already
in their stationary regimes (already mixed). The efficiency
ordering will be the key component in the delay analysis later
in the paper. It is known that the Peskun ordering between
two reversible P and P̃ with the same π provides a sufficient

‡This is formally captured by the Central Limit Theorem for an ergodic,
finite Markov chain under VARπ(f) < ∞, saying that

√
m(µ̂m − µ)

converges to a Gaussian random variable with zero mean and variance ν(P, f)
as m→∞ [13].



condition for the efficiency ordering and enables to order the
eigenvalues of P and P̃ as follows.

Lemma 1: [20] If P and P̃ are reversible with respect to
π, and P � P̃, then ν(P, f) ≥ ν(P̃, f) for any f with
VARπ(f)<∞. 2

Lemma 2: [18] Suppose that P and P̃ are reversible with
respect to π. Let 1 = e1 > e2 ≥ · · · ≥ en ≥ −1 be the
eigenvalues of P, and 1 = ẽ1 > ẽ2 ≥ · · · ≥ ẽn ≥ −1 be the
eigenvalues of P̃. If P � P̃, then ei ≥ ẽi for all i. 2

It is shown in [18] that for P and P̃ reversible with respect
to π, ν(P, f) ≥ ν(P̃, f) if and only if ei ≥ ẽi for all i. If
P and P̃ are also positive definite, i.e., all eigenvalues are
positive, then ei ≥ ẽi, or ν(P, f) ≥ ν(P̃, f), implying that
e(P) ≥ e(P̃). (Thus, efficiency ordering would give mixing
time ordering.) However, this is not true in general. ‘Nearly-
periodic’ Markov chains can be such examples, for which en
values become close to −1 (thus very efficient with small
asymptotic variance), but with larger SLEM (and thus larger
mixing time) [22].

IV. EXTENDING GLAUBER DYNAMICS FOR THE
HARD-CORE MODEL

We first explain a generalization of the procedures by Hast-
ings [9], [21] for constructing a reversible Markov chain with
a given, desired stationary distribution, which was originally
introduced for the development of an MCMC sampler. We
then show that such generalized procedure can be applied
to extending the Glauber dynamics for the hard-core model,
while the Glauber dynamics is nothing but one of many
possible ways to achieve a desired stationary distribution under
the independent set constraints. In particular, we demonstrate
that there are infinitely many ways to extend the Glauber
dynamics, leading to more efficient reversible Markov chains
in the sense of Peskun ordering (and efficiency ordering).

A. Generalized Hastings’ Approach
An objective here is to construct an irreducible, reversible

(discrete-time) Markov chain {X(t)}t≥0 on a finite state space
S with its transition matrix P = {P (i, j)}i,j∈S in order to
achieve a given, desired stationary distribution π= {π(i), i∈
S}. Hastings [9], [21] suggested a procedure for constructing
a transition matrix P satisfying the reversibility condition, i.e.,
π(i)P (i, j) = π(j)P (j, i) for all i, j ∈ S. We below explain
several key steps of this approach, as they are necessary for
extending the Glauber dynamics for the hard-core model. They
will also be used to clarify the difference between the Glauber
dynamics and the Meterpolis-Hastings algorithm [17], [9] for
the hard-core model, since there seems to be some confusion in
the networking literature in that these two are often considered
to be identical, e.g., [27], [25].

Suppose that P (i, j) has the form

P (i, j) = γ(i, j)α(i, j) (i 6= j), (3)

with P (i, i) = 1−
∑
j 6=i P (i, j), where γ(i, j) is a proposal

probability and α(i, j) is an acceptance probability. Specifi-
cally, at the current state i of X(t), the next state X(t+1) is
proposed with the proposal probability γ(i, j) (i 6= j), which

is the transition probability of an arbitrary irreducible Markov
chain on the same space S. We call {γ(i, j)}i,j∈S a proposal
matrix. The proposed state transition to X(t+1) = j is then
accepted with probability α(i, j), and rejected with probability
1−α(i, j) in which case X(t+ 1) = i. In this framework,
applying the form of P (i, j) in (3) to the reversibility condition
yields that

π(i)γ(i, j)α(i, j) = π(j)γ(j, i)α(j, i) (i 6= j), (4)

which means

α(i, j) =
π(j)γ(j, i)

π(i)γ(i, j)
α(j, i) = θ(j, i)α(j, i) (i 6= j), (5)

where θ(j, i) , π(j)γ(j,i)
π(i)γ(i,j) . The proposal matrix {γ(i, j)}, in

addition to the desired π, is often given a priori, which is also
our case as shall be explained shortly. Thus, one can see that
any acceptance probability α(i, j) ∈ [0, 1] satisfying (5) makes
the resulting transition matrix P reversible with respect to π.
By noting that θ(i, j) = 1/θ(j, i), the acceptance probability
α(i, j) is generally in the form of F (θ(i, j)), where 0 ≤ F ≤ 1
is any function that satisfies F (x) = F (1/x)/x for all x.

