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Abstract

For TCP/AQM systems, the issue of buffer sizing has recently received much attention. In

the literature, it is suggested that the buffer size be O(
√

N) [1] for high link utilization or

O(N) [2, 3] for 100% utilization where the link has capacity NC serving N flows. However,

these results are all limited to the drop-tail scheme and there has been no systematic modeling

framework for any buffer sizing between O(
√

N) and O(N). In this paper, we study the limiting

behavior of a TCP/AQM system for an intermediate buffer sizing of O(Nγ) (0.5 ≤ γ < 1).

We develop a stochastic model in a discrete-time setting to characterize the system dynamics

and then show that we can have 100% link utilization and zero packet loss probability for

a large number of flows when the buffer size requirement is anywhere between O(
√

N) and

O(N). Our model is general enough to cover any queue-based AQM scheme with ECN marking

(including the drop-tail) and various generalized AIMD algorithms for each TCP flow. We also

provide arguments showing that the discrete-time based modeling can effectively capture all the

essential system dynamics under our choice of scaling (0.5 ≤ γ < 1) for buffer size as well as

AQM parameters.

1 Introduction

TCP is the dominant transport protocol to carry most of Internet data traffic, e.g., email, FTP, P2P.

Each TCP source just iterates its own congestion control algorithm to respond to the congestion

signal generated by AQM (Active Queue Management) schemes in the network. So, TCP/AQM

is essentially a distributed, close-loop congestion control algorithm. On one hand, the distributed

nature of TCP makes it easy to implement, because there is no global information needed. On the

other hand, the close-loop nature of the system makes it difficult to analyze the overall performance

of TCP/AQM under various configuration, compared to the traditional open-loop teletraffic theory.

As an example, the buffer sizing for the Internet router shared by TCP flows has been a delicate

issue. Although extensive research efforts have been made so far [3, 1, 4, 5], the problem is still far

from being completely understood and solved, mainly because the underlying mechanisms of the

close-loop system are quite different from that of usual open-loop queueing theory. Traditionally,

the rule-of-thumb for buffer sizing is set to the bandwidth-delay product [3]; for a system with N



flows, capacity NC, and the round-trip-time (RTT) T , the buffer size should be set to NCT , i.e.,

O(N).

Recently, it has been shown in [1] that O(
√

N) buffers sizing for drop-tail is enough for high

link utilization. While the results in [2] still suggest that the buffer size should be enforced as

O(N) under drop-tail for full (100%) link utilization, which is in accordance with the traditional

rule-of-thumb in [3]. Although it was empirically shown that the link utilization can be very high,

it can be easily seen that the loss probability for drop-tail cannot be arbitrarily close to zero. For

instance, it is well-known that Throughput ≈ 1
RTT

√
3
2p [6, 7]. Here, p is the probability that the

flow receives ‘congestion signal’ in the form of either packet-loss or marking. Since throughput is

surely bounded above by the nominal link capacity C, we should have p ≥ p′ for some constant p′

unless RTT increases indefinitely. In addition, with the buffer size of O(N), the AQM schemes with

ECN marking (say RED, REM [8], PI [9]) in general yield better performance than the simple drop-

tail scheme (e.g., zero packet-loss probability for AQMs). Then, it is nature to ask the following

three interesting and related questions: First, if we use AQM schemes with marking, are we able to

configure the system such that all the necessary congestion signals come from packet marks (and

hence packet-loss is kept near zero) when the buffer size is chosen in between O(
√

N) and O(N)?

Second, can we achieve 100% link utilization even when the buffer size (and AQM parameters)

are chosen far smaller than O(N)? Third, under the same choice of buffer size as in the above

questions, what is the performance for other types of TCP protocol, i.e., under generalized AIMD

or MIMD, etc?

To address these questions, in this paper, we study the limiting system behavior as the system

size increases under an intermediate buffer size, i.e., the buffer size is chosen as O(Nγ) where

0.5 ≤ γ < 1. In order to analyze the system, we first propose a stochastic discrete-time model to

accurately capture the system dynamics when the buffer size as well as the AQM parameters are

chosen according to O(Nγ) (0.5 ≤ γ < 1). Although there already exist some results regarding the

stochastic discrete-time model for TCP/RED [10, 11], the framework in [10, 11] is valid only for

the linear scale O(N) for buffer sizing and the RED parameters, while our analysis can be applied

to any other scales in general. Based on our model in a discrete-time setting, we show that we can

achieve 100% link utilization and zero packet loss (when AQM with packet marking is employed)

under the aforementioned scale for the buffer sizing when there are large number of flows. All these

analytical results are also supported by simulation results via ns-2. Further, we show that the

discrete-time modeling (by capturing system ‘states’ at each RTT instant) becomes accurate and

faithful representation of the system under the scale of interest (O(Nγ)) with 0.5 ≤ γ < 1.

The rest of this paper is organized as follows. In Section 2, we describe the scaling used in

the paper and present our stochastic discrete-time model for TCP/AQM systems. In Section 3

we analyze the system performance in terms of link utilization and queue-length distribution. We

also illustrate that packet loss can be eliminated using AQMs with marking even when the buffer

size is chosen far smaller than the traditional rule-of-thumb (O(N)). In Section 4, we provide

several arguments supporting the use of a discrete-time modeling under our scale (as opposed to a

continuous-time modeling). We present simulation results in Section 5 and conclude the paper in

Section 6.
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2 Model Description

2.1 Scaling the Link

We consider a link with capacity NC shared by N simultaneous connections or flows, where each

flow adapts its rate (or window size in TCP) based on whether it receives any packet mark. The

rationale behind this scaling is that as the number of connections increases, the capacity also

increases proportionally in order to give each flow approximately the same bandwidth share. Let

