
Smart Sleep: Sleep More to Reduce Delay in

Duty-Cycled Wireless Sensor Networks

Chul-Ho Lee Do Young Eun

Department of Electrical and Computer Engineering

North Carolina State University, Raleigh, NC 27695

Email: {clee4, dyeun}@ncsu.edu

July 2010

Abstract

A simple random walk (SRW) has been considered as an effective forwarding method for

many applications in wireless sensor networks (WSNs) due to its desirable properties. However,

a critical downside of SRW – slow diffusion or exploration over the space, typically leads to

longer packet delay and undermines its own benefits. Such slow-mixing problem becomes even

worse under random duty cycling adopted for energy conservation. In this paper, we study how

to overcome this problem without any sacrifice or tradeoff, and propose a simple modification

of random duty cycling, named Smart Sleep, which achieves more power-saving as well as faster

packet diffusion (or smaller delay) while retaining the benefits of SRW. We also introduce a

class of p-backtracking random walks and establish its properties to analytically explain the fast

packet diffusion induced by Smart Sleep. We further obtain a necessary condition to achieve an

optimal performance under our Smart Sleep, and finally demonstrate remarkable performance

improvement via independent simulation results over various network topologies.

I Introduction

Random walks have been extensively studied in many disciplines and used as efficient solutions for

a wide range of applications in various types of networks such as sampling and file searching in peer-

to-peer (P2P) networks [10, 16], routing/forwarding and query process in wireless sensor networks

(WSNs) [3, 4, 15, 6, 8], and source-location privacy in WSNs [11], to name a few. The wide-spread

popularity and satisfying performance of the random walks-based algorithms are mainly due to

their inherent distributed nature and several desirable properties including simplicity of implemen-

tation and deployment, scalability, robustness to topology changes. Unlike typical topology-driven

algorithms (e.g., shortest path-based or cluster-head based), random-walk based algorithms tend to

achieve load-balancing autonomously over the network even in a dynamic setting, which helps avoid

critical points of failure and non-uniform energy depletion in WSNs caused by hot-spot formation

or congested areas [3, 17].

A simple random walk (SRW), among many other variants in the literature, has been mainly

used as an effective packet forwarding method in WSNs without duty cycling [3, 15] and in randomly

duty-cycled WSNs [6, 8], where each packet is forwarded from a node to one of its neighbors

chosen uniformly at random (in a SRW fashion). However, the SRW has one critical drawback

– slow mixing or slow diffusion over the space, which in turn leads to longer delay to reach the

destination. There have been several works addressing how to overcome this drawback and the

resulting system performance in other literature. In [7, 12], the authors study on the fast diffusion

of a class of random walks as node mobility and its impact on the mobility-induced information

spreading in mobile ad-hoc networks (MANETs). It has been also studied in [9, 13, 2] how to

speed up the random walk (faster mixing or quicker convergence to its stationary distribution).

A common underlying theme here is to steer the random walk toward the same ‘direction’ so as

to avoid revisiting (or backtracking) previously-visited nodes (or places), thereby leading to more

efficient exploration of the space and faster information delivery.

Thus motivated, in this paper, we study how to achieve faster diffusion or smaller delay of

packets in randomly duty-cycled WSNs while at the same time also achieving power saving of every

sensor node, without requiring any multi-hop communications to collect topological or geograph-

ical information. As typical WSNs consist of low-cost, low-power sensor nodes with very limited

computational capability, it is crucial that sensor nodes avoid such information exchanges through

multi-hop communications, not to mention the benefit of smaller delay and power saving for longer

network life.

Specifically, in order to overcome the slow diffusion of SRW-based forwarding while saving more

power at every sensor, in this paper, we propose a simple yet effective modification, named Smart

Sleep, on the random duty cycling. Smart Sleep operates as follows: whenever each sensor node

successfully forwards a packet to one of its neighbor, it goes to sleep for T seconds, making itself

unavailable in the network. This temporary ‘forced’ sleep right after forwarding a packet reduces

the chance of the same packet coming back to the same sensor (backtracking) for a while, thereby

facilitating faster exploration for other sensor nodes and ‘speeding up’ the packet for faster delivery.

After this sleep period of T seconds, the sensor resumes its normal random duty cycling, preparing

itself for forwarding/receiving other packets. Too large value of T will put many sensors into sleep

for a long time and outweigh the benefit of faster diffusion of the packet that leaves such a long

‘trail’, thus slowing down the delivery of other packets in the network overall.

To set the stage for analytical treatment of Smart Sleep protocol, we introduce a class of p-

backtracking random walks (p-BRW) on a general graph, which captures such dynamics of packet

transitions – less backtracking to the previously visited node. Contrary to SRW in which the walker

2

moves to one of its neighbors uniformly at random, in p-BRW, the random walker (currently at

node i) remembers the previous position and goes back to this previously visited node with prob-

ability pi; otherwise, it moves to any one of other neighbors equally likely. We prove that the

stationary distribution of the p-BRW is invariant with respect to the choice of pi. This immedi-

ately implies that the average return time of p-BRW to a given node is also invariant. We then

illustrate how the packet trajectory under our Smart Sleep can be best described by p-BRW with

some backtracking probabilities {pi}, which is generally a function of T and underlying network

topology. By exploiting the close relationship among pi, T , and other network characteristics and

at the same time by leveraging the invariance property of the stationary distribution of the packet

position, we study how to choose the sleep duration T toward better shaping of the distribution of

the return time to our advantage, leading to better delay performance as well as transmission cost,

while power saving due to additional sleep is self-evident. We then derive a necessary condition

for the optimal sleep duration T ∗ in minimizing the packet delay, and then demonstrate the signif-

icant performance improvement through independent numerical simulations over various network

topologies. Therefore, in our Smart Sleep, the delay and power becomes no longer a typical tradeoff

and both can be improved together, while retaining all the aforementioned desirable properties of

random walks-based algorithms for dynamic networks.

The rest of this paper is organized as follows. Section II gives preliminaries on network model

and base setup for networking operations including opportunistic forwarding and duty cycling.

In Section III, we present Smart Sleep protocol and discuss its behavior on a simple topology. In

Section IV, we describe a class of p-backtracking random walks along with its properties and analyze

delay performance of Smart Sleep under general network settings. After presenting representative

simulation results in Section V, we conclude in Section VI.

II Preliminaries

II-A Network Model

Consider n sensor nodes placed on a graph (or network) in which each edge corresponds to a

reliable communication link between each pair of n nodes, if exists. Let G = (N , E) be a graph

where N = {1, 2, . . . , n} is a set of sensor nodes and E is a set of edges with |E| = m. If a sensor

node i∈N can reliably communicate with other sensor node j ∈N , then an edge between sensor

nodes i, j exists, i.e., (i, j)∈ E (i 6= j). Throughout the paper, we assume G is an undirected and

connected graph. In other words, each communication link is symmetric and there exists at least

one routing path from each node to every other nodes. We also define by N(i) a set of neighbors

of node i ∈ N and by di the degree of each node i, i.e., di = |N(i)|. Note that
∑

i∈N di = 2m.