Among infinitely many possible choices for F (x), Hast-
ings [9], [21] considered a class of functions given by

F (x) = s/(1 + x), (6)

where s can be arbitrarily chosen so that 0 ≤ F (x) ≤ 1.
Specifically, the acceptance probability α(i, j) is given by

α(i, j) = s(i, j)/[1 + θ(i, j)], (7)

where s(i, j) is a symmetric function of i and j chosen to
ensure 0 ≤ α(i, j) ≤ 1. Suppose that γ(i, j) is given for
all i, j ∈ S while satisfying γ(i, j) = γ(j, i) (i 6= j). Then,
θ(i, j)=π(i)/π(j). First, setting s(i, j) = 1 gives

α(i, j) = π(j)/[π(i) + π(j)], (8)

which leads to Barker’s sampling method [2] where the
transition probability is given by

P (i, j) = γ(i, j)α(i, j) = γ(i, j) · π(j)

π(i) + π(j)
(i 6= j) (9)

with P (i, i) = 1−
∑
j 6=i P (i, j). On the other hand, if s(i, j) =

1+min{θ(i, j), θ(j, i)}, then (7) becomes

α(i, j) = min{1, π(j)/π(i)}, (10)

which corresponds to Metropolis algorithm [17]. Its transition
probability, similarly to what was shown for the Barker’s
method, is written as

P (i, j) = γ(i, j) ·min{1, π(j)/π(i)} (i 6= j) (11)

with P (i, i) = 1−
∑
j 6=i P (i, j).

Remark 1: After the Metropolis algorithm [17] was ex-
tended by Hastings [9] for non-symmetric proposal probabili-
ties γ(i, j) 6=γ(j, i), the extended version is called Metropolis-
Hastings algorithm in the literature where the transition proba-
bility is given by P (i, j)=min{γ(i, j), γ(j, i)π(j)/π(i)} with
P (i, i)=1−

∑
j 6=i P (i, j). 2



B. From Glauber Dynamics to Metropolis Algorithm
We now interpret the reversible Markov chain by the

Glauber dynamics for the hard-core model under the above
framework of MCMC sampling, and then show that the
reversible chain is connected to the one by Barker’s sampling
method under the independent set constraints.

Consider a feasible configuration (or state) at time t by
the Glauber dynamics for the hard-core model, i.e., σ(t) =
{σv(t), v ∈N}. Let Q= {Q(σ,σ′)}σ,σ′∈Ω be the transition
matrix of the Markov chain {σ(t)}t≥0. We here evaluate the
transition matrix Q. Observe that only a single, uniformly
chosen node can change its status (σv(t−1)=1→ σv(t)=0,
or vice versa) at time t under the independent set constraints.
It means that for any configurations σ,σ′∈Ω, if ‖σ−σ′‖ ,∑
v∈N |σv−σ′v| > 1, then Q(σ,σ′) = 0. It thus suffices to

consider any σ and σ′ with ‖σ − σ′‖ = 1 in evaluating Q.
For each node v, we define by Φv a subset of all pairs of
feasible configurations, which is given by

Φv={(σ,σ′) : σv = 0, σ′v = 1, σu = σ′u = 0 for all u∈Nv,
and σw = σ′w for all w ∈ N \ (Nv ∪ {v})} . (12)

Each element of this set Φv is a pair of configurations in which
only the status of node v is different, while the status of all the
neighbors of v are all zero and all other nodes’ status remain
the same. Then, for any (σ,σ′) ∈ Φv , by definition, we have

Q(σ,σ′) =
1

n
· λv

1 + λv
and Q(σ′,σ) =

1

n
· 1

1 + λv
. (13)

Here, the uniform node selection (line 1 in Algorithm 1) can
be interpreted as follows: given that the current configuration
is σ, a transition from σ to σ′ is proposed with probability

γ(σ,σ′) = γ(σ′,σ) = 1/n, (14)

which can be also considered as the proposal probability for
the transition from σ′ to σ. The state transition from σ to σ′

is then accepted with probability

α(σ,σ′) = π(σ′)/[π(σ)+π(σ′)] = λv/(1 + λv), (15)

where the second equality is from (1). Similarly obtain the
acceptance probability α(σ′,σ). Combining (14)–(15) with
(13), one can see that (13) has exactly the same structure as the
one by Barker’s sampling method in (9) under the independent
set constraints. Note that the Barker’s sampling method in (9)
does not assume any specific γ(σ,σ′). That is, in Algorithm 1,
the uniform node selection leading to γ(σ,σ′) = γ(σ′,σ) =
1/n is not necessary, or rather, can be extended as follows: at
time slot t, a node v is randomly chosen according to a node-
selection probability distribution {qv, v ∈ N}, where qv > 0
for all v, and

∑
v∈N qv = 1. In this extension, γ(σ,σ′) =

γ(σ′,σ) = qv .
From the above argument along with the generalized Hast-

ings’ approach in Section IV-A, we observe that for a given
{qv}, there are infinitely many possible update rules for
node status including the one by Glauber dynamics (lines
4–5 in Algorithm 1), each of which is simply one possible
form of acceptance probabilities. Fix node v. Then, for any
(σ,σ′) ∈ Φv , we choose a class of symmetric functions
given by s(σ,σ′) = [1+min{θ(σ,σ′), θ(σ′,σ)}]β in (7),

Algorithm 2 Generalized Glauber Dynamics with β ∈ [0, 1]
(at Time Slot t)

1: Choose a node v ∈ N according to a given {qv}
2: For node v:
3: if

∑
w∈Nv σw(t−1) = 0 then

4: if σv(t−1) = 0 then

5: σv(t)=1 with probability
(

λv
1+λv

)1−β
min

{
1, λβv

}
6: σv(t)=0, otherwise.
7: else
8: σv(t)=0 with probability

(
1

1+λv

)1−β
min

{
1, 1/λβv

}
9: σv(t)=1, otherwise.