QN (t) be the queue length at time t and B(N) denote the buffer size at that link (or router). See

Figure 1 for illustration.
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Figure 1: Simplified link model

Np  (x)

1

x

marking probability

B(N)
queue size

0 qminN
γ qmaxN

γ

Figure 2: Example of a marking function (RED

type) with 1/2 ≤ γ < 1

For AQM schemes, we consider routers using queue-based schemes equipped with ECN capabil-

ity. One consequence of using ECN is that routers mark the packets to notify incipient congestion

(based on the current queue-length) and drop only if the buffer is physically full and there is no

room to accept the incoming packets. When a packet arrives to the queue at time t, this packet

will be marked, independently of any other, with probability pN (QN (t)), where QN (t) denotes the

queue size at time t. Hence, for the marking function depicted in Figure 2, if the queue size QN (t)

is less than qminNγ , no packet is marked. If the queue size becomes larger than qmaxNγ , then all

the incoming packets are marked (not dropped!). The packet-drop happens only when the queue

size goes above the actual buffer size B(N).

Our marking function pN (x) will satisfy the following:

There exists a continuous, non-decreasing function p : R
+ → [0, 1] such that, for all N and x,

pN (Nγx) = p(x), (1)

where 1/2 ≤ γ < 1. Further, we have limx→0 p(x) = 0 and there exists qmax < ∞ such that

p(x) = 1, for all x ≥ qmax. (2)

The above clearly shows that we use a scale of γ for the marking function. Note that γ = 1

corresponds to the usual linear scaling as in [10, 11, 12, 4], while γ = 1/2 corresponds to the square

root scaling for buffer size used in [1].
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2.2 How to React to Marks: Generalized AIMD

Let the time be divided into a sequence of slots, each of which has a length of one round-trip-time

(RTT). To make our exposition simple, let the length of one time slot be normalized to 1. We

assume that all the N flows sharing the common bottleneck link have the same RTT. Let WN
i (k)

be the window size of flow i at the kth time slot (kth RTT), where the superscript N means that

there are N flows in the system sharing a link with capacity NC. Let wmax be the maximum

window size for all flows, i.e., 1 ≤ WN
i (k) ≤ wmax for all i, k, N . Then, given that the current

window size is w, each flow increases its window size at the next RTT by α(w) in case of no marked

packet and decreases by βw if there is at least one marked packet among w packets. In other words,

each window size WN
i (k) evolves as follows:

WN
i (k + 1) =






⌊
WN

i (k) + α
(
WN

i (k)
)⌋

∧ wmax if none of WN
i (k) packets is marked,

⌊
WN

i (k) − βWN
i (k)

⌋
∨ 1 otherwise,

(3)

where x ∧ y := min{x, y} and x ∨ y := max{x, y}, and bxc is the largest integer smaller than x.

Here, 0 < β < 1 is a given constant and the function α(w) is assumed to satisfy the following:

Assumption 1 The function α(·) is non-decreasing, concave, and satisfy 0 < α(w) < w for all

w ∈ [1, wmax].

We can reproduce most of the current TCP algorithms by choosing suitable α(·) and β, For ex-

ample, setting α(w) = α (constant) gives the well-known AIMD (Additive-Increase-Multiplicative-

Decrease). In particular, α(w) = 1 and β = 0.5 correspond to the current TCP-Reno. Another

possibility is to choose α(w) = awb with a > 0 and 0 < b ≤ 1 [13, 14]. Note that this case also

includes MIMD (Multiplicative-Increase-Multiplicative-Decrease) type of algorithm (b = 1) as in

Scalable TCP [13].

2.3 Markovian Representation of the System

Given the background on our link model and how each sender changes its window size, in this

section, we develop a Markovian representation of the TCP/AQM system.

As before, let WN
i (k) be the window size of flow i at the kth time slot and QN (k) be the

corresponding queue-length at the same time slot. We define the system ‘state’ at time k (kth time

slot) by an (N + 1)-dimensional vector as

~XN (k) :=
[
WN

1 (k), · · · , WN
N (k), QN (k)

]
. (4)

Suppose that WN
i (k) (i = 1, 2, . . . , N) and QN (k) are given, i.e., WN

i (k) = wN
i (k) and QN (k) =

qN (k). Then, since each of wN
i (k) packets will be marked independently of any other with proba-

bility pN (qN (k)), we see that the probability that none of the wN
i (k) packets is marked becomes

pN
i (k) =

[
1 − pN (qN (k))

]wN
i (k)

. (5)

Thus, given the window sizes and the queue-length at time k, window sizes for flow i at time k + 1

will evolve as in (3) with corresponding probability pN
i (k), and WN

i (k + 1) and WN
j (k + 1) become
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independent )for i 6= j) since each incoming packet is being marked independently. Further, the

queue-length at time k + 1 is given by the following recursion:

QN (k + 1) =

[
QN (k) +

N∑

i=1

WN
i (k) − NC

]+

, (6)

where [x]+ = max{x, 0}. Hence, ~XN (k) becomes an (N + 1)-dimensional homogeneous Markov

chain with its evolution described by (6) and (3) with appropriate transition probability as in (5).

Before proceeding to our main section, we show that the sum of the window sizes for N flows

is always bounded above. In this paper, we provide all the proofs in the Appendix.

Lemma 1 Let C ′ = C + qmax.
∗ Then, for any k, we have

1

N

N∑

i=1

WN
i (k) ≤ M,

where

M := C ′ + α(C ′) + α
(
C ′ + α(C ′)

)
. (7)

Lemma 1 will be invoked to prove one of our main results in Section 3. In the rest of the paper,

to avoid any triviality, we will assume that wmax > M and C > 1, where M is from (7).