3

II-B Opportunistic Forwarding in Randomly Duty-Cycled WSNs

We explain a typical random duty cycling that each sensor node performs for energy/power con-

servation, and an opportunistic forwarding proposed in [6, 8] as a packet forwarding method, both

of which will be used as a base setup for networking operations in this paper. Note that this com-

bination of the opportunistic forwarding and random duty cycling is originally introduced in [8].

We consider a network operating in a synchronous mode, as assumed in [3, 4, 15, 6, 8]. Specif-

ically, time is divided into slots and slot boundaries are synchronized (or can be re-synchronized).

By the random duty cycling, we mean that each node independently wakes up (or turns on its RF

transceiver) with probability q>0 at each time slot; otherwise, it sleeps (or completely turns off its

RF transceiver) for the time slot with probability 1−q. In addition, while each sensor node conducts

this random duty cycling at each time slot, it forwards a packet, if it has, to one of its neighbors

through the following opportunistic forwarding method. Whenever a sensor node having a packet

wakes up, it opportunistically transmits the packet to any one of its neighbors if the neighbor also

wakes up at the same slot; otherwise, the node having a packet looks for other next opportunities

to forward the packet. When there are multiple neighbors waking up at the same slot, the tie will

be randomly broken, i.e., one of the multiple awake neighbors will be chosen uniformly at random,

as mentioned in [8]. This can be achieved via the exchange of RTS (request to send) and CTS

(clear to send) with random waiting time as will be explained below, while this (practical) issue

has been ignored in [8].

The (data) packet transmission/reception between two adjacent nodes can occur, only when

they both wake up and each of them is aware that the other node is also ‘on’. Hence, whenever

any node having a packet wakes up at a certain time slot, it transmits a RTS packet to notify

its existence. If any of its neighbors wakes up and receives the RTS packet at the same slot, it

transmits a CTS packet to acknowledge the reception of the RTS packet to the sender. Here,

since it is still possible for many nodes to be awake at the same slot as mentioned before, each

node waits for a short random amount of time before transmitting a RTS or CTS packet, while

performing carrier sense on the channel, to avoid any possible collisions and to ensure successful

packet transmission/reception.

Specifically, during the random waiting time, if an awake node having a (data) packet senses

that the channel is busy, then it cancels RTS transmission and seeks next opportunities. If it

correctly receives an RTS packet from its neighbor, then it rather prepares to receive a data packet

from the sender and waits for another short random time to transmit a CTS packet to the sender.

On the other hand, if any node receives a CTS packet from another neighbor during its random wait

till its own CTS transmission, it goes to sleep. In this way, even if multiple nodes wake up at the

same ‘slot’ and have the same purpose (waiting for transmission or reception of a data packet), we

can randomly break the tie. We here suppose that the duration of each time slot is suitably chosen

4

t

t

A (sender)

B (receiver)

DATA (RX)

Receive DATA pkt

Transmit DATA pkt

Wake-Up

C (neighbor)

CTS (TX)RTS (TX) ACK (TX)

t

Figure 1: The operation of data transmission via the opportunistic forwarding under the random

duty cycling. Here, nodes B and C are the neighbors of node A, and a (data) packet is transmitted

from node A to node B.

so as to accommodate all these signallings required for the data transmission. We also suppose

that traffic load in the network is light as assumed in [3, 4, 15, 6, 8]. Hence, the interference from

concurrent data transmissions is not a critical issue, though the above RTS/CTS exchange with

random waiting time can reduce the effect of such interference on the system performance. Fig. 1

depicts an example of the operation of data communication through the opportunistic forwarding

with random duty cycling.

II-C Simple Random Walk Model For Opportunistic Forwarding

We here explain how the ‘transitions’ of each packet over the network G, governed by the oppor-

tunistic forwarding with random duty cycling, can be considered as a SRW, while the packet stays

at each node for some random amount of time before it is forwarded to another node.1 Suppose

that node i∈N has a packet to transmit. Let Ii ∈ N(i) be one of the neighbors of i that receives

the packet from i or equivalently the first awake node in N(i) that node i can find for the first

time, while performing the random duty cycling. Also let Wi be the waiting time (in the number

of time slots) for the packet at node i until being forwarded to Ii. As mentioned in [8], for each

node i∈N having a packet,

P{Ii = k} =
1

di
(1)

if k∈N(i); otherwise, zero. In other words, the transition of each packet from a node to one of its

neighbors over G is done in a SRW fashion.

Observe that at each time slot, node i independently wakes up with probability q and there is

at least one awake neighbor with probability 1−(1−q)di at each slot. In other words, node i having

a packet can transmit the packet to any of its neighbors with probability qi , q(1−(1−q)di) at each

1While the opportunistic forwarding can also work with a variant of the random duty cycling, called a pseudo-

random duty cycling [6, 8], the transition of each packet over network G here is still done in a SRW fashion.

5

time slot. Thus, the waiting time Wi is geometrically distributed with mean

E{Wi} =
1

qi
=

1

q(1− (1− q)di)
. (2)

Therefore, the transition of each packet from node i to one of its neighbors through the opportunistic

forwarding follows a SRW, with heterogeneous random sojourn time [6, 8], where the heterogeneity

comes from varying degrees di, i∈N .

Note that the opportunistic forwarding inherently inherits all the properties of random walks-

based algorithms such as simplicity, scalability, load-balancing, and robustness to topology changes.

It also operates without any topological or geographical information. In this paper, our goal is to

demonstrate that it’s always possible to further improve the performance of opportunistic for-

warding in both power and delay together under the same setting as random walk-based algorithms,

retaining all the aforementioned desirable properties while at the same time overcoming the problem

of slow mixing (or diffusion) associated with all simple random walk-based algorithms in WSNs.

III Smart Sleep: How To Sleep More and Better

In this section, we propose a simple modification on the random duty cycling, which we call Smart

Sleep, whose operation is defined as follows. Whenever each node successfully forwards a packet

to one of its neighbors, it goes to sleep and stays asleep for a constant amount of time slots T ≥0

after which it resumes the random duty cycling, where the parameter T is to be chosen later. Here,

when each node goes into this sleep mode for the time duration T , we say that the node is in a

‘sleep mode’; otherwise, the node is in a ‘normal mode’ in which the node performs the random

duty cycling. Note that if T =0, then it reduces to the original setting of random duty cycling.

One can see that if T is too long, then many sensor nodes would sleep for a quite long time and

hence the packet would get delayed longer. In addition, very large value of T would put more sensors

into sleep longer, rendering those sleeping sensors unavailable for forwarding of other packets, if

any, and thus affecting the transition behavior of those other packets over the network G. Observe

that the power consumption of each sensor is monotonically decreasing as T increases, thus the

advantage of Smart Sleep over the random duty cycling is obvious from the power saving point of

view. For packet delay point of view, however, it may seem unclear at first sight whether forcing

sensors into more sleep right after forwarding can actually lead to smaller delay in the network.