10: end if
11: else
12: σv(t) = 0
13: end if
14: For any node w ∈ N \ {v}: σw(t) = σw(t−1)

parameterized by a free variable β∈ [0, 1], where θ(σ,σ′) =
π(σ)/π(σ′) = 1/λv and θ(σ′,σ) = λv . Note that if β = 0,
then s(σ,σ′) = 1, which leads to (8), or (15). Also, if
β = 1, then s(σ,σ′) = 1+min{θ(σ,σ′), θ(σ′,σ)}, which
corresponds to (10). That is, we have

α(σ,σ′) =
[1 + min{θ(σ,σ′), θ(σ′,σ)}]β

1 + θ(σ,σ′)
. (16)

After little algebraic manipulations, (16) becomes

α(σ,σ′) =

(
π(σ′)

π(σ)+π(σ′)

)1−β

min

{
1,

(
π(σ′)

π(σ)

)β}

=

(
λv

1 + λv

)1−β

min{1, λβv}. (17)

Similarly, we obtain

α(σ′,σ) =

(
1

1 + λv

)1−β

min
{

1, 1/λβv
}
. (18)

Consequently, we achieve a class of algorithms with a control-
lable parameter β∈ [0, 1], named generalized Glauber dynam-
ics, which is summarized in Algorithm 2. As a special case, if
β= 0, then Algorithm 2 becomes identical to Algorithm 1 –
the original Glauber dynamics for the hard-core model. Also,
if β = 1, then it means that the Metropolis algorithm is applied
properly for the hard-core model. The only difference between
the generalized Glauber dynamics with β ∈ (0, 1] and the
original Glauber dynamics (β = 0) is that for a randomly
chosen node v, if σu(t−1) = 0 for all u ∈ Nv , then σv(t)
is decided based on σv(t−1) for any β ∈ (0, 1], while σv(t)
is determined independently of σv(t−1) for β=0.

For any given {qv}, let σ(t, β) be a configuration at time
t by the generalized Glauber dynamics with β ∈ [0, 1]. One
can see that {σ(t, β)}t≥0 is a finite Markov chain with a
transition matrix Qβ = {Qβ(σ,σ′)}σ,σ′∈Ω. We say that the
Markov chain is ergodic if π(σ′)=limt→∞Qtβ(σ,σ′), where
Qtβ(σ,σ′) is the t-step transition probability from state σ to
state σ′. We next show properties of the generalized Glauber
dynamics.



Theorem 1: For any given {qv} and β ∈ [0, 1], the Markov
chain {σ(t, β)} with Qβ is ergodic and reversible with respect
to π in (1). In addition, for any given {qv} and 0 ≤ β1 ≤ β2 ≤
1, Qβ1

� Qβ2
. 2

Proof: See Appendix A

V. GENERALIZED GLAUBER DYNAMICS FOR SMALLER
DELAY IN OPTIMAL CSMA

A. Throughput Optimality

While our focus in this paper is to analyze the performance
of each queue per node (in a conflict graph) when the
generalized Glauber dynamics comes into play for the problem
of optimal CSMA, we here explain the throughput-optimality
of the generalized Glauber dynamics for two settings: static
and dynamic.

In the static setting, we assume that the arrival rate vector
for each node in the conflict graph is known to the system.
Theorem 1 says that the stationary distribution π of the
Markov chain {σ(t, β)} is invariant with respect to β∈ [0, 1]
and {qv}. Thus, if the fugacity of each node λv can be chosen
so that the long-term service rate (or capacity) at each queue
is larger than its packet arrival rate, which is the typical case
for delay analysis [11], [28], then ‘throughput-optimality’ or
‘per-node stability’ is achieved irrespective of the choice of
β∈ [0, 1] and {qv}.

However, in reality, it may not be possible for each node
v to adjust its fugacity λv based on the measured arrival
and service rates. Hence, in the literature, the throughput-
optimality has been defined and shown under the following
dynamic setting: the fugacity is now a function of time t,
which is given by λv(t) = g(Wv(t)) where g is some weight
function and Wv(t) is the queue-length at node v at time t.
Even in this dynamic fugacity set-up, one can establish the
throughput-optimality of the generalized Glauber dynamics
with any given β ∈ [0, 1] and {qv}. There are two different
ways to prove the throughput-optimality in the literature. The
first way is based on the time-scale decomposition assumption
under which the system quickly converges to its stationary
regime before its dynamics changes (see, e.g., [12], [19]).
Under this assumption, Theorem 1 immediately implies that
the generalized Glauber dynamics is throughput-optimal.

The second approach in [26] is taken without the time-scale
decomposition assumption when qv=1/n for all v and β=0,
but by choosing a proper weight function g, so that λv(t) =
g(Wv(t)) changes much slower than the system dynamics.
Theorem 2 formally states the throughput optimality of the
generalized Glauber dynamics.

Theorem 2: For any β ∈ [0, 1], the generalized Glauber
dynamics is throughput optimal when the fugacity λv(t) of
each node v at time t is set by:

λv(t)=exp(max{f(Wv(btc)),
√
f(Wmax(btc))}), (19)

where f(·) = log log(·+e), and Wmax(·) = maxvWv(·).
Proof: See Appendix B.

In [26], the throughput optimality of the case when β = 0
has been proved. Our proof for β = (0, 1] is similar to that in

[26]. Henceforth, in Appendix, we just show the sketch of the
proof 2 for completeness, with focus on the major difference
from [26].