3 Main Results

In this section, we provide asymptotic analysis of the system represented by the Markov chain in

Section 2.3. First, we show that for fixed N , the chain is ergodic, and thus always converges to its

stationary version. Then, we investigate several performance metrics including the link utilization

and the queue-length distribution for the stationary chain, as N becomes large.

3.1 Ergodicity of the Markov Chain

Having constructed the Markov chain as in Section 2.3, we then focus on the ergodicity of the

chain. First, it is straightforward to see that the chain in (3) and (6) is irreducible and aperiodic.

In order to show the required positive recurrence of the chain, consider the following finite subset

F of the state space

F := {1, 2, . . . , wmax}N × [0, 1, . . . , qmaxNγ ].

In words, the set F contains all the possible window sizes for N flows and all the queue-length

fluctuation up to qmaxNγ . Note that for a fixed N , the set F is always finite. Assume that the

system is currently at state j ∈ F and define τj(F ) be the return time to set F starting from j.

Suppose the queue-length is larger than qmaxNγ indefinitely. Then, as before, all packets will be

marked and all the flows keep decreasing their window sizes forever until all of them are equal to

1, in which case the queue-length has to be smaller than qmaxNγ . Thus, we see that the return

∗Here, C should be interpreted as C × RTT since we normalize RTT to 1.
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time to F starting from any j ∈ F must be finite, and thus the chain is positive recurrent in view

of Lemma 1.1 in [15] (page 168).

As the chain is now ergodic for any fixed N , it always converges to a steady-state in which the

distribution of the chain is stationary. Hence, from now on, we assume that the system is in the

steady-state and the distribution of ~XN (k) is invariant with k. In the subsequent section, we derive

the steady-state system dynamics in terms of the link utilization and the queue-length distribution

as N increases.

3.2 Asymptotic Analysis of the System

Since ~XN (k) is stationary in the steady-state, QN (k) is also stationary in k. Let QN denote the

queue-length random variable in the steady-state. Similarly, whenever there is no ambiguity, we

will suppress the time index k from the window size random variables in the steady-state and denote

them as WN
i . We now present our first result below, which will be used later to show that, in the

steady-state, the probability that each incoming packet flow i is marked is uniformly bounded away

from 0 and 1.

Proposition 1 For any N > 0 and i (1 ≤ i ≤ N), we have

E{WN
i } − 1

wmax + α(wmax)
β − 1

≤ E

{[
1 − pN (QN )

]W N
i

}
. (8)

Further, there exists a constant B ∈ (0, 1) (independent of N) such that

E

{[
1 − pN (QN )

]wmax
}
≤ B < 1, ∀N > 0. (9)

Proposition 1 tells us that in the stationary regime, the probability of flow i receiving no mark

is always bounded above. Later on, we will also show that E{WN
i } > 1 for all i and N , i.e., it is

also bounded below. This implies that there is no global synchronization among N flows in the

steady-state since there always exists certain fraction of flows decreasing their window sizes at each

RTT, thereby making the total arrivals to the queue stationary and the corresponding queue-length

fluctuation under control.

From (9), we can show that the steady-state queue-length random variable QN is at least on

the order of O(Nγ) with non-zero probability.

Lemma 2 There exist constants q ∈ (0,∞) and δ > 0 such that, for all N > 0,

P{QN > qNγ} ≥ δ. (10)

When the system is in the stationary regime, the total arrival to the queue as well as the queue-

length fluctuation becomes stationary in time. In particular, since QN (k) has the same distribution

as QN (k + 1), we can rewrite (6) as

QN (k)
d
=

[
QN (k) +

N∑

i=1

WN
i (k) − NC

]+

,
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where
d
= means equality in distribution. The solution to this distributional equation always exists

whenever E{∑N
i=1 WN

i (k)} < NC and is given by [16]

QN d
= sup

t>0

[
t∑

k=1

N∑

i=1

WN
i (k) − NCt

]
. (11)

Hence, in some sense, even if the original system is of a closed-loop form, we can view the system

dynamics in the steady-state as that of an open-loop queueing system with capacity NC fed by

N flows, each of which is characterized by a stationary sequence WN
i (k) (k = 1, 2, . . .) whose

distribution is yet to be found.

As WN
i (k + 1) for different i evolve independently of each other given the current state at

time k, and also from Proposition 1 saying that there is no synchronization among flows, we can

assume that in the steady-state, WN
i (i = 1, 2, . . . , N) are more or less independent. Further, we

can also assume that each arrival process WN
i (k) is well behaved such that it satisfies the required

assumption for the many-sources-asymptotic to hold.† Then, we can show the following:

Proposition 2 For any γ ∈ [0.5, 1) in our TCP/AQM systems, the steady-state link utilization

defined by ρ(N) = E{∑N
i=1 WN

i }/NC approaches to 1 as N increases.

We have earlier mentioned that if E{WN
i } > 1, the expectation in (9) is bounded away from

0 and 1. With the help of Proposition 2, we now show this is indeed the case, and further, the

probability of queue-length larger than q′Nγ is also bounded above.

Lemma 3 There exist constants q′ ∈ (0,∞) and η < 1 such that, for all sufficiently large N ,

P{QN > q′Nγ} ≤ η < 1. (12)

In order to further characterize the steady-state queue-length fluctuation, we proceed as follows.

Suppose that we know the exact distribution of the aggregate arrival process to the queue in the

stationary regime, Then, from (11), in principle, we should be able to find the distribution (or at

least a very good approximation) of the queue-length random variable QN by using well-known

results for a queueing system fed by many flows. Examples include many-sources-asymptotic [18,

17, 19, 20], Gaussian traffic modeling [21, 22, 23], Poisson limit [24], moderate deviation results [25],

or heavy-traffic limits [26, 27].