Before going into the details for general set-up, for the rest of this section, we demonstrate using a

simple network topology how our Smart Sleep influences the dynamics of packet forwarding/delay.

Consider 1-D ring with a set of nodes N . This topology is simple, yet able to capture key

dynamics, and only used to obtain qualitative understanding. We look at how a packet of interest

travels over 1-D ring in which all nodes are initially in a normal mode. Suppose that a packet of

interest is generated at node i and its destination is at least three-hop away from node i. This

6

packet will be forwarded to one of two neighbors of i with equal probability as in (1), as every

node initially performs the random duty cycling. Then, suppose that node i forwards the packet

to node j at time (slot) t′ as shown in Fig. 2. From this time on, the packet will stay at i for some

random time until forwarding to one of its first awake neighbors. Since node i will be in a sleep

mode during [t′, t′ + T], the packet will be more likely to be forwarded to node k rather than back

to i. In what follows, we make this argument precise by computing the probability of forwarding

to k.

t
′

i j k l

t
′′

i j k l

Figure 2: A series of four nodes in 1-D ring

From the definition of random duty cycling, nodes j and k both wake up at each slot with

probability q2. Thus, from time t′ onwards, the number of time slots Y until both nodes are

awake at the same slot (for possible transmission and/or reception of the packet) is geometrically

distributed with mean 1/q2. Then, by noting that node i remains asleep until time t′+T , the

probability that the packet is forwarded to node k (from node j) no later than time t′+T is

P{Y ≤T}. If the packet has not been yet forwarded to node k by time t′+T , which happens with

probability P{Y >T}, then from that time on both of nodes i, k are in normal mode and equally

likely to receive the packet as in (1). Hence, the probability that the packet is forwarded to node

k after t′+T is 0.5 ·P{Y >T}. Therefore, the (total) probability that the packet will be eventually

forwarded to node k is

p̃ , P{Y ≤ T}+ 0.5 · P{Y > T} = 1−0.5(1− q2)T > 0.5, (3)

and the probability that the packet will be forwarded back to node i is 1− p̃ = 0.5(1− q2)T <

0.5. Similarly, once the packet is forwarded from node j to node k with probability p̃, it will be

further forwarded to neighbor l (rather than back to node j) with probability p̃. This operation

continues until either the packet reaches its destination or it is not transmitted back to the node

that previously forwarded the packet.

Now consider the case of packet being transmitted back to the previous sender. Specifically,

the packet, which was forwarded to node l, is now being transmitted back to node k at time (slot)

t′′>t′ as depicted in the bottom of Fig. 2. This transition is possible only when node k is awake,

i.e., its sleep time T (due to forced sleep mode from previous forwarding to l) must have passed

by time t′′. Thus, at t′′, all nodes except node l are in a normal mode. Hence, once the packet

is transmitted from node l back to node k which previously forwarded the packet, the transition

7

of the packet over 1-D ring behaves as if the packet is newly generated at node l (in the network

where all nodes in a normal mode) and is then forwarded to node k.

From the above observation, one can see that for any node having the packet of interest, its

neighbor that previously forwarded the packet is in a sleep mode, while one another neighbor is

in a normal mode. Hence, the packet of interest keeps being forwarded to the nodes in the same

direction that the packet has followed, with probability p̃ > 0.5; otherwise, with probability 1− p̃,

the packet is forwarded to the node which previously forwarded the packet in a reverse direction.

This is exactly the same as the transition of a correlated random walk (CRW) [5, 7] on 1-D ring.

In the CRW on 1-D ring, the walk at a vertex moves to its neighbor in the same direction (right or

left) that the walk has taken, with probability larger than 0.5; otherwise, it changes the direction

and moves to its another neighbor (or the previously visited vertex). In particular, [7] analytically

showed that as the probability of the walk to follow the same direction that the walk has followed

gets higher, the ‘diffusion’ of the walk over 1-D ring becomes faster. Observe that p̃ is increasing

in T as shown in (3). Hence, if the sleep duration T is longer, we can achieve faster diffusion of the

packet over the network, which in turn brings out smaller number of packet forwardings required

until a packet reaches its destination.

However, we should not push this direction indefinitely. As mentioned before, if there are many

other packets from different sources or from a single source, many sensor nodes will be unavailable

for delivery of other packets for longer duration as T gets very large, and thus the reduction in the

number of packet forwardings in the presence of multiple packets is not certain. More importantly,

the CRW2 is a discrete-time random walk where the walk spends one time unit in every node.

However, in our setup, while the transition of each packet over 1-D ring behaves as if it follows a

CRW, the sojourn time at each node is no longer a constant. We next derive the average sojourn

time at each node after packet forwarding as a function of T .

When a packet of interest is initially generated at node i and all nodes are in a normal mode,

the average waiting (sojourn) time for the packet at node i is simply given by (2). However, once

the packet is forwarded to one of neighbors of node i, the average sojourn time will be different.

Let W̃i be the sojourn time of the packet at node i (in the number of time steps) until being further

forwarded, given that node i has just received the packet from one of its neighbors. Then, it follows

that

E{W̃i} = E{Y |Y ≤ T}P{Y ≤ T}+ (T + E{Wi})P{Y > T}

=
1

q2
−

1

q2
(1− q)

(2− q)
(1− q2)T . (4)

The first equality can be obtained by conditioning on whether a neighbor of node i in a normal

mode will receive the packet within T slots during which the other neighbor stays in a sleep mode.

2In [5, 7], the CRW was studied in the context of mobility modeling for applications of MANETs.

8

Due to the symmetry for 1-D ring, the average sojourn time does not depend on i. We refer to

Appendix A for the detailed derivation of (4). Here, observe that E{W̃i} is increasing in T starting

from E{W̃i}=E{Wi} for the case of T = 0. In other words, as the sleep duration T increases, the

number of transitions till delivery is generally decreasing in T but at the same time the average

sojourn time at each node is now increasing. In addition, in the presence of multiple packets, very

large value of T prevents each node from being active in time to serve other upcoming packets,

rendering the average sojourn time much longer than (4). Hence, one has to be careful in choosing

T to achieve reduction in actual packet delay. The observation here on a simple 1-D ring topology

will be a starting point for our more in-depth discussion in Sections IV-D and V as to how to

suitably choose T in Smart Sleep under general network topologies.

IV p-Backtracking Random Walk and Its Connection to Smart

Sleep

In the previous section, we have shown that the transition of a packet of interest on 1-D ring caused

by Smart Sleep is the same as that of CRW on 1-D ring. In particular, the packet of interest is

less likely forwarded back to the node which previously forwarded the packet. In this section, we

introduce p-backtracking random walk (p-BRW), a class of discrete-time random walks that capture

such dynamics – less backtracking to the previous visited node, on general graphs. We then derive

several properties of p-BRW and explain how to achieve faster diffusion of p-BRW over the graph

G. We finally discuss how the p-BRW is related to the transition of a packet of interest over G

under Smart Sleep.