B. Delay Analysis

While not much is known yet about the queueing delay
performance of optimal CSMA algorithms, we emphasize that
the time-varying behavior of λv(t) (in the dynamic fugacity
set-up) makes the analysis even more intractable. So, as used
in [11], [28], we here focus on the following case for delay
analysis: the fugacity of each node λv is given and fixed, but
possibly heterogeneous over v ∈ N , such that the long-term
service rate at each queue is larger than its packet arrival rate.
We then demonstrate that higher efficiency in the extensions
of Glauber dynamics, the choices of β ∈ (0, 1], give rise
to better queueing delay performance, while maintaining the
same long-term throughput. Specifically, the original Glauber
dynamics with β = 0 in fact gives the worst queueing delay
performance, and there are infinitely many different variants
of ‘throughput-optimal’ algorithms with better queueing delay
performance as β increases, culminating in the ‘Metropolised’
version with β = 1. We also support our analytical findings
for the dynamic fugacity case through extensive simulations
under various network topologies and arrival rates.

Fix {qv} and β∈[0, 1]. Since we are interested in the long-
term behavior of the queueing delay performance, without loss
of generality, we can assume that the system is in its stationary
regime.§ Thus, the Markov chain {σ(t, β)}t≥0 is in the steady-
state, i.e., P{σ(t, β) =σ}= π(σ) for all t≥ 0. We consider
that a packet arrives in each node v at the beginning of each
time slot according to a stationary 0–1 process {Av(t)} with
rate µv in which Av(t)=1 if there is a packet arrival to node
v with probability P{Av(t)=1}=µv at time t, and Av(t)=0,
otherwise.¶ On the other hand, whenever node v is available
for communication, i.e., σv(t) = 1, it transmits one packet
backlogged in its FIFO queue (if any) during time slot t. The
communication (or service) availability at node v is modeled
as a 0–1 valued process governed by the generalized Glauber
dynamics. That is,

Sv(t) =

{
1 if node v is available for service, i.e., σv(t)=1

0 otherwise

= 1{σ(t,β) ∈ Bv} (20)

for t = 0, 1, . . ., where Bv , {σ ∈ Ω : σv = 1} ⊆ Ω.
We define πBv ,

∑
σ∈Bv π(σ), the long-term proportion of

communication availability at node v or its ‘service rate’.
From the stationarity of the Markov chain {σ(t, β)}, we
have P{Sv(t) = 1} = P{σ(t, β) ∈ Bv} = πBv for all t.
Thus, {Sv(t)}t≥0 is a stationary 0–1 process. Also, {Sv(t)}

§Any initial transient fluctuation will disappear when computing steady-
state metrics for queueing dynamics. For instance, the initial queue-length
doesn’t matter for the analysis of M/G/1 queue in the steady-state.
¶We assume very general class of arrival processes {Av(t)}, satisfying

the usual conditions for the large deviation (large buffer) asymptotic to
hold [8], [3]. Such processes include not only Bernoulli arrivals, but correlated
arrivals such as auto-regressive processes whose autocorrelation functions are
summable.



is independent of {Av(t)}. As mentioned before, we assume
that πBv>µv for all v ∈ N , ensuring that utilization is strictly
less than one at each queue.

Without loss of generality, we below examine the queueing
delay at an arbitrarily chosen node v. From now on, our
exposition will be all about the queue in node v. So, for the
sake of notational simplicity, we drop the subscript v and use
µ, A(t), S(t), B, and πB instead of µv , Av(t), Sv(t), Bv and
πBv , respectively, unless stated otherwise. We first evaluate
the time interval between the two successive communication
availabilities at node v, which corresponds to the service time
of a single-server queueing model. To this end, we define

T1 , min{t≥0 : S(t)=1}, Ti+1 , min{t>Ti : S(t)=1},
and τi , Ti+1 − Ti (i ≥ 1). Here, {τi}i≥1 are such time
intervals, all identically distributed from the stationarity of
S(t), and also called the recurrence times to the state 1 for
{S(t)}. Then, we have the following.

Theorem 3: For a given {qv}, E{τi}=1/πB for all β, and
E{(τi)2} is decreasing in β∈ [0, 1]. 2

Proof: See Appendix C.
For a fixed {qv}, the average recurrent time, E{τi}, remains

the same for all β due to the invariance property of π with
respect to β in Theorem 1, while the variance of the recurrence
time is decreasing in β. In the standard queueing literature, the
variance of the service time plays a major role in queueing
performance. For example, it is well-known that, for M/G/1
queue, the variance of the service time solely determines the
average queueing delay if the average service time is kept the
same. Similarly, even for G/G/1 queue, more ‘variable’ service
time leads to larger queueing delay [23]. However, our system
is far more complicated than these standard queueing systems;
the recurrence times {τi} can be possibly correlated over i for
|B|>1, as the time instant Ti+1 depends on the configuration
σ(Ti, β) ∈ B at time Ti. Such dependency, thus, makes the
exact analysis of queueing delay performance intractable.‖

Nonetheless, for a given {qv}, the ‘marginal’ distribution of
the service time τi has smaller variance as β increases (with
the same mean regardless of the choice of β), suggesting that
larger β would lead to better delay performance.

In addition, we demonstrate that the efficiency ordering of
Qβ for different β can still order the performance of queueing
dynamics by directly taking into account the dependency
structure in {τi} sequence. To proceed, let W (t) be the queue
length (or workload) at time t, satisfying Lindley recursion:

W (t+1) = max{0,W (t) +A(t+1)− S(t+1)}. (21)

From the large deviation theory, in considerable generality,
the tail distribution of the steady-state queue length W is
asymptotically exponential [8], [3], [4] with the asymptotic
decay rate η given by

η = lim
x→∞

− 1

x
logP{W > x} > 0. (22)

‖If |B|=1, the exact analysis is possible, as {τi} forms an i.i.d. sequence
due to the strong Markov property. For example, if the arrival process is an
independent Bernoulli process, the system is simply the discrete-time case of
M/G/1 queue.