Note that each of the above different approaches holds true only when the system is scaled in

some specific way (i.e., the link capacity or the buffer size should be some suitable function of N),

and there hardly seems to be any unified limiting result encompassing every possible way of scaling

the system. For example, the many-sources-asymptotic requires that both the buffer size and the

link utilization increase at the same rate as N increases with the link utilization fixed (less than

one), while the Poisson limit is valid especially when the buffer size remains fixed and the heavy-

traffic limit becomes useful when the buffer size increases like O(
√

N) with the link utilization

approaching to one appropriately.

†For instance, see [17]. The required assumption is very general and includes almost all the existing traffic models

in the literature including long-range dependent processes.
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However, it is by no means feasible to calculate the exact distribution of
∑N

i=1 WN
i (k) in (11)

as it is a solution of (N + 1)-dimensional distributional equations in the steady-state. Instead of

trying to directly solve the distributional equation, we resort to the Gaussian traffic modeling to

serve our purpose. The Gaussian traffic modeling [21, 22, 23] turns out to be extremely versatile

and accurate over a wide range of network operating points including the moderate deviation

scaling [21, 25, 28]. Also, since N flows are likely to be independent, this approach can further

be justified by the Central Limit Theorem as well as also by the recent empirical measurement

showing that the marginal distribution of the sum of congestion windows of all flows can be well

approximated by a Gaussian distribution [1].

Suppose the amount of arrival A(0, t) to a queue over a time interval (0, t] is a Gaussian process

with mean E{A(0, t)} = λt and variance v(t) = Var{A(0, t)}. Then, the queue-length distribution

is well approximated by [21, 22]

P{Q > x} ≈ exp

(
− inf

t>0

((µ − λ)t + x)2

2v(t)

)
, (13)

where µ is the link capacity. In our case, from (11), the link capacity is NC and the mean arrival

rate becomes E{A(0, t)}/t = NCρ(N). Further, we assume that the variance of the sum of N

flows’ arrival to the queue is approximated by σ2Nt2H where H ∈ [0.5, 1).‡ Then, the queue-length

distribution can be approximated as§

P{QN > O(Nγ)} ≈ exp

(
− inf

t>0

[NC(1 − ρ(N))t + O(Nγ)]2

2σ2Nt2H

)

= exp
(
−l(H)(1 − ρ(N))2HN2H−1+γ(2−2H)

)
, (14)

where l(H) is a function of C, σ2, H and does not depend on N . Then, since Lemma 2 and 3

guarantees P{QN > O(Nγ)} ∈ (0, 1) for all sufficiently large N , we must have

(1 − ρ(N))2HN2H−1+γ(2−2H) ∈ (0,∞)

for all sufficiently large N . This in turns gives, as N increases,

ρ(N) ≈ 1 − O(N−
2H−1+γ(2−2H)

2H ) → 1, (15)

since 2H − 1 + γ(2 − 2H) > 0.

Thus far, by relying on a Gaussian traffic modeling approach, we have obtained the convergence

rate of ρ(N) to 1 as N grows. From this, we can characterize the queue-length fluctuation in more

detail via (14). In particular, consider the probability that the queue-length being even larger than

Nγ+ε for any ε. In this case, by substituting (15) back into (14), it follows that P{QN > O(Nγ+ε)}
decreases to zero as N increases. We have thus shown the following:

Proposition 3 For any γ ∈ [0.5, 1) in our TCP/AQM systems and for any given ε > 0, limN→∞ QN/Nγ+ε =

0 in probability.

‡The exact equality corresponds to the fractional Brownian motion process with parameter H and this includes

long-range dependent processes as well.
§Here, O(Nγ) means that there exist constants 0 < a < b < ∞ such that 0 < a < O(Nγ)/Nγ < b < ∞ for all

large N .
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Proposition 3 gives us more precise range for the steady-state queue-length fluctuation. In

the steady-state, the system behaves in a way that the link utilization is almost full, while the

queue-length fluctuation is ‘under control’, with its fluctuation contained mostly around O(Nγ),

no more.

3.3 Drop-tail vs. AQM with ECN marks

In the previous section, we assumed an infinite buffer and packet marking is the only sources of

‘congestion signal’. Nevertheless, with slight modification, we can still show that our results will

continue to hold even under a finite buffer setting. (We only need to modify (6) to reflect the finite

buffer.)

Let B(N) be the buffer size (B(N) > qmaxNγ). Obviously, we will have to choose the buffer

size B(N) at least on the order of Nγ . However, Proposition 3 also asserts that we don’t need too

large buffer in order to lower the packet-drop ratio. The right choice for ‘buffer sizing’ involves

many performance-related issues and network design consideration and has recently been a key

issue in the literature. For instance, it is argued that the buffer size must be large enough (up to

the bandwidth-delay product) to keep the packet loss very small and for stability [2, 4, 12], while

B(N) = O(
√

N) is enough to achieve high link utilization [1]. Quite recently, it was also suggested

that the buffer size should be chosen much smaller than the current standard [29], as smaller buffer

radically decreases queueing delay at the cost of minor degradation of link utilization. All these

results are, however, obtained only under the drop-tail policy, and there lacks a systematic and

rigorous analysis of the TCP/AQM system under a general queue-based AQM with scaling O(Nγ)

(0.5 ≤ γ < 1).

In Section 3.2, we have shown that the link utilization approaches to 1 as N increases for any

choice of Nγ for the AQM. In other words, in the limit, the throughput of each flow will approach

to the normalized link capacity C. At the same time, since the throughput of a TCP flow can also

be approximated by the RTT along its path and the rate of ‘packet loss’ (or the rate of ‘congestion

signal’ being generated) [6], we can write

C ≈ K

RTT

1√
p

for large N, (16)

where K is a constant and p is the probability of receiving any ‘congestion signal’ during one RTT.