IV-A p-Backtracking Random Walk

The p-BRW is a class of discrete-time random walks on G and is defined as follows. A random

walk at the current node i∈N with di>1 goes back to the previously visited node with probability

pi (we called backtracking probability throughout the paper); otherwise, the random walk moves to

the next node, chosen uniformly at random among the neighbors of i except the previously visited

node. If the current node i has only one neighbor (di = 1), the walk always returns back to the

previously visited node, i.e., pi=1. At t=0, the walk initially chooses one of its neighbors uniformly

at random, and then continue to use the previously visited node as a ‘signpost’ to decide the next

node that the walk will move to.

Let Xt, t = 0, 1, 2, . . . be the location of p-BRW over G = (N , E). From the definition of p-BRW,

9

its dynamics can be characterized by

P{Xt+1 = k|Xt = j,Xt−1 = i} =

pj if k= i,

1−pj
dj−1 if (j, k) ∈ E , k 6= i,

0 otherwise,

(5)

for dj > 1 and (i, j) ∈ E (i 6= j). If dj = 1, then P{Xt+1 = i|Xt = j,Xt−1 = i} = 1 for i ∈ N(j);

otherwise, zero. To avoid triviality, we assume that 0≤pj<1 for all nodes j∈N with dj>1. Fig. 3

depicts an example of possible transitions of p-BRW from a node to one of its neighbors.

i
j

DATA pkt

(a) time t−1

i
jpj

(1−p�)/4

(1−p�)/4

(1−p�)/4

(1−p�)/4

(b) time t

Figure 3: Illustration of transitions of p-BRW. (a) A p-BRW is located at node i at time t−1 and

is going to move to node j. (b) At time t, the p-BRW chooses one of the neighbors of node j

according to the transition probability in (5) as the next node that it will move to.

The p-BRW includes the following random walks as special cases. If pj = 1/dj in (5), then the

p-BRW reduces to the SRW where the next node is chosen uniformly at random from the neighbors

of the current node, i.e.,

P{Xt+1 = k|Xt = j} = P{Xt+1 = k|Xt = j,Xt−1 = i} =
1

dj
,

for (j, k) ∈ E ; otherwise, zero. If pj = 0 for all node j with dj > 1, then the p-BRW reduces to

the non-backtracking random walk (NBRW) [2] where the walk at the current node always moves

to one of its neighbors except the previously visited node with equal probability if there is any

other neighbor.3 Moreover, if G is 1-D ring and pj = p (0 < p < 1) for all j, then the p-BRW

reduces to the CRW [5, 7] in which the walk continues in the same direction with probability 1−p;

otherwise, it changes the direction with probability p. When G is 2-D grid, however, the p-BRW

is slightly different from the CRW on the same 2-D grid where the walk keeps the same direction

(east, north, west, or south) with a certain probability; otherwise, it changes the direction to one

of three remaining directions. We note that the CRW can be defined only on a grid structure [5, 7]

3In [2] the NBRW is considered only for regular graphs with di = d > 3 for all i ∈ N .

10

since the notion of ‘direction’ becomes unclear on a non-grid topology. In contrast, the p-BRW can

be defined on any general topology without such restriction, where its backtracking probability pi

at node i describes a relative direction to the previously visited node.

IV-B Properties of p-BRW

One can see that {Xt} with state space N is not a Markov chain due to its memory of the previous

state as shown in (5). However, by augmenting the state space, we can construct a Markov chain

for the random sequences of nodes visited by the p-BRW as follows. We define by S a set of directed

edges, i.e., S , {(i, j) : i ∈ N , j ∈ N(i)} and (i, j) 6= (j, i) in general. Note that |S| = 2|E| = 2m.

Let Zt , (Xt−1, Xt) for t ≥ 0. Then, {Zt}t≥1 becomes a Markov chain on the state space S and

its transition probability is given by

p(i,j)(j,k) , P {Zt+1 = (j, k) | Zt = (i, j)} =

pj if (j, k) ∈ S and k = i,

1−pj
dj−1 if (j, k) ∈ S and k 6= i,

0 otherwise,

(6)

for each (i, j) ∈ S and dj > 1. If dj = 1 for any j ∈N , then p(i,j)(j,i) = 1 for i∈N(j); otherwise,

zero. Note also that p(i,j)(l,k) = 0 if j 6= l. From the definition of p-BRW, we have

P{Z1 = (j, k)} = P{X0 = j}
1

dj
(7)

for each (j, k) ∈ S, though P{X0=j}, j∈N , will be specified later. Here, without loss of generality,

we can assume

P{Z0 = (i, j)} = P{X−1 = i,X0 = j} = P{X0 = j}
1

dj
, (8)

since for any (j, k)∈S

P{Z1 = (j, k)} =
∑

(i,j)∈S

P{Z0 = (i, j)}p(i,j)(j,k) = P{X0 = j}
1

dj
.

where the first equality is from conditioning and the second one follows from (6) and (8). Therefore,

{Zt}t≥0 is now a well-defined Markov chain on the state space S with its initial distribution P{Z0 =

(i, j)} given by (8).

Let π , [π(u,v), (u, v)∈S] be the stationary distribution of {Zt} on S and πA ,
∑

(u,v)∈A π(u,v)

be the probability of {Zt} being in a subset A ⊆ S in the steady-state. For each j ∈ N , let

Aj , {(i, j)∈S : i ∈ N(j)} be the set of directed edges incident to (and directed toward) node j.

Note that {Aj}j∈N forms a partition of S and |Aj | = dj in the original undirected graph G. Thus,

it follows that πAj
is the probability of the p-BRW being at node j in the steady-state, as the walk

has to traverse one of those edges in Aj to reach node j. We now have the following result.

11

Theorem 1. For any choice of pj ∈ [0, 1), j ∈N , the stationary distribution of {Zt} is uniform

over S, i.e., π(u,v) =
1
2m for all (u, v)∈S. Consequently, we also have

πAj
=

∑

(u,v)∈Aj

π(u,v) =
dj
2m

. (9)

Proof. See Appendix B.

Theorem 1 says that {Zt} of the p-BRW has the same uniform stationary distribution on S

regardless of the amount of backtracking at each node j, or equivalently, the stationary distribution

is invariant with respect to {pj}j∈N . In particular, the steady-state probability of the p-BRW being

at node j, πAj
= dj/2m, is proportional to the degree (dj) of node i, which is the same as that

of SRW. This allows us to freely choose {pj} as desired while keeping their stationary distribution

the same as if the walk is the SRW on the same graph. This invariance property is a fundamental

building block based on which we can obtain other properties of p-BRW and develop methodology

as to how to set the backtracking probability pj for each j, so as to achieve faster diffusion of

p-BRW on G and correspondingly smaller delay in our Smart Sleep protocol.