(a) Complete (b) Grid (c) Star

Fig. 2. Conflict graphs of Complete, Grid, and Star, in which each vertex
represents a link and an edge between vertexes means that they interfere each
other.
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Fig. 3. Rand where a vertex is a node. In 800m × 800m, 30 nodes
are unifomly located at random and links are generated when the inter-node
distance is within 250m transmission rage.

Let I(t)=A(t)−S(t) be the net input into the queue at time
t. Let It,

∑t
i=1 I(i), At,

∑t
i=1A(i), and St,

∑t
i=1 S(i).

Clearly, E{It} = E{At}−E{St} = t(µ − πB) < 0. In this
setup, we have the following:

Theorem 4: Suppose that the distribution of It is Gaussian
for large t with limt→∞ VAR{At}/t = ν∗ <∞. Then, η in
(22) is increasing in β ∈ [0, 1]. 2

Proof: See Appendix D.
Since It =

∑t
i=1(A(i)−S(i)) is the sum of t random

variables, as long as their dependency over i is not so strong,
it is reasonable to assume that It is roughly Gaussian for large
t. Then, Theorem 4 tells us that larger β leads to faster decay
of the tail distribution of the steady-state queue-length, again
suggesting better queueing performance while preserving the
throughput-optimality. The Gaussian approximation and The-
orem 4 are also corroborated by simulation results.

As mentioned before, it may not be possible for each node
v to choose its fugacity λv based on the measured arrival and
service rates for per-node stability. Instead, the fugacity of each
node needs to be an appropriate function of its (time-varying)
queue-length. Nonetheless, if the corresponding temporal dy-
namics is relatively slow or is in ‘almost-stationary’ regime,
from Theorems 3 and 4, we expect that the average queueing
delay per node decreases in β∈ [0, 1] for a given {qv}, which
is also supported by simulation results.

VI. SIMULATION RESULTS

A. Setup
Five topologies are considered in our simulation: Com-

plete, Grid, Star, Rand(1), and Rand(2), shown in Fig. 2
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and Fig. 3, where Rand(i) is a random graph with i-hop
interference model∗∗. Note that Complete, Grid, and Star
are the conflict graphs, whereas Rand(1) and Rand(2) are
the original graphs. In the random topologies, we uniformly
place 30 nodes in the 800×800 m2 area, and the each node’s
transmission range is set to be 250 m (a typical Wi-Fi
range), where two nodes are connected if they are within the
transmission range of each other. In all topologies, the link
capacity is set to be one.

Generalized Glauber dynamics is simulated in random and
asynchronous manner. In all simulations, every link has a
Poisson clock with rate 1 and changes its schedule according to
Algorithm 2 when its own clock expires. Thus, this scheduling
scheme can be regarded as the generalized Glauber dynamics,
where links are uniformly selected at random at each time slot
and the time slot duration is exponentially distributed with the
rate of n.

For packet arrivals at each time slot, we consider exoge-
nous packet arrivals modeled by i.i.d. Bernoulli process and
interrupted Bernoulli process (IBP) [7] with various average
rates. All results are shown under the i.i.d. Bernoulli process,
unless explicitly stated. In IBP, links are randomly on and
off according to a two state Markov chain, where packets are
generated according to a Bernoulli process only when it’s in
‘on’ state. Note that on and off for IBP differs from active and
inactive in scheduling. We set the stationary probability of on-
state to be 0.1. IBP is used to test how the results vary for time-
correlated arrival patterns with some bursts. Each packet size
follows the i.i.d. exponential distribution with rate 1, i.e., inter-
clock duration of each link is 1. Thus, one packet is served
during one clock duarion. We simulate both static and dynamic
cases, where in the dynamic cases the weight functions are
f(x) = x, log(x+ 1), log log(x+ e).

The main metric average delay indicates the average queue-
ing delay per node. In the description, we sometimes use the
expression of normalized delay ratio to refer to the delay
ratio of β = 1 to β = 0, i.e., average delay(β = 1)/average
delay(β = 0).
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Fig. 6. CCDF of queue length for various β (0, 0.3, 0.6, and 1) where
topology is complete and fugacity is 1
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Fig. 7. CCDF of queue length for various β (0, 0.3, 0.6, and 1) where
topology is star, fugacity is 1, and the queue is for the center node.

B. Results
The distribution of net input is gaussin: Fig. 4 shows

the histogram of net input, where topology is complete and
fugacity is fixed to 1, is well fitted with gaussian distribution
with mean −8.333×104 and variance 1.764×105. Because, in
Theorem 4, we have shown that , when net input is Gaussian,
asymptotic decay rate η for each queue increases with larger

∗∗Any two links within i-hop distance interfere with each other.
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fugacity(λ) varies, where the arrival rate of each link is the half of long-
term service rate guaranteed by the fugacity.

β, the fitting results imply that the condition of Theorem 4 is
satisfied. Therefore, we can expect that the semi-log graph for
the complementary cumulative distribution function (CCDF)
of queue length is linear and the slope becomes steeper with
larger β. The asymptotic decay rate is shown in Fig. 6. As our
expectation, semi-log plot of CCDF is linear and the slope
increases as β increases, which indicates that with larger β
delay is reduced. Not only for complete topology, but also for
star star topology, we check simulation results suit with our
expection. Fig. 5 and Fig. 7 show the histogram of net input
and semi-log plot of CCDF, repectively, where topology is
star. The both graphs well support our theorems as in complete
topolgy.