Now, let Tp be the two-way propagation delay (constant) and Tq be the queueing delay. We also

denote by pl the probability of packet loss, while by pm the probability of packet being marked.

Then, we have RTT = Tp + Tq and p ≈ pl + pm, and (16) becomes

C ≈ K

Tp + Tq

1√
pl + pm

for large N. (17)

Clearly, under drop-tail, the only way to generate congestion signal is via packet loss, and we have

pm = 0. Further, when the buffer size B(N) is chosen on the order of Nγ with γ ∈ [0.5, 1), it

follows from Lemmas 2 and 3 (with slight modification) that pl is also bounded away from 0 and

1. Thus, it cannot be arbitrarily small for any large N , and this is in line with the observation

in [4]. Moreover, when the buffer size is chosen far smaller than the bandwidth-delay product, the
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queueing delay becomes negligible, which makes pl even larger (see (17)). This also explains why

we need large buffer size under drop-tail to decrease the packet loss ratio pl, and this tradeoff is

inevitable.

However, under a queue-based AQM with ECN marks, we can get around such a tradeoff. By

choosing γ ∈ [0.5, 1) and the buffer size B(N) = O(Nγ+ε), we can make Tq arbitrarily small and

thereby enhance the system stability. The link utilization is still almost 100% from Proposition 2.

In addition, we see that a suitably chosen ‘extra space’ (B(N)−qmaxNγ) over which all the packets

are marked (not dropped) plays a crucial role in achieving full link utilization, while separating the

congestion signal from packet loss in a way that pm ∈ (0, 1) and pl ≈ 0. As a result, we see that

using any queue-based AQM in a link with large capacity and many flows adds much advantage to

the system performance over the simple drop-tail policy.

4 Utility of Discrete-Time Models for TCP/AQM

By capturing the system ‘state’ at each RTT instant and its evolution over the series of RTTs,

we have developed a discrete-time Markov chain model for TCP/AQM. This means that all the

system dynamics at sub-RTT levels (finer time scale) are ignored and lumped into a single statistic

captured at the start (or the end) of each RTT. So, the natural question to ask is: under what

situation is this approach valid? We here provide arguments showing that for γ ≥ 1/2, the system

dynamics can safely be captured only at certain instants (e.g., at k × RTT , k = 1, 2, . . .), while

for γ < 1/2 (which we do not consider in this paper), all the statistical fluctuation of the system

dynamics over finer time scales (such as packet arrival patterns to the queue within each RTT)

must be taken into account.

Suppose we keep track of every packet arrival instant to the queue within each RTT. Each flow

i will transmit about C ×RTT number of packets onto the network, so within one RTT, there will

typically be O(N) number of packets arriving to the queue. Under the current discrete-time model,

we only care about the total number of packets to the queue per RTT. However, these packets may

arrive in a random fashion; they may arrive infrequently or sometimes back-to-back. When the

queue is mostly non-empty, note that all these random fluctuations in packet arrivals per RTT can

add up to O(
√

N) additional fluctuation in the queue-length with high probability, provided that

packet inter-arrival times are not highly correlated. (This is similar to the Central Limit Theorem

regime.) However, since we scale the AQM according to Nγ where γ ≥ 1/2, there is enough room

in the buffer to absorb such fluctuation (O(
√

N)), and thus the system dynamics is unlikely to be

affected by those random arrivals in time. Clearly, if our scale for the AQM is Nγ with γ < 1/2,

then any of these typical queue-length fluctuation due to random packet arrivals can cause a large

number of packet loss or marks. In such a case, we evidently have to take all the packet-level

variations within each RTT into account in order to correctly capture the system dynamics. This

case explicitly comes under scrutiny in our recent paper [30].

In addition to the above sample-path based argument, we can further justify the use of a

discrete-time model under our scale via the Gaussian traffic modeling as in Section 3.2 and the

notion of the dominant time scale (DTS) [23, 31, 32]. In the context of teletraffic engineering, the
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notion of the DTS has been extremely useful in identifying the critical time scale over which the

traffic statistics should be captured. Under a Gaussian traffic modeling, the DTS is the time index

at which the expression in (13) attains its minimum and coincides the ‘critical time scale’ in the

many-sources-asymptotic via large deviation theory. (See [18, 33, 23] for details.) Shortly speaking,

the DTS is a function of the buffer level, link capacity, and some statistics of the input traffic to

the queue. In general, it is increasing as the buffer level or the link utilization increases. In other

words, for a larger buffer and higher link utilization, the input traffic should be characterized over

a longer time scale to calculate the buffer overflow probability. For example, when there are N

flows with capacity NC and the buffer level is kept fixed with constant utilization ρ < 1, it turns

out that the DTS tends to zero for large N [24]. This means that packet-level dynamics over fine

time scales (o(1)) should be taken into account, and this was the main idea in [24] and the very

reason why Poisson regime kicks in under a fixed buffer.

Consider again the approximation in (13) with v(t) = σ2t2H . Then, it is easy to see that the

DTS (minimizer) becomes

t̂ =

(
H

1 − H

)
x

µ − λ
.

Under our choice of the buffer level O(Nγ) and the link utilization ρ(N), this means

t̂ =

(
H

1 − H

)
O(Nγ)

NC(1 − ρ(N))
.

Using (15), the above relation becomes

t̂ = O
(
N

2γ−1
2H

)
. (18)

Hence, we see that if γ < 1/2, then the DTS is decreasing to zero for large N . In other words,

statistics over minuscule time scale (o(1)) dominate in determining the probability of P{QN >

O(Nγ)}. In that case, we should have tracked all the packet-level dynamics over smaller time scale

as mentioned earlier. On the other hand, in our current setting with γ ≥ 1, the DTS is getting

larger for large N , implying that we can capture the system statistics only at coarser time scales

(multiple of RTTs or higher) without much loss of key system dynamics.