We suppose that the Markov chain {Zt} is a stationary Markov chain, i.e., Z0 is chosen from the

stationary distribution π (P{Z0 = (u, v)} = π(u,v) = 1/2m). This is equivalent to assuming that

the p-BRW on N starts from its stationary distribution. To see this, observe that P{X0 = v} = πAv

together with (8) and (9) gives P{Z0 = (u, v)} = 1/2m. Now, we define the following two stopping

times (or the first hitting times) of {Zt} to the subset Aj :

T+
Aj

, min{t > 0 : Zt ∈ Aj}, and TAj
, min{t ≥ 0 : Zt ∈ Aj}.

Here, one difference between these two is that the former does not count the case of Z0 ∈ Aj , while

the latter includes this case, i.e., TAj
= 0 if Z0 ∈ Aj . We then define the mean return time of

p-BRW to node j∈N when starting at node j as

EπAj
{T+

Aj
} , E{T+

Aj
|Z0 ∈ Aj} =

∑

(u,v)∈Aj

E{T+
Aj

|Z0 = (u, v)}πAj
(u, v), (10)

where πAj
(u, v) ,

π(u,v)

πAj

= 1
dj

for (u, v) ∈Aj , and the equality in (10) is from the fact that {Zt}

is a stationary chain. This is the average number of (discrete) time steps required for a p-BRW

starting at node j to return to j. Similarly, we define the second moment of return time of p-BRW

to node j as EπAj
{(T+

Aj
)2} , E{(T+

Aj
)2 |Z0 ∈ Aj}. In addition, we define the mean first hitting

time of p-BRW to node j∈N from a stationary start as

Eπ{TAj
} ,

∑

(u,v)∈S

E
{

TAj
|Z0 = (u, v)

}

π(u,v). (11)

Here, by the stationary start we mean that Z0 is drawn from the stationary distribution of {Zt},

or equivalently, the p-BRW starts at node v with its stationary distribution πAv . Note that {Zt}

12

is already a stationary chain. Thus, by consulting the properties of a stationary Markov chain [1],

we have

Proposition 1. For any choice of pj ∈ [0, 1), j∈N , we have

EπAj
{T+

Aj
} =

1

πAj

=
2m

dj
, and (12)

Eπ{TAj
} =

1

2

EπAj
{(T+

Aj
)2}

EπAj
{T+

Aj
}

−
1

2
=

dj
4m

EπAj
{(T+

Aj
)2} −

1

2
(13)

for each Aj, j∈N . 2

Proof. For any (finite) stationary Markov chain, the following holds [1, Ch.2.,pp.20–21]:

EπA
{T+

A } =
1

πA
, and Eπ{TA}=

1

2

EπA
{(T+

A)2}

EπA
{T+

A }
−

1

2

for any subset A of the state space. Hence, from Theorem 1, (12)–(13) immediately follows.

Proposition 1 implies that the mean return time of p-BRW to node j∈N is invariant regardless

of the values of backtracking probabilities {pj}j∈N . Moreover, the mean first hitting time of p-

BRW from a stationary start to node j (Eπ{TAj
}), or the average delay of a packet generated from

randomly chosen source to destination j under p-BRW, depends only on the first two moments of

the return time of p-BRW to node j.

IV-C How To Choose Each Backtracking Probability pi?

From (13), observe that in order to reduce the average delay of a packet, we need to choose each

backtracking probability pi such that the second moment of return time to node j (EπAj
{(T+

Aj
)2})

gets smaller whenever possible. Unfortunately, however, computing the second or any higher mo-

ment of the return to a node in a closed form is extremely difficult even for a SRW on general

graphs [1]. Even worse, the sequence of visited nodes under the p-BRW, {Xt}, itself is not even a

Markov chain. Nonetheless, we demonstrate below that it is still possible to ‘shape’ the distribu-

tion of the return time toward smaller second moment by resorting to the invariance result in our

Theorem 1 and suitably choosing {pj}.

For notational convenience, we first denote the return time of p-BRW to node j as Rj , defined

by

Rj , min{t > 0 : Xt = j|X0 = j}, (14)

13

where Xt is the location of p-BRW on N at time t ≥ 0. Note that from (10) and (14), we have

EπAj
{T+

Aj
} = E{Rj} =

∞
∑

t=1

P{Rj ≥ t} =
2m

dj
(15)

EπAj
{(T+

Aj
)2} = E{R2

j} =
∞
∑

t=1

2t · P{Rj ≥ t} − E{Rj}, (16)

where the last equality in (15) is from (12). While the precise relationship between {pj}j∈N and

P{Rj ≥ t} for all t is beyond reach, we can still locally control the shape of P{Rj ≥ t} for small

t, which in turn affects P{Rj ≥ t} for large t as well via the invariance property – the total sum
∑∞

t=1 P{Rj ≥ t} in (15) does not depend on the choice of pj . To be precise, as the backtracking

probability pi gets smaller, the p-BRW at the current node is more unlikely to return to the

previously visited node over the next few slots, implying that P{Rj ≥ t} for small t will be larger

and thus P{Rj ≥ t} for large t will be smaller. In view of (16), this is always more advantageous

toward smaller second moment of the return time E{R2
j}.

0 0.05 0.1 0.15 0.2 0.25
3

3.5

4

4.5

5

5.5
x 10

4

Backtracking Probability

S
ec

on
d

M
om

en
t o

f R
et

ur
n

T
im

e

(a) Second moment of return time

0 0.05 0.1 0.15 0.2 0.25
120

140

160

180

200

220

Backtracking Probability

M
ea

n
F

irs
t H

itt
in

g
T

im
e

(b) Mean first hitting time

Figure 4: Effect of different backtracking probabilities p on the second moment of return time to a

given node and the mean first hitting time to that node under a 2-D torus with n=11× 11.

Take a 2-D torus (a regular graph with d=4) with n nodes for example. From Proposition 1,

the mean return time to each node j is E{Rj}= n. Let pi = p ∈ [0, 1) for all i ∈ N . Then, from

symmetry, P{Rj ≥ t} does not depend on j anymore, so we can conveniently drop the subscript j

from our notation for the return time Rj . Fig. 4 shows the second moment of return time E{R2}

and the mean first hitting time to any given node under a 2-D torus with n=11×11, empirically

obtained via numerical simulations while varying p. As mentioned before, if p=0.25, the p-BRW

reduces to the SRW on a 2-D torus. Thus, we only consider the case of 0 ≤ p ≤ 0.25 to see the

behavior of p-BRW compared with that of the SRW. As seen from Fig. 4, the aforementioned

argument holds. In other words, the second moment of return time to a given node is increasing in

the backtracking probability p, and so is the mean first hitting time to that node (from a stationary

start).