Impact of fugacity for static cases: We first examine
average delay for static fugacity. Fig. 8 shows the normalized
delay ratio for Star and Complete. Note that smaller ratios
imply larger reduction in average delay when β = 1. For
each fugacity in the x-axis, the arrival rate on each link is
set to be the half of available service rate provided by the
fugacity. We observe that the average delay is improved when
β changes from 0 to 1. In addition, in both topologies, the
smallest delay ratio (i.e., the largest delay reduction which is
about 50% delay reduction) is achieved when the fugacity is
1. This is because the gap of state transition probability in
Algorithm 2 becomes largest when the fugacity is 1. The rest
of the simulation results considers the dynamic cases when the
fugacities are time-varying, set as a function of queue lengths.

Impact of β: Fig. 9 shows the average delay with changing
β for Rand(2), f(x) = log(x), and the mean arrival rates 0.01
and 0.02. As suggested in Theorems 3 and 4, we observe that
increasing β leads to decreasing average delay. The average
delays for the arrival rates 0.02 and 0.01 decrease almost
linearly from 244 to 150 and from 127 to 90, respectively
(more than 30% decrease for both cases). This demonstrates
that reduction in the average delay via Peskun (efficiency)
ordering is significant, which is obtained just by modifying the
local transition probabilities as in the generalized the glauber
dynamics with no additional overhead.

Impact of f(x) and topologies: We show the performance,
measured by the normalized delay ratio, of dynamic cases for
different f(x) and topologies. Because feasible rate region
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Fig. 9. Average delay for different β for dynamic fugacity with weight
function, f(x) = log(x), in which topology is Rand(2).
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Fig. 10. Normalized delay ratios for different topologies (C:Complete,
G:Grid, S:Star, R1:Rand(1), and R2:Rand(2)) when the arrival rate for each
topology is 0.1, 0.1, 0.1, 0.05, and 0.02, respectively.

depends on topology, we set arrival rate differently for each
topology. Fig. 10 shows the normalized average delay ratio of
β = 1 by β = 0. We observe that the average delay reduction
from β = 0 to β = 1 varies for different choices of weight
functions. The average delay reduction for f(x) = x is about
10%, whereas it ranges from about 30% to 40% for f(x) =
log(x + 1), log log(x + e). This difference in average delay
reduction is due to the fact that for an “aggressive” weight
function, the fugacity is too high to be differentiated by β. This
implies that more sluggish weight functions tend to induce
larger delay reduction with increasing β.

Average delay and impact of arrival patterns: The results
in the previous paragraph do not imply that the actual queue
length for the aggressive weight function is large. Fig. 11 to
Fig. 13 show such a fact, where the weight function f(x)=x
achieves smaller average delay over various arrival rates. In
harmony with the earlier simulation results, larger β leads to
smaller average delay. The result of smaller average delay for
aggressive weight functions coincides with that in [27], where
faster state changes in the glauber dynamics results in shorter
average delay. Specifically, to have the fugacity of 10, we
would need the queue length of 22026 for f(x)=log log(x+
e), whereas only queue length of 3 is enough for f(x) = x.
We remark that the downside of aggressive weight functions
may fail to achieve throughput optimality, as argued in [27],
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to show the effect of β. The above graph is normalized value (delay of β = 0
over delay of β = 1)
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Fig. 12. Average delay with weight function (f(x) = log(x+ 1)) when β
is 0 or 1 to show the effect of β. The above graph is normalized value (delay
of β = 0 over delay of β = 1)
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Fig. 13. Average delay with weight function (f(x) = log log(x+e)) when
β is 0 or 1 to show the effect of β. The above graph is normalized value
(delay of β = 0 over delay of β = 1)

mainly due to the lack of time to enjoy the “almost-stationary”
regime for a given fugacity. We also observe that for IBP traffic
arrival, the global trend does not change much, as shown in
Fig. 14.

VII. CONCLUSION

We took a different direction, instead of relying on asymp-
totic delay analysis prevalent in recent studies, to achieve
smaller delay in Glauber-dynamics based CSMA (or optimal
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Fig. 14. Normalized value (delay of β = 0 over delay of β = 1)
for various weight functions, when arrival patterns follow the interrupted
Bernoulli process.

CSMA) for finite-sized networks. By carefully exploring all
possible variants of the traditional Glauber dynamics, we
proposed generalized Glauber dynamics with no additional
complexity, maintaining the same stationary distribution and
thus rendering the long-term optimality unchanged in the
context of scheduling. We then showed that our extensions
lead to better queueing delay performance, by directly taking
into account the second-order system behavior via a notion of
Peskun (or efficiency) ordering and large deviation techniques.
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APPENDIX A
PROOF OF THEOREM 1

Recall that when qv = 1/n for all v, the Markov chain
{σ(t, 0)} (by the original Glauber dynamics) is irreducible.
This implies that there exists a finite-length sample path of
the Markov chain starting from a configuration (or state) to
any other configuration without self-transitions. We also know
that among all possible σ,σ′∈Ω (σ 6=σ′), only σ and σ′ with
‖σ−σ′‖=1 lead to Qβ(σ,σ′) > 0 regardless of any choice
of {qv} and any value of β ∈ [0, 1]. Specifically, for a given
node v, consider any (σ,σ′) ∈ Φv . Then, γ(σ,σ′) = qv > 0,
and also α(σ,σ′) > 0 as can be seen from (17). We thus have

Qβ(σ,σ′) = γ(σ,σ′)α(σ,σ′) > 0.