5 Simulation Results

We here present simulation results using ns-2 [34] under different network configurations to validate

the analysis in the previous section. Specifically, we consider two scenarios: (i) persistent flows

with homogeneous RTTs; (ii) persistent flows with heterogeneous RTTs. We simulate three AQM

schemes with ECN marking: RED, REM [8], and PI [9], compared with Drop-Tail (DT). Our

performance metrics are the average queueing delay, link utilization, packet loss probability. To

illustrate the benefit of AQM schemes with packet marking, we also consider the ratio between

packet loss and the overall congestion signals, i.e., nl/(nl + nm) where nl is the number of lost

packets (due to buffer overflow) and nm is the number of marked packets.

We configure the AQMs and DT in the following way. The buffer size is set to CT ×Nγ , where

C is the average bandwidth share for each flow, T is the RTT, and N is the number of flwos. Note
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that γ = 1 corresponds to the tradtional rule-of-thumb, i.e., bandwidth-delay product, and γ = 0.5

represents the scheme in [1], i.e., CT
√

N . We configure the system such that C is 25 packets/sec,

and the two-way propagation delay is 2Tp = 200 ms. Note that for γ = 0.5, the queueing delay

becomes negligible (O(
√

N/NC) = O(1/
√

N)) and can be ignored, thus we have CT ≈ 2CTp = 5

packets. For γ = 1, the queueing delay will be O(1), so T > 2Tp. To account for such a difference,

we add 1 packet margin such that the buffer size is 6Nγ = (2CTp + 1)Nγ for all AQMs and DT.

For RED, the minimum and the maximum marking threshold (i.e., minth and maxth) are set to

Nγ and 5Nγ , respectively, with the maximum marking probability Pmax = 0.2. As to REM and

PI, we configure the target queue sizes (pbo for REM, qref for PI) as Nγ , and other parameters

of AQMs and DT are set to the default values in ns-2.

For simulation, we consider a simple topology, where many persistent TCP flows share a bottle-

neck router with AQM schemes or DT. We first set the sum of two-way propagation delays equal to

200 ms for all flows, and the link capacity to NC = 25N packets/sec, in proportion to the number

of flows N .
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Figure 3: Homogeneous RTTs: performance metrics with the increase of the number of flows, N

for a fixed scaling parameter γ = 0.8.

Figure 3 shows the performance metrics with the increase of the number of flows, N for a

fixed scaling parameter γ = 0.8. The queueing delay decrease as N increases for all the schemes

(AQMs and DT). This is well expected since the maximum queueing delay is 6Nγ/NC = O(Nγ−1).

When the number of flows is larger than several hundreds, all the schemes considered yield full link

utilization. The average packet loss probability is small and less than 4% in any case. Figure 3

also shows that the congestion signal for DT is purely packet-loss regardless of the number of flows,

while for AQM schemes with marking, almost all the congestion signal are from packet marking

and there is virtually no packet loss when N is large enough. This clearly indicates added benefit

of employing AQMs with packet marking as it results in less retransmission of packets, improving

goodput of each flow.

To illustrate the effect of the scaling parameter γ, we perform the simulation for fixed number

of flows N = 1000 with various γ in [0.5, 1] and show the results in Figure 4. As expected, the

queueing delay increases as γ increases. As soon as γ becomes larger than 0.8, we have 100% link

utilization, and all the congestion signals are from packet marks under all AQMs considered (except

DT). If we had more nubmer of flows, say, N = 10000, then we would achieve the full link utilization
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Figure 4: Homogeneous RTTs: performance metrics with the increase of scaling parameter γ for

fixed number of flows N = 1000.

and zero packet loss for smaller γ, resulting in even greater saving of the buffer size. With the help

of AQM with packet marking, our result thus in some sense fills the gap between O(
√

N) scheme

for the buffer size in [1] for ‘high’ utilization and much larger buffer size requirement (O(N)) as in

the traditional rule-of-thumb or as suggested in [2] for 100% utilization.

Lastly, we repeat the same simulations under heterogeneous RTTs. The two-way propagation

delays are randomly drawn from the uniform distribution over [120, 280] ms with mean 200 ms. As

can be seen in Figures 5 and 6, all the performance metrics display the same trend as in the case

of homogeneous RTTs.
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Figure 5: Heterogeneous RTTs: performance metrics with the increase of the number of flows, N

for a fixed scaling parameter γ = 0.8.

6 Conclusions

Existing results regarding buffer sizing in the Internet routers suggest that the buffer size be

O(
√

N) [1] for high link utilization or O(N) [2, 3] for 100% utilization where the link has ca-
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Figure 6: Heterogeneous RTTs: performance metrics with the increase of scaling parameter γ for

a fixed number of flows, N = 1000.

pacity NC serving N flows. These results are based on more or less heuristic arguments and are all

limited to the drop-tail scheme. In this paper, we explore the limiting behavior of a TCP/AQM sys-

tem for intermediate buffer size of O(Nγ) (0.5 ≤ γ < 1) under general queue-based AQM schemes

with ECN marking and under generalized AIMD for each TCP flow. We develop a stochastic

discrete-time model to characterize the system dynamics and then show that we can have 100%

link utilization for a large number of flows when the buffer size requirement is anywhere between

O(
√

N) and O(N). In addition, under the same scale, we show that AQM with ECN marking is

able to generate the sufficient congestion signal through packet marking and eliminate the packet

loss, which would be impossible under the drop-tail. We also illustrate that the choice of scaling

(i.e., either γ < 0.5 or γ ≥ 0.5) for buffer size and AQM parameters determines whether we can

use discrete-time model to capture the system dynamics.
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Appendix

Proof of Lemma 1: To make the notations simple, let w̄(k) := 1
N

∑N
i=1 WN

i (k). First, note that

we can always find k′ such that w̄(k′) < C ′. To see this, suppose otherwise that w̄(t) ≥ C for all t.