14

IV-D From p-Backtracking Random Walk To Smart Sleep

We explain how the p-BRW is related to the transition of a packet of interest on G under Smart

Sleep protocol. Consider a packet of interest being forwarded from node i to node j. Node i then

immediately goes to sleep for T slots while all the other neighbors of j (except node i), i.e., all

nodes in N(j)\{i}, are in a normal mode. Similarly as was done in Section III, it follows that the

number of time slots Yj until successful transmission from j to a node in N(j)\{i}, is geometrically

distributed with mean 1/q′j , where q
′
j , q(1−(1−q)dj−1). Also, if the packet has not been forwarded

to any node in N(j)\{i} within T slots (during which node i has been in a sleep mode), i.e.,

Yj>T , then node i resumes its normal random duty cycling and the packet can be forwarded back

to node i with probability 1/dj . Hence, the probability that the packet backtracks to node i is
1
dj
P{Yj>T} < 1

dj
for T >0. Consequently, the packet will be forwarded to a node in N(j)\{i} with

probability 1
dj−1(1−

1
dj
P{Yj >T}) > 1

dj
. These transition probabilities are the same regardless of

which node is the one that previously forwarded the packet to node j, provided that all neighbors

of node j except the previous forwarder are in a normal mode. One can also see that this transition

behavior is the same as that of p-BRW from a node j to one of its neighbors, where the backtracking

probability at node j is pj = 1
dj
P{Yj > T}. Note that pj becomes smaller for larger T , possibly

leading to faster diffusion of the single packet over G.

In a general (non-tree like) graph G, situation is more subtle as there may exist several paths

routed to each node, over which the packet can traverse before reaching its destination. Unlike the

case of 1-D ring in Section III, when a packet of interest reaches node l, there might be multiple

neighbors which are still in their sleep modes. Fig. 5 shows an example of this case with large sleep

duration T , where the packet reaches node l after traversing path i→j→k→ l, only to realize that

in addition to node k, node i is still in its sleep mode (caused by the packet itself earlier). The

packet at node l now sees ‘less-than-usual’ transition probabilities to both nodes i and k, whereby

p-BRW allows only one such case (different probability of backtracking to its previously visited

node while all others are equally likely).

In a sleep mode

In a normal mode

DATA pkt

Direction of packet
forwarding

l k

i j

Figure 5: A snapshot of a part of 2-D grid topology when a packet of interest reaches node l via

path i→ j → k → l. If T is very large, nodes i, j, k can be still in a sleep mode by the time the

packet reaches l.

15

However, we maintain that this case will be unlikely with reasonably chosen (not too large)

value of T . For example, in Fig. 5, observe that the average sojourn time of the packet at each

node is lower bounded by [q(1−(1−q)4)]−1, achieved when T =0. Thus, if T ≤ 3[q(1−(1−q)4)]−1,

then the case in Fig. 5 will not arise. This is even more so, considering that the probability of the

packet traversing over the path i→ j→ k→ l (of length 3) is no larger than 1/33 ≈ 0.038, and it

is even more unlikely with the increase of path-length. Thus, for suitably chosen values of T , the

p-BRW can well approximate the transition behavior of the packet over a general graph in Smart

Sleep, and all the previous results implying faster diffusion of packet under Smart Sleep still hold.

Necessary condition for the sleep duration T : As mentioned before, too large values of

T put many sensors consecutively inactive as relay nodes for the delivery of other packets for a

long time, which in turn eventually leads to longer packet delay. On the other hand, too small

values of T would render Smart Sleep protocol behave just like the usual SRW-based forwarding,

thus losing all the benefit of faster diffusion and smaller delay in p-BRW. A moment of thought

here thus suggests that the sleep duration T be long enough so that the packet that caused the

sleep won’t backtrack for a while, but at the same time short enough such that the sensor can

resume its normal mode before another packet comes in. To capture this idea precisely, let τ be

the interval between two consecutive packet arrivals to sensor i. When there are multiple packets

in the network, chances are that these two packets have different IDs. Then, the above argument

leads to T ≈ E{τ}. See Fig. 6 for illustration.

t
node

pkt #1 arrival pkt #1 forwarding

Sleep duration

pkt #2 arrival

τ

T

i

Figure 6: A relationship between the sleep duration T and the interval τ between two consecutive

packets arriving to sensor i.

To capture the inter-dependency among τ , T , and other network parameters, we define by Λ

the total aggregate packet arrival rate into the whole network, and by D(T) the average packet

delay under Smart Sleep with parameter T ≥ 0. (This way, D(0) is the average packet delay via

SRW-based forwarding.) Then, by viewing Λ and D(T) as the exogenous arrival rate into the

system (network) and the waiting time of each packet in the system, respectively, we see from

Little’s Law that ΛD(T) is the average number of packets in the network in the steady-state, where

ΛD(0)<n to ensure system stability or from light-traffic load condition.4 Consider a randomly

tagged sensor node i. From the invariance property in Proposition 1 (see (12)), the mean return

4The performance of SRW-based algorithms [3, 15, 6, 8] is typically measured based on the delivery of a single

packet, i.e., ΛD(0)≈1.

16

time of a packet to node i (in the number of packet forwardings) is inversely proportional to the

stationary probability of being at node i. If the network of n nodes is roughly regular and if we

let E{W̃} be the average sojourn time of the packet at each node (given that successively arrived

different packets do not affect each other), then the actual mean return time to i (in the number

of time slots) is nE{W̃}. Since there are ΛD(T) number of packets in the network on average, we

arrive at

T ≈ E{τ} ≈
nE{W̃}

ΛD(T)
=

E{W̃}

λD(T)
, (17)

where λ := Λ/n is the exogenous packet arrival rate (as a source) per each sensor node. Note that

obtaining a closed-form expression of D(T) under general topology and multiple packets would

entail rigorous analysis of interacting non-Markovian processes on a general graph, which is clearly

beyond the scope of this paper. Still, we find that (17) is informative, and in particular, we will

show later in Section V that the optimal sleep duration T ∗ in minimizing packet delay is achieved

roughly when T ∗ ≈ E{τ} via extensive simulation results. This confirms our argument that each

sensor can stay asleep as much as possible to prevent the return of the same previous packets

while not holding off the delivery of other upcoming packets. We also find (17) practically useful

in implementing distributed algorithms in which each sensor only needs to independently estimate

E{τ} based on two consecutive incoming packets with different IDs and self-adjust T on the fly,

which we leave as a future work.

V Numerical Simulations

In this section, we present representative simulation results to demonstrate and quantify perfor-

mance improvement of Smart Sleep under a large range of T > 0 compared with the SRW-based

forwarding (T = 0). Our metrics of interest are packet delay, transmission cost (total number

of packet forwardings), and the amount of power-saving of each sensor. We conduct simulations

over 1-D ring, 2-D grid, and random geometric graph on our custom event-driven simulator using

C++. The random geometric graph, denoted as RGG(n, r), is a widely used graph in the liter-

ature [3, 4, 6, 8], in which n nodes are uniformly and independently located in a square and two

nodes are connected if they are within distance of r.

