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Abstract

We consider a TCP/AQM system with large link capacity (NC) shared by many flows. The

traditional rule-of-thumb suggests that the buffer size be chosen in proportion to the number

of flows (N) for full link utilization, while recent research outcomes show that O(
√

N) buffer

sizing is sufficient for high utilization and O(1) buffer sizing makes the system stable at the cost

of reduced link utilization. In this paper, we consider a system where the AQM is scaled as

O(Nα) with a buffer of size O(Nβ) (0 < α < β < 0.5). By capturing randomness both in packet

arrivals and in packet markings, we develop a doubly-stochastic model for a TCP/AQM system

with many flows. We prove that, under such a scale, the system always performs well in the

sense that the link utilization goes to 100% and the loss ratio decreases to zero as the system

size N increases. Our results assert that the system enjoys benefit of largeness with no tradeoff

between full link utilization, zero packet loss, and small buffer size, at least asymptotically. This

is in stark contrast to existing results showing that there always exists a tradeoff between full

link utilization and the required buffer size. Extensive ns-2 simulation results under various

configurations also confirm our theoretical findings. Our study illustrates that blind application

of fluid modeling may result in strange results and exemplifies the importance of choosing a

right modeling approach for different scaling regimes.

1 Introduction

In the current Internet, TCP congestion control is responsible for carrying about 90% of the bytes of

total traffic generated in the network. Such a congestion control algorithm consists of a network and

a source algorithm that are tightly coupled with each other. The network algorithm, or the Active

Queue Management (AQM) usually acting on a router, detects an onset of congestion and governs

how to generate and update congestion signal based on the information collected at the router, e.g.,

input traffic rate, queue size, delay, etc., and then notify the sender, hoping that the sender will

react appropriately to help alleviate the congestion and to attain best network performance. On

the other hand, the source algorithm that operates at the edge of the network (end-user), dictates

how each sender should change its transmission rate or window size in response to the congestion

signal (packet drop, delay, or Explicit Congestion Notification (ECN) marks [1]) from the network.
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As the number of flows and the size of link capacity in the network continue to grow, the

analysis and design of such a large TCP/AQM system are becoming increasingly difficult and

involved. Among other issues, the question of buffer sizing has recently received much attention in

the literature [2, 3, 4, 5, 6, 7, 8]. The question is: given the number of TCP flows (N) and the size of

link capacity (NC), how do we choose the buffer size B(N)? Under the linear buffer sizing B(N) =

O(N),∗ it is well known that a ‘stable’ system ensures the convergence of a normalized queue-length

to a non-zero value (non-zero queueing delay) and thus achieves 100% link utilization [9, 3, 10, 11],

while the square-root buffer sizing (B(N) = O(
√

N) turns out to be sufficient to achieve reasonably

high link utilization when N is large [2]. More recently, it has been suggested that a very small

buffer of size (B(N) = O(1)) would be enough and in fact make the system stable at the cost of

reduced link utilization [11, 5, 6, 8]. Clearly, different objectives give rise to different guidelines

on buffer sizing, and there exists a tradeoff between full link utilization and the amount of required

buffer space.

On the other hand, for the design of TCP/AQM schemes associated with the chosen buffer

size, the ‘fluid modeling’ of TCP/AQM congestion control and its stability analysis have proven

extremely powerful and versatile. Still, different scaling regimes for AQM schemes and buffer sizes

often lead to different types of fluid models. For example, when there are N flows with capacity NC

and linear scaling (O(N)) is employed for the buffer size and AQM (e.g., all the buffer thresholds

for packet marking are O(N)), it has been shown that the system dynamics can be described by

the normalized version of the system [12, 13] via the law-of-large-numbers type of arguments. In

this case, several stability criteria have been obtained in terms of parameters of the normalized

system [14, 15, 10], where the packet marking is based on the normalized queue-length and the

stability of the system refers to the convergence of this normalized queue-length in the steady-state

(thus resulting in 100% link utilization). In contrast, when the buffer size and the scaling for AQM

are both chosen as O(1), it turns out that the system is better modeled by explicitly capturing

the random packet arrivals within each RTT (rate-based AQMs) [16, 11, 5, 17], where the packet

marking is based on the normalized rate into the queue and the stability of the system now refers

to the convergence of this normalized rate (which is less than the normalized capacity, thus leading

to a reduced link utilization). An ‘intermediate’ scaling of O(Nγ) with 0 < γ < 1 for AQMs and

the buffer size was also considered in [5]. However, the attention was paid mainly to the stability

of the system, as opposed to the performance in terms of the link utilization and the queue-length

distribution in the steady-state.