Then, since the network can serve only up to NC packets per time slot, QN (t) > qmaxN > qmaxNγ

for all t and for any γ ∈ [0.5, 1). In other words, all the incoming packets will be marked forever and

thus, w̄(t) will keep decreasing and eventually becomes smaller than C ′, leading to a contradiction.

Now, for such k′, observe that

w̄(k′ + 1) − w̄(k′) ≤ 1

N

N∑

i=1

α
(
WN

i (k′)
)
≤ Nα(w̄(k′)) ≤ Nα(C ′), (19)

where the second inequality is from the concavity of the function α(·) and Jensen’s inequality, and

the third one follows since α(·) is non-decreasing and w̄(k′) < C ′. Thus, we have w̄(k′ + 1) ≤
C ′ + α(C ′). Without loss of generality, we can assume that w̄(k′ + 1) ≥ C ′. (If not, simply repeat

the argument in (19) until it becomes larger.) Then, regardless of QN (k′ + 1), we see from (6)

that QN (k′ + 2) is always larger than qmaxN (thus larger than qmaxNγ) and so all the incoming

packets will be marked during that time slot. This makes all the window sizes at the next time

slot keep decreasing until the sum of the window sizes becomes smaller than NC ′. However, in the

meanwhile, the sum of the window sizes can still increase by up to Nα(C ′ + α(C ′)) (by repeating

the argument in (19)). This completes the proof.

Proof of Proposition 1: As the system is in steady-state, for any well-defined (measurable)

function g : R → R, we should have E{g(WN
i (k + 1))} = E{g(WN

i (k))}. Given ~XN = ~xN , let

fi ∈ [0, 1] denote the probability that none of wN
i packets from flow i is marked. Specifically, we

have

fi

(
~xN

)
:=

[
1 − pN (qN )

]wN
i . (20)

Then, given that ~XN (k) = ~xN (k), we have, for any measurable function g,¶

g
(
WN

i (k + 1)
)

=





g

((
wN

i (k) + α(wN
i (k))

)
∧ wmax

)
with probability fi

(
~xN (k)

)
,

g
(
(1 − β)wN

i (k) ∨ 1
)

with probability 1 − fi

(
~xN (k)

)
.

Thus,

E
{
g

(
WN

i (k + 1)
)}

= E

{
E

{
g

(
WN

i (k + 1)
) ∣∣ ~XN (k)

}}

= E

{
g
(
(WN

i (k)+α(WN
i (k))) ∧ wmax

)
fi

(
~XN (k)

)}

+ E

{
g

(
(1 − β)WN

i (k) ∨ 1
)
·
(
1 − fi

(
~XN (k)

))}
.

From the steady-state assumption, we have E{g(WN
i (k + 1))} = E{g(WN

i (k))} = E{g(WN
i )}, and

we can rewrite the above equation as

E
{
g

(
WN

i

)}
= E

{
g

((
WN

i + α(WN
i )

)
∧ wmax

)
fi

(
~XN

)}

+ E

{
g

(
(1 − β)WN

i ∨ 1
)
·
(
1 − fi

(
~XN

))}
, (21)

¶We drop b·c here for notational simplicity and this does not affect our results in the paper.

17



where the expectation is taken with respect to the stationary distribution of ~XN (k).

First, we choose g(x) = x in (21). Since (1 − β)WN
i ∨ 1 ≤ (1 − β)WN

i + β (from WN
i ≥ 1) and

0 ≤ fi(·) ≤ 1, we have from (21)

E
{
WN

i

}
≤ E

{(
WN

i + α(WN
i )

)
fi

(
~XN

)}
+ E

{
((1 − β)WN

i + β)(1 − fi

(
~XN

)
)
}

.

This gives

βE
{
WN

i − 1
}

≤ E

{(
β(WN

i − 1) + α(WN
i )

)
fi

(
~XN

)}

≤ β

(
wmax +

α(wmax)

β
− 1

)
E

{
fi

(
~XN

)}
.

Thus, (8) follows by noting that, from (20),

E

{
fi

(
~XN

)}
= E

{[
1 − pN (QN )

]W N
i

}
. (22)

To obtain the upper bound, let g(·) = (·)2 in (21). We then choose constants a and b such that

a + b = α2(1) + 2α(1) and awmax + b = 0. (23)

This gives a = −(α2(1) + 2α(1))/(wmax − 1) < 0 and b = wmax(α2(1) + α)/(wmax − 1) > 0. Then,

for any w with 1 ≤ w ≤ wmax, we have

(w + α(w))2 ≥ w2 + aw + b. (24)

To see this, note that (24) is equivalent to (2α(w)− a)w + α2(w)− b ≥ 0. Since a < 0, the LHS of

this relation is increasing in w, and we have equality at w = 1 from (23), thus (24) holds. Similarly,

the function w2 + aw + b is convex in w, so its maximum value over 1 ≤ w ≤ wmax occurs only

at the boundaries. At w = wmax, we have w2 + aw + b = (wmax)2 from (23), and at w = 1, we

have w2 + aw + b = 1 + a + b = (1 + α(1))2 < (wmax)2 from (23) and by our choice of wmax

(wmax > M > C ′ + α(C ′) > 1 + α(1), see (7)). Thus, for 1 ≤ w ≤ wmax, we also obtain

(wmax)2 ≥ w2 + aw + b. (25)

Combining (24) and (25) gives

((w + α(w)) ∧ wmax)2 ≥ w2 + aw + b, ∀w ∈ [1, wmax].

Thus, from (21) with g(·) = (·)2, we get

E

{(
WN

i

)2
}
≥ E

{((
WN

i

)2
+ aWN

i + b
)

fi

(
~XN

)}
+ E

{
(1 − β)2(WN

i )2
(
1 − fi

(
~XN

))}
.