We similarly obtain Qβ(σ′,σ) > 0. Therefore, there must
exist the same finite-length sample path of the Markov chain
{σ(t, β)} as above, and thus {σ(t, β)} is irreducible for any
{qv} and β ∈ [0, 1]. In addition, for a configuration σ′′ such
that σ′′v = 0 and

∑
w∈Nv σ

′′
w ≥ 1, by the generalized Glauber

dynamics, we have Qβ(σ′′,σ′′) ≥ qv > 0. This implies
that {σ(t, β)} is aperiodic [23], [5]. By noting that |Ω|<∞,
{σ(t, β)} is a finite, irreducible, aperiodic Makro chain, or the
Markov chain {σ(t, β)} is ergodic for any {qv} and β ∈ [0, 1].

As to the reversibility, for every (σ,σ′) ∈ Φv (v∈N ), one
can easily check

Qβ(σ,σ′)

Qβ(σ′,σ)
=
π(σ′)

π(σ)
= λv,

which implies that π(σ)Qβ(σ,σ′) = π(σ′)Qβ(σ′,σ) re-
gardless of any choice of {qv} and any value of β ∈ [0, 1].
Thus, the Markov chain {σ(t, β)} is reversible with respect
to π for any {qv} and β ∈ [0, 1].

For a given {qv}, fix β1, β2 ∈ [0, 1] such that β1 ≤ β2. It
again suffices to prove that Qβ1

� Qβ2
for any configurations

σ,σ′∈Ω with ‖σ−σ′‖=1. Fix node v, and then consider any
(σ,σ′) ∈ Φv . One can see that α(σ,σ′) in (16) is monotone
increasing in β ∈ [0, 1]. Also, by noting that γ(σ,σ′) = qv is
the same for all β∈ [0, 1], we have Qβ1

(σ,σ′) ≤ Qβ2
(σ,σ′).

Similarly, we can show that Qβ1
(σ′,σ) ≤ Qβ2

(σ′,σ). Thus,
we have Qβ1

� Qβ2
.

APPENDIX B
PROOF OF THEOREM 2

Unless confusion arises, we omit the time t in all notations
in this proof. We first present Lemma 3 which states that the
SLEM of Qβ is upper-bounded by a value irrespective of β
and only depends on the number of nodes n and the maximum
queue length at the corresponding time. The bound on the
SLEM of Qβ implies that the mixing time can be bounded
irrespective of β. Lemma 3 is the only difference from the
proof of [26], so the rest of the proof becomes equivalent to
[26].

Lemma 3: If Wmax ≥ exp(2), for all β ∈ [0, 1], SLEM of
Qβ is bounded by:

e(Qβ)) ≤ 1− 1

n422n+6 exp((2n+ 4)f(Wmax))
. (23)

Proof: First, we note that the set of eigen values of Q2
β

is {(ei)2 : 1 ≤ i ≤ n}, where {ei : 1 ≤ i ≤ n} is the set
of eigen values of Qβ . By Cheeger’s inequality for Q2

β , the
SLEM of Qβ e(Qβ) satisfies:

e(Qβ)2 = max{(e2)2, (en)2} ≤ 1− Φ2

2
,

where Φ is the conductance of Q2
β . We remark that the

conductance of Q2
β is defined as:

Φ , min
A⊂Ω:π(A)≤1/2

∑
σ∈A,σ′ /∈A π(σ)Q2

β(σ,σ′)

π(A)
.

Then, the conductance is bounded as:

Φ ≥ min
Q2
β(σ,σ′)6=0

π(σ)Q2
β(σ,σ′)

≥
(

min
σ∈Ω

π(σ)

)
·min
v∈N

1

n2

(λv)
β(1 + λv)

1−β − 1

(λv)2β(1 + λv)2−2β

≥ 1

2n(λmax)n
1

n2

(λmax)β(1 + λmax)1−β − 1

(λmax)2β(1 + λmax)2−2β

≥ 1

n22n+2 exp((n+ 2)f(Wmax))
. (24)



From (23) and (24), we get:

e(Qβ) ≤
√

1− Φ2

2
≤ 1− Φ2

4
(25)

≤ 1− 1

n422n+6 exp((2n+ 4)f(Wmax))
. (26)

This completes the proof.
We now provide the sketch of the proof by dividing it into

three steps, as presented in [26].
Step 1: Let π denote the stationary distribution of generalized
Glauber dynamics with fugacities {λv, v ∈ N}, where λv is
given by (19). Then, we can prove the following

Eπ{
∑
v∈N

f(Wv)σv} ≥
(

1− ε

4

)
(max
x∈Ω

∑
v∈N

f(Wv)xv)−O(1),

implying that scheduling of nodes (in the conflict graph)
according the probability π is close to so-called max-weight
[30].
Step 2: Let µ(t) be the distribution of the configurations (i.e.,
schedules) at time t, given the initial configuration σ(0) and
queue length {Wv(0)}. The proof of Step 2 shows that the
configuration chosen according to µ(t) is very close to the
configuration from the max-weight. To that end, from Step 1,
we have to prove that π(t), which is the stationary distribution
of the configurations defined by λv(t) as set by (19), is very
close to µ(t). This is because for a sufficiently slow queue
changes by the condition f(·) = log log(·), (i) the SLEM is
bounded by the order of 1− 1/ log(Wmax) from (25), and (ii)
from the relation between the mixing time and the SLEM,
we can have that the mixing time is polylog with respect to
Wmax. Note that this holds for any β ∈ [0, 1]. Then, roughly
speaking, from the facts that the changing speed of fugacities
is the order of 1/Wmax and the mixing time is polylog in Wmax,
we have that: the amount of fugacity changes is the order of
polylog(Wmax)/Wmax, which goes to 0 for a sufficient large
Wmax. This means that by using f(·) = log log(·), the fugacity
change over the mixing time becomes negligible for a large
queue regime. This implies that µ(t) ≈ π(t).