In this paper, we focus on TCP/AQM systems with ECN marking under a ‘sub-square-root’

scaling and investigate the system performance in terms of the link utilization and the queue-length

distribution in the steady-state. Specifically, we scale the AQM and the buffer size as O(Nα) with

0 < α < 0.5 (more ‘aggressive’ than O(
√

N)) and analyze the system behavior as N becomes large.

By explicitly taking into account the randomness both in packet arrival time and the number of

packets itself, we develop a ‘doubly-stochastic’ Markovian model in which the aggregate arrival

to the queue is modeled by a conditional Poisson process – a Poisson process with stochastic rate

where the stochastic rate is determined by the dynamics of random packet markings in the previous

∗Throughout this paper, we write f(x) = O(g(x)) when 0 < lim infx→∞
f(x)
g(x)

≤ lim supx→∞
f(x)
g(x)

< ∞.

2



RTT. We then analyze this doubly-stochastic model under the proposed scale in the steady-state

and show that, as N increases, (i) the link utilization converges to 100% and (ii) the queue-length

distribution is concentrated right on ‘target’, leading to zero loss probability. Thus, our results

show that the system enjoys ‘benefit of largeness’ under O(Nα) scale in that there is no tradeoff

between 100% link utilization, zero loss probability at the queue, and smaller buffer size, at least

asymptotically. This is in sharp contrast to other existing results in the literature, which all predict

some tradeoffs between the buffer size and the link utilization. We also provide extensive simulation

results under various settings to confirm all our theoretical findings.

The rest of the paper is organized as follows. In Section 2, we first provide background on

the issue of buffer sizing at routers and propose our scales for AQM and the buffer sizing. We

also illustrate the difficulty of finding a ‘right’ fluid model for the system under the aggressive

scale. In Section 3, we develop a doubly-stochastic framework to capture the randomness both

in packet marking and time of arrivals and describe our modeling details. In Section 4, we prove

our main results showing that all the performance metrics are not impaired under the proposed

scale asymptotically. In Section 5, we provide extensive ns-2 simulations to verify our findings.

In Section 6 we illustrate the importance of capturing the randomness in packet arrivals under

the aggressive scale and discuss existing results for the proposed scale. Finally, we conclude in

Section 7.

2 Preliminaries

2.1 Scaling Buffers and AQMs inside a Network

In TCP congestion control, one of the long-held rules-of-thumb in network design is that the buffer

size at bottleneck links should be proportional to the bandwidth-delay product [9, 3]. In a large

network setting where there are N flows with link capacity NC, this rule-of-thumb suggests O(N)

for buffer sizing. Associated with this buffer sizing is the linear scaling for AQM, in which the

marking function pN (x) ∈ [0, 1], or the probability of packet marking when the queue-length is x, is

scaled linearly, i.e., for all N and x, pN (Nx) = p(x) for some function p, where the superscript ‘N’

in the marking function pN (x) means that there are N flows with capacity NC [18, 10, 13, 19, 15].

Note that the linear scaling means that packets are marked based on the normalized queue-length.

Under the drop-tail AQM policy with many flows, it is shown [2] that one can do much better

than this traditional rule-of-thumb for buffer sizing. Empirical observation reveals that when N

is large, each user’s window size Wi (i = 1, 2, . . . , N) becomes independent. By appealing to the

Central Limit Theorem, their sum will behave like a Gaussian random variable with mean equal to

the size of the ‘pipe’ (NC × RTT) and with standard deviation O(
√

N). Hence, by choosing the

buffer size on the order of
√

N to absorb typical fluctuations, one can still achieve high utilization

and thus save huge cost for buffers implemented in high-speed core routers. Further, quite recently,

far smaller buffer sizing of B(N) = O(1) has been proposed in [5, 6, 8], all of which however result

in a reduced link utilization (bounded away from 1).

This observation leads us to pose the following question: can we do better than O(
√

N), i.e.,

can we put buffers of size O(Nβ) with β ∈ (0, 0.5) instead, while maintaining full link utilization
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and low packet loss? The only available result in the literature using this range of scale is in [5],

where it was suggested that the system under O(Nγ) (0 < γ < 1) scale would promote instability

for very large N (thus undesirable). Still, it lacks any performance investigation in terms of some

possible tradeoff between the link utilization and the queue-length behavior under such a scale.