We use the following common setups for simulations. First, as used in [6, 8], we measure the

performance for the farthest source-destination pair under each instance of graph, where the length

between two nodes is the number of hops over the shortest path connecting the two nodes. We test

under two different arrival rates (1/Λ=500 or 1000 slots). Each simulation runs until 50 packets

are delivered, and each data point reported here is the average of 300 independent simulations (i.e.,

average over 15000 packet deliveries). We also measure the average wake-up frequency per each

sensor to quantify the amount of power-saving under Smart Sleep. In our scenario, we designate a

sensor node as the destination simulating a situation without any powered sink [14, 6, 8], but we

17

0 200 400 600 800 1000 1200 1400 1600
1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

T (time slots)

A
ve

ra
ge

 D
el

ay

1−D Ring (n=20)

D(T) − Simulation (1/ Λ = 500)
D(T) − Simulation (1/ Λ = 1000)
h(T) (1/Λ = 500)
h(T) (1/Λ = 1000)

(a) Average Delay D(T)

0 200 400 600 800 1000 1200 1400 1600

10

20

30

40

50

60

70

80

90

100

T (time slots)

A
vg

. #
 o

f P
ac

ke
t F

or
w

ar
di

ng
s

1−D Ring (n=20)

Simulation (1/ Λ = 500)
Simulation (1/ Λ = 1000)

(b) Transmission cost

Figure 7: Performance comparison on the packet delivery for the farthest s-d pair while varying T

under 1-D ring with n=20.

0 200 400 600 800 1000 1200 1400 1600
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

4

T (time slots)

A
ve

ra
ge

 D
el

ay

2−D Grid (n=100)
D(T) − Simulation (1/ Λ = 500)
D(T) − Simulation (1/ Λ = 1000)
h(T) (1/Λ = 500)
h(T) (1/Λ = 1000)

(a) Average Delay D(T)

0 200 400 600 800 1000 1200 1400 1600
100

200

300

400

500

600

T (time slots)

A
vg

. #
 o

f P
ac

ke
t F

or
w

ar
di

ng
s

2−D Grid (n=100)

Simulation (1/ Λ = 500)
Simulation (1/ Λ = 1000)

(b) Transmission cost

Figure 8: Performance comparison on the packet delivery for the farthest s-d pair while varying T

under 2-D grid with n=100.

note that the main feature of Smart Sleep doesn’t change even in the presence of powered sinks.

Throughout the simulations, we set the default wake-up probability as q=0.1. This can be easily

programmed into each sensor before network deployment or reconfigured if necessary. Note that

our focus here is to extend the sleep period after forwarding for any given q, not to optimally choose

q under certain criteria, which is outside the scope of this paper.

Fig. 7 shows the average delay D(T) and transmission cost under a 1-D ring with n=20. Clearly,

Smart Sleep offers significant improvement (more than 70%) for both metrics for all T ∈ [200, 1000]

compared with SRW-based one (T = 0), though the average delay starts increasing slowly after

around T = 600 slots. It implies that for T / 600, the reduction in the number of total packet

forwardings achieved through faster diffusion of each packet over the network (the hallmark of

p-BRW) weighs more than the slight increase in the average sojourn time of the packet at every

18

0 200 400 600 800 1000 1200 1400 1600
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

4

T (time slots)

A
ve

ra
ge

 D
el

ay

RGG(200,0.13)

D(T) − Simulation (1/ Λ = 500)
D(T) − Simulation (1/ Λ = 1000)
h(T) (1/Λ = 500)
h(T) (1/Λ = 1000)

(a) Average Delay D(T)

0 200 400 600 800 1000 1200 1400 1600
500

1000

1500

2000

2500

3000

3500

4000

4500

T (time slots)

A
vg

. #
 o

f P
ac

ke
t F

or
w

ar
di

ng
s

RGG(200,0.13)

Simulation (1/ Λ = 500)
Simulation (1/ Λ = 1000)

(b) Transmission cost

Figure 9: Performance comparison on the packet delivery for the farthest s-d pair while varying T

under a sample graph of RGG(200, 0.13).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
RGG(200,0.13)

(a) A sample topology of RGG

0 200 400 600 800 1000 1200 1400 1600
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

T (times slots)

W
ak

e−
up

 F
re

qu
en

cy
1−D Ring (n=20), 1/ Λ = 500
2−D Grid (n=100), 1/ Λ = 500
RGG(200,0.13), 1/Λ = 500

(b) Wake-up frequency

Figure 10: (a) A sample topology of RGG(200, 0.13); (b) Measured wake-up frequency for a sensor

under various topologies as T varies.

node (see (4)). Note that the condition for the optimal T ∗ in (17) can be rewritten as

D(T) ≈
E{W̃}

λ
·
1

T
, h(T). (18)

Note that the average sojourn time of a packet at each sensor E{W̃} is also a function of T . In

Fig. 7(a), we overlay h(T) where the average sojourn time E{W̃} here for 1-D ring can be computed

from (4), and observe that the optimal T ∗ in minimizing the average delay is located roughly around

the intersection of D(T) and h(T), confirming the validity of the condition in (17).

Figs. 8 and 9 show the results for a 2-D grid with n= 100 and for a sample topology of

RGG(200, 0.13) displayed in Fig. 10(a) while T varies, respectively, but now under two differ-

ent values of Λ. For 2-D grid, the average delay reduces by around 30% and the transmission cost

by 60% for T ∈ [200, 600]. For RGG, both performance metrics improve by more than 60% for

T ∈ [200, 700]. Similarly as in Fig. 7(a), we also plot h(T) in all cases. We here use E{W̃}=1/q2,

19

corresponding to the case of only one awake neighbor (under duty-cycling with probability q) while

all other neighbors are in sleep mode, which is roughly an upper bound of the actual average sojourn

time. In all these cases, the plotted h(T) is thus an upper bound of the true values, and the actual

intersection point with more accurate value of E{W̃} would be smaller than what is shown in the

figures, suggesting that the optimal sleep duration T ∗ is again well approximated by the fixed point

satisfying (17) or (18). Lastly, Fig. 10(b) shows the average wake-up frequency per each sensor to

quantify the amount of power-saving through Smart Sleep measured during the simulation time for

all the above topologies with 1/Λ = 500. We see that the additional power-saving (compared with

the SRW-based duty-cycling, i.e., T = 0) is around 20% for the estimated optimal values T ∗. In

other words, the observed 30% to 60% reduction in the average delay is achieved when each sensor

turns off 20% more than the usual random duty-cycling. In addition, since the packet transmission

itself also consumes power, the actual power-saving will be even greater by noting the reduction

in the average number of packet forwardings in all cases. We also point out here that in all the

simulations, the range of T values for which we enjoy great improvement both in delay and power

is fairly broad, implying that our Smart Sleep protocol allows easy configuration and offers robust

and superior performance even under inaccurately estimated T ∗.

VI Conclusion

Throughout the paper, we have demonstrated that our Smart Sleep protocol, a simple modifica-

tion of random duty cycling, can overcome the slow-mixing problem of SRW-based forwarding in

randomly duty-cycled WSNs while achieving more power-saving at each sensor. To analytically

address the packet dynamics in Smart Sleep, we introduce p-BRW, a variation of random walk

with past memory, and establish several properties of p-BRW to explain why Smart Sleep leads

to smaller delay of each packet over the network. Numerical simulations confirm our reasonings

and reveal that Smart Sleep can be made very robust while yielding superior performance, with

high potential for distributed and autonomous implementation under dynamic environments. We

expect that our reasoning behind Smart Sleep and p-BRW for faster delivery can be also applicable

to many other SRW-based algorithms in general networks beyond WSNs.