Step 3: By using the two properties, the stability for all feasible
arrival rate can be shown by defining the following Lyapunov
function,

L(X(t)) =
∑
v∈N

F (Wv(t)),

where X(t) = ({Wv}(t),σ(t)) and F (x) =
∫ x

0
f(y)dy, and

the fact that the configurations from oCSMA (by µ(t)) is very
close to those by the max-weight from Step 1 and Step 2.

APPENDIX C
PROOF OF THEOREM 3

For notational convenience, we define two different hitting
times to the set B for the chain {σ(t, β)}:

Hβ , min{t≥0 : σ(t, β)∈B} = min{t≥0 : S(t)=1},
H+
β , min{t>0 : σ(t, β)∈B} = min{t>0 : S(t)=1}.

Here, the only difference between these two is that the former
counts the case of σ(0, β) ∈ B, i.e., Hβ = 0 if σ(0, β) ∈ B,

while the latter does not. We then define the mean first hitting
time to B from a stationary start as

Eπ{Hβ} ,
∑
σ∈Ω

E{Hβ | σ(0, β)=σ} · π(σ). (27)

This is the average time steps required for node v until to be
available for service, when starting from a randomly chosen
time slot. We also define the mean return time to B as

EπB{H+
β } , E{H+

β | σ(0, β) ∈ B}

=
∑
σ∈B

E{H+
β | σ(0, β) = σ} · πB(σ), (28)

where πB(σ) , π(σ)
πB

for σ ∈ B, and the last equality is
from the stationarity of {σ(t, β)} in t. This is same as the
average recurrence time to the state 1 for {S(t)}, i.e., E{τi} =
EπB{H+

β } for all i ≥ 1. We similarly define EπB{(H+
β )2} ,

E{(H+
β )2 | σ(0, β) ∈ B} = E{(τi)2} for all i.

For any given {qv}, first fix β ∈ [0, 1]. From Kac’s
formula [1], [6], we have

E{τi} = EπB{H+
β } =

1

πB
, (29)

E{(τi)2} = EπB{(H+
β )2} =

2Eπ{Hβ}+ 1

πB
. (30)

From Theorem 1, E{τi}= 1/πB remains the same for all β.
We then consult the extremal characterization of the mean first
hitting time to a subset for a reversible Markov chain in [1,
Ch.3, Proposition 41],†† which says that for a reversible chain
{σ(t, β)} and a subset B ⊆ Ω,

Eπ{Hβ}=sup
g

{
1

EQβ ,π(g, g)
: −∞<g<∞, g(·)=1 on B,

and
∑
σ∈Ω

π(σ)g(σ) = 0

}
. (31)

Here, the Dirichlet form EQβ ,π(g, g) for functions g : Ω→ R
excluding g ≡ 0, is defined by

EQβ ,π(g, g) ,
1

2

∑
σ,σ′∈Ω

π(σ)Qβ(σ,σ′) (g(σ)− g(σ′))
2
.

Now, choose 0 ≤ β1 ≤ β2 ≤ 1. From Theorem 1, we have

EQβ1
,π(g, g) =

1

2

∑
σ,σ′∈Ω

π(σ)Qβ1(σ,σ′) (g(σ)−g(σ′))
2

≤ 1

2

∑
σ,σ′∈Ω

π(σ)Qβ2
(σ,σ′) (g(σ)−g(σ′))

2

= EQβ2
,π(g, g)

for any given function g. Together with (31), this implies
that Eπ{Hβ1} ≥ Eπ{Hβ2}. Therefore, from (30), E{(τi)2}
is decreasing in β∈ [0, 1].

††The extremal characterization is originally given for a random walk on
a weighted graph (allowing to have self-loops) in [1, Ch.3, Proposition 41].
Note that any reversible chain can be represented as a random walk on a
weighted graph. See [1, Ch.3] for more details.
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Observe that

lim
t→∞

1

t
VAR{St}= lim

t→∞

1

t
VAR

{
t∑
i=1

1{σ(i,β)∈B}

}
=ν(Qβ , f)

where the first equality is from (20), and the last equality is
from (2) with f(σ(i, β)) = 1{σ(i,β)∈B}. Since VAR{It} =
VAR{At}+VAR{St}, we have limt→∞ VAR{It}/t=ν∗+
ν(Qβ , f)∈(0,∞).

Since It is Gaussian for all large t, its limiting log-moment
generating function limt→∞

1
t logE{eθIt} is the same as that

of Gaussian It with mean t(µ − πB) < 0 and variance
VAR{It}. Thus, from the large deviation results in [8, Theo-
rem 1], the asymptotic decay rate η becomes

η = −2 lim
t→∞

E{It}/t
VAR{It}/t

=
2(πB − µ)

ν∗ + ν(Qβ , f)
> 0. (32)

For given µ and ν∗ (or a given arrival process), from Lemma 1
and Theorem 1, ν(Qβ , f) is decreasing in β ∈ [0, 1], and
therefore, η is increasing in β∈ [0, 1].