After rearranging terms, we obtain

(2β − β2)E
{(

WN
i

)2
(
1 − fi

(
~XN

))}
≥ E

{(
aWN

i + b
)
fi

(
~XN

)}
. (26)

Lastly, we define a function h ∈ [0, 1] to be

h(~xN ) :=
[
1 − pN (qN )

]wmax
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Since 1 ≤ WN
i ≤ wmax, we have h

(
~xN

)
≤ fi

(
~xN

)
for any i (see (20)). Observe

(2β − β2)w2
maxE

{
1 − h

(
~XN

)}
≥ (2β − β2)w2

maxE

{
1 − fi

(
~XN

)}

≥ (2β − β2)E
{(

WN
i

)2
(
1 − fi

(
~XN

))}

≥ E

{(
aWN

i + b
)
fi

(
~XN

)}

≥ E

{(
aWN

i + b
)
h

(
~XN

)}
, (27)

where the third inequality follows from (26) and the last one follows from aWN
i + b ≥ 0 for

1 ≤ WN
i ≤ wmax. Now, summing (27) over i and dividing by N gives

(2β − β2)w2
maxE

{
1 − h

(
~XN

)}
≥ E

{(
a

∑N
i=1 WN

i

N
+ b

)
h

(
~XN

)}
.

Since
∑N

i=1 WN
i /N < M < wmax from Lemma 1, and by our choice of a, b in (23), we see that

(2β − β2)w2
maxE

{
1 − h

(
~XN

)}
≥ E

{(
a

∑N
i=1 WN

i

N
+ b

)
h

(
~XN

)}

≥ (aM + b) E

{
h

(
~XN

)}
= KE

{
h

(
~XN

)}
, (28)

where K := aM + b > 0 from M < wmax and (23). Thus, from (28), we obtain

E

{
h

(
~XN

)}
≤ (2β − β2)w2

max

(2β − β2)wmax + K
:= B < 1

for all N . This proves (9) and we are done.

Proof of Lemma 2: Since the function (1−x)wmax is convex for x ∈ [0, 1], we have from Jensen’s

inequality and from (9) that
[
1 − E{pN (QN )}

]wmax ≤ E
{
[1 − pN (QN )]wmax

}
≤ B < 1.

Thus, we obtain

0 < A := 1 − B1/wmax ≤ E
{
pN (QN )

}
, (29)

where 0 < A < 1. Note that, since p(x) is non-decreasing in x and limx→∞ p(x) = 1, we have

p(x) ≤ p(q) + (1 − p(q))1{x>q}

for any x, q ≥ 0. Thus, from pN (Nγx) = p(x), we have

pN (Nγx) ≤ p(q) + (1 − p(q))1{Nγx>Nγq}. (30)

By choosing x = QN/Nγ and taking expectation in (30), we have from (29)

0 < A ≤ E{pN (QN )} ≤ p(q) + (1 − p(q))P{QN ≥ qNγ}.

Note that, since limx→0 p(x) = 0, we can always choose q such that 0 < p(q) < A < 1. Thus, for

such q ∈ (0,∞), we have

0 <
A − p(q)

1 − p(q)
≤ P

{
QN ≥ qNγ

}
,

and (10) follows by setting δ = (A − p(q))/(1 − p(q)) > 0.
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Proof of Proposition 2: Clearly, in the steady-state, we must have ρ(N) < 1, since otherwise

the queue-length will grow without bound, thus violating the stationarity of QN (k). Suppose that

lim infN→∞ ρ(N) = ρ∗ < 1, and choose a subsequence nk ↑ ∞ such that limk→∞ ρ(nk) = ρ∗ < 1.

Then, from (11) and since the link utilization along the subsequence is bounded away from 1, we

can apply the many-sources-asymptotic upper bound evaluated at zero buffer. Specifically, we have

lim sup
nk→∞

1

nk
log P{Qnk > 0} ≤ −I(0),

where I(0) > 0 for any link utilization ρ < 1. This means that, along the subsequence, P{Qnk > 0}
decreases to zero exponentially fast as nk grows. But, this contradicts (10) for large N . Therefore,

we should have ρ∗ = 1.

Proof of Lemma 3: Note that, since all the N flows are symmetric, their steady-state win-

dow size distributions are identical. In other words, the link utilization simply becomes ρ(N) =

E{∑N
i=1 WN

i }/NC = E{WN
i }/C. So, from Proposition 2 and since C > 1, we have E{WN

i } > 1

for all large N . Thus, we have for all sufficiently large N

0 < ζ ≤ E{WN
i } − 1

wmax + α(wmax)
β − 1

,

where ζ ∈ (0, 1). Thus, from (8), (1 − pN (Q̂
W N )) ∈ [0, 1], and 1 ≤ WN

i ≤ wmax, we have

0 < ζ ≤ E

{
[1 − pN (QN )]W

N
i

}
≤ 1 − E{pN (QN )}.

Thus, we obtain

E
{
pN (QN )

}
≤ 1 − ζ < 1. (31)

Since p(x) is non-decreasing, we clearly have p(q′)1{x≥q′} ≤ p(x) for all x, q′ ≥ 0. Thus, similarly

as in the proof of Lemma 2, we have from (31) that

p(q′)P
{
QN ≥ q′Nγ

}
≤ E

{
pN (QN )

}
≤ 1 − ζ < 1.

Since p(x) is non-decreasing and continuous, and limx→∞ p(x) = 1, we can choose q′ such that

1 − ζ < p(q′) < 1. Hence,

P
{
QN ≥ q′Nγ

}
≤ 1 − ζ

p(q′)
:= η < 1,

and we are done.
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