References

[1] D. Aldous and J. Fill, Reversible Markov Chains and Random Walks on Graphs. monograph

in preparation.

[2] N. Alon, I. Benjamini, E. Lubetzky, and S. Sodin, “Non-backtracking random walks mix

faster,” Communications in Contemporary Mathematics, vol. 9, no. 4, pp. 585–603, 2007.

20

[3] C. Avin and C. Brito, “Efficient and robust query processing in dynamic environments using

random walk techniques,” in Proc. of ACM/IEEE IPSN, Berkeley, CA, 2004.

[4] C. Avin and B. Krishnamachari, “The power of choice in random walks: an emprical study,”

in Proc. of ACM MSWiM, Torremolinos, Spain, 2006.

[5] S. Bandyopadhyay, E. J. Coyle, and T. Falck, “Stochastic properties of mobility models in

mobile ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 6, no. 11, pp. 1218–

1229.

[6] P. Basu and C.-K. Chau, “Opportunistic forwarding in wirelss networks with duty cycling,”

in Proc. of ACM CHANTS, San Francisco, CA, 2008.

[7] H. Cai and D. Y. Eun, “Toward stochastic anatomy of inter-meeting time distribution under

general mobility models,” in Proc. of ACM MobiHoc, 2008.

[8] C.-K. Chau and P. Basu, “Exact analysis of latency of stateless opportunistic forwarding,” in

Proc. of IEEE INFOCOM, Rio de Janeiro, Brazil, 2009.

[9] F. Chen, L. Lovász, and I. Pak, “Lifiting markov chains to speed up mixing,” in Proc. of ACM

STOC, Atlanta, GA, 1999.

[10] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-to-peer networks,” in Proc.

of IEEE INFOCOM, Hong Kong, China, 2004.

[11] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk, “Enhancing source-location privacy in sensor

network routing,” in Proc. of IEEE ICDCS, Columbus, OH, 2005.

[12] S. Kim, C.-H. Lee, and D. Y. Eun, “Super-diffusive behavior of mobile nodes and its impact on

routing protocol performance,” IEEE Trans. on Mobile Computing, vol. 9, no. 2, pp. 288–304,

2010.

[13] W. Li and H. Dai, “Accelerating distributed consensus via lifting markov chains,” in Proc. of

IEEE ISIT, Nice, France, 2007.

[14] Y. Lin, B. Liang, and B. Li, “Data persistence in large-scale sensor networks with decentralized

fountain codes,” in Proc. of IEEE INFOCOM, Anchorage, Alaska, 2007.

[15] I. Mabrouki, X. Lagrange, and G. Froc, “Random walk based routing protocol for wireless

sensor networks,” in Proc. of InterPerf, Nantes, France, 2007.

[16] L. Massoulié, E. L. Merrer, A.-M. Kermarrec, and A. Ganesh, “Peer counting and sampling

in overlay networks: random walk methods,” in Proc. of ACM PODC, Denver, CO, 2006.

21

[17] A. Mei and J. Stefa, “Routing in outer space: fair traffic load in multi-hop wireless networks,”

in Proc. of ACM MobiHoc, Hong Kong SAR, China, 2008.

[18] S. M. Ross, Stochastic processes, 2nd ed. John Wiley & Son, 1996.

Appendix A: Derivation of Average Waiting Time E{W̃i} in (4)

First, observe that

E{W̃i} = E{W̃i|Y ≤ T}P{Y ≤ T}+ E{W̃i|Y > T}P{Y > T}

= E{Y |Y ≤ T}P{Y ≤ T}+ (T + E{Wi})P{Y > T}. (19)

The first equality is obtained by conditioning on whether a neighbor of node i in a normal mode

will receive the packet within T slots during which the other neighbor remains asleep. Here, if the

neighbor in a normal mode receives the packet from node i within T , the average waiting time

becomes E{W̃i|Y ≤ T} = E{Y |Y ≤ T}. Otherwise, other neighbor which was in a sleep mode will

in a normal mode after T , and both neighbors have an equal chance to receive the packet from

node i. Hence, from memoryless property of geometric distributions, the average waiting time is

E{W̃i|Y > T} = T + E{Wi}. Then, after a little computation, we have

E{Y |Y ≤ T}P{Y ≤ T} =

∞
∑

y=1

y · P{Y = y, Y ≤ T}

=
T
∑

y=1

y · P{Y = y} =
1− (1− q2)T

q2
− T (1− q2)T . (20)

By noting that E{Wi} = [q(1−(1−q)2)]−1, we also have

(T + E{Wi})P{Y > T} =

[

T +
1

q(1− (1− q)2)

]

(1− q2)T . (21)

Thus, from (19)–(21), we finally have

E{W̃i} =
1

q2
−

1

q2
(1− q)

(2− q)
(1− q2)T . (22)

Appendix B: Proof of Theorem 1

Proof. Recall that each state in the state space S is a directed edge. G is also connected, i.e., there

is at least a path (a sequence of nodes) from node u to node v for all u, v∈N (u 6=v). Hence, there

exists at least a directed path (a sequence of direct edges) connecting each directed edge (u′, u)

to every other directed edges (v, v′), where u′ ∈N(u) and v′ ∈N(v). Then, for 0<pj < 1 at node

j ∈ N with dj > 1 in (6) in addition to pj = 1 for dj = 1, the transition probability p(i,j)(j,k) > 0

22

for any (i, j), (j, k) ∈ S. Thus, every state in S is reachable in finite time with positive probability,

and the Markov chain {Zt} is irreducible. One can also see that the case of pj = p(i,j)(j,i) = 0 at

node j ∈ N with dj>1 in (6), i∈N(j), does not affect the irreducibility of {Zt}, because it is not

necessary to traverse path i→j→ i to reach (v, v′) from (u′, u). Therefore, by noting that the state

space S is finite, i.e., |S|=2m<∞, the Markov chain {Zt} is positive recurrent and hence it has

a unique stationary on S [18, 1]. Due to this uniqueness, one can easily check that the stationary

distribution of {Zt} is π(i,j) = 1/2m for each (i, j)∈S satisfying the following balance equations.

π(j,k) =
∑

(i,l)∈S

π(i,l)p(i,l)(j,k) = π(k,j)p(k,j)(j,k) +
∑

i∈N(j)\{k}

π(i,j)p(i,j)(j,k)

= π(k,j)pj +
∑

i∈N(j)\{k}

π(i,j)
1− pj
dj − 1

, (23)

for each (j, k)∈S, and dj>1. If dj=1 for any j∈N , then π(j,k) = π(k,j) · 1, where k∈N(j). Also,
∑

(j,k)∈S π(j,k) = 1.

In addition, since |Aj | = dj , it follows that

πAj
=

∑

(u,v)∈Aj

π(u,v) =
dj
2m

for each j ∈ N .

23