2.2 Aggressive Packet Marking

In this paper we explore any possibility of using buffer sizes of O(Nβ) and AQM schemes with

O(Nα) scaling, where 0 < α < β < 0.5. By this scaling of TCP/AQM, we mean that the buffer

size is on the order of Nβ (B(N) = O(Nβ)) and, for AQM schemes, there exists a function p such

that pN (Nαx) = p(x) for all N and x ≥ 0 (see Figure 1). Note that this can be interpreted as a

more aggressive marking than the case of α = β = 1 (linear scale) since the marking probability is

much higher for the same queue-length.† We note that difference in marking scales simply means

different parameter set-up at the routers, which can be easily configured as desired. Moreover, the

scaling of marking functions, or AQM schemes in general, is directly related to the issues of network

design over a long time scale. For example, if the number of connections (or customers) were to

increase by 10 times, then a natural question to ask is: what percentages of additional capacities

or buffer sizes are needed at routers to provide the same level of performance to each user? Under

the linear scale (α = β = 1), we would have to increase by 10 times the buffer size as well as all

the parameters associated with the AQM. If our aggressive scale is to be used, the buffer size and

the AQM parameters should be increased very little (e.g., 100.3 ≈ 2 and 100.2 ≈ 1.6 when α = 0.2

and β = 0.3).

1−e
−1

minN max N B(N)

1

max
p

p (x)
N

1

p (x)
N

B(N)q q
αα γN

α00

Queue sizeQueue size

(b) Exponential Marking: REM type(a) Linear Marking: RED type

Steady State Region ? Steady State Region ?

Marking probability Marking probability

Figure 1: Examples of marking functions with aggressive marking scale of Nα.

Figure 1 shows some examples of marking functions with the scale of Nα. Note that all the

thresholds for the marking are on the order of Nα. Suppose that the system performs as desired in

the steady-state,‡ i.e., the queue-length will be O(Nα) with high probability. Then, we expect that

the system will achieve almost 100% utilization while packet loss probability with a buffer of size

†Our scale is even more aggressive than the case of α = 0.5.
‡Here, the steady-state should be interpreted in a distributional sense, not as a constant queue-length.
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O(Nβ) (β > α) will be very small large N . Our ns-2 simulation results show that this is indeed

the case. (See Section 5 for details.) Since 0 < α < β < 0.5, this implies that we can in fact do

much better than O(
√

N) buffer sizing [2] while maintaining all the good performance measures

(full link utilization, negligible delay, and low loss).

2.3 Deriving Fluid Models under Aggressive Scales

Suppose now that one wants to apply the existing stability criterion in the literature to the system

under the aggressive scale. For example, according to [10, 15, 18], the criterion for linear stability of

the system with queue-based marking (obtained from the Nyquist criterion) becomes O(N1−α) < ζ,

where ζ is a system-independent constant. On the other hand, the stability of all rate-based marking

systems assuming Poisson type of packet arrivals requires that the slope of the marking function

at the equilibrium be bounded, which then translates into the condition that the buffer size be

bounded, i.e., B(N) < η or at least O(1) scaling should be employed for AQM [16, 11]. Note that

for any α ∈ (0, 0.5) and large N , none of these criteria is satisfied, and this leads to a conclusion that

the system under the aggressive scale is always unstable, albeit all the good performance measures

as numerically observed. This is an embarrassing situation since an ‘unstable’ system still possesses

all the good performance measures. So, one may ask: “What went wrong?”, “What causes this

self-conflicting conclusion?”

The above illustrates that one has to be very careful in choosing a ‘right’ fluid model (or

approximation) of the system under consideration. In general, depending on the scale of the system

or types of limiting regimes employed, one can derive different fluid models (or approximations)

that effectively capture the dynamics of original stochastic systems and then discuss their stability.

For example, under the linear scale O(N) for AQM and the buffer size, one can readily obtain

fluid models for the normalized arrival rate and queue-length, where the marking is based on the

normalized queue-length and the stability here refers to the convergence of the normalized queue-

length [10, 15, 20, 21]. Similarly, in [13, 19], the authors derived a limiting system dynamics by

considering random packet markings under O(N) scale (but ignoring random packet arrivals within

each RTT). On the other hand, under O(1) scale with constant buffer size, the resulting fluid models

are usually of rate-based types, where the marking is based on the arrival rate (e.g., an incoming

packet is marked with probability (λ/C)B where packets arrive randomly with an average rate λ

and buffer size B) and the stability now refers to the convergence of the arrival rate, from which

the steady-state queue-length distribution can be inferred [16, 11, 5]. Further, in [17, 22, 23], where

all the system parameters are kept constant (not dependent on N), some appropriate fluid models

were obtained by sending the ‘weight’ of the exponential averaging for the queue-length to zero

(or making it very small) and by making the exponentially averaged queue-length almost constant

(separation of time-scales).

In this regard, it is now clear what went wrong in the aforementioned arguments. Specifically,

the stability criterion in [10] is not meant to be used for systems with O(Nα) scale, as it was

originally derived for a system with O(N) scale. Similarly, those in [17, 16, 11] are valid only under

O(1) scale (or under a rate-based marking). Certainly, blind application of the fluid model could

lead to very strange results.
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For the system with O(Nα) scale, however, it is still unclear how to derive a ‘right’ fluid model.

This scale regime was discussed in [5], where the authors considered ‘underload’ and ‘overload’

situations separately and claimed that the system would be stable for moderate values of N , but

tends to be unstable when N is very large (say, 5000 or more). However, this seems to conflict with

the observation made in [2] and also our theoretical and simulation results later on in this paper

showing that the system performance gets better for larger N . (See more discussion on this in

Section 6.2.) As an attempt to address this ‘grey area’, in this paper, we instead construct a fully

stochastic model by taking the packet-level dynamics into account and analyze its performance in

the steady-state, thus bypassing the difficulty of deriving a ‘right’ fluid model for the system under

the proposed aggressive scale.

3 System Model

3.1 A Doubly-Stochastic Approach

In this section we develop our doubly-stochastic approach to capture the randomness both in packet

arrival instants and random packet markings. Consider a single link shared by N persistent flows,

whose window sizes evolve according to the AIMD rule. Let T be the round-trip-time delay (RTT)

for all N flows. We define WN
i (k) to be the window size of flow i at the start of kth RTT, where

the superscript N means that there are N flows with capacity NC. Let wmax (wmax > CT + 1)

be the maximum window size for all flows, i.e., 1 ≤ WN
i (k) ≤ wmax for all i and N . Then, each

window size WN
i (k) evolves as follows:

WN
i (k + 1) =







(

WN
i (k) + 1

)

∧ wmax if no marking,

bWN
i (k)/2c ∨ 1 otherwise,

where x ∧ y := min{x, y} and x ∨ y := max{x, y}. We define a set of window sizes for all N flows

by WN (k) := (WN
1 (k), WN

2 (k), . . . , WN
N (k)).

����������	
��

����������
����
���
����������������������

)(kwN

)(kwN

)1( +kW N

)( αNO

Figure 2: Overview on our doubly-stochastic approach.

Figure 2 illustrates our doubly-stochastic approach. Suppose first that, at the start of the

kth RTT, all the window sizes for N flows are given, i.e., WN (k) = wN (k) where wN (k) :=

6



(wN
1 (k), . . . , wN

N (k)). (Note here that we use capital letters for random variables and lower case

letters for their realizations.) Then each source i simply transmits wN
i (k) number of packets over

each RTT onto the network at the source side. These packets traverse a number of links (upstream

queues) being multiplexed with other flows, and suffer different amount of delay jitters. Thus, by the

time they arrive to the queue of interest deep inside the network, their arrival times become random.

In other words, given WN (k) = wN (k), the arrival to the queue of interest becomes a random

process with a set of parameters as a function of wN (k), making the queue-length fluctuation also

random.

Now, for a given realization of the queue-length fluctuation, we can find the distribution on

whether incoming packets are marked or not from a specific marking function pN (x). Thus, by

taking expectation over all possible queue-length realizations, we can calculate the distribution on

whether there is any marked packet for flow i, which in turn determines the distribution of the

window size for (k + 1)th RTT duration, i.e., WN
i (k + 1). Therefore, given WN (k) = wN (k), it is

possible to find the distribution of WN (k +1) by capturing all the dynamics mentioned above, and

as a consequence, there exists a Markovian structure between WN (k) and WN (k + 1).

3.2 Model Description

In this section we describe our model in detail and construct a Markov chain for WN (k). As before,

at the start of the kth RTT, suppose that all the window sizes are known. Then, in order to capture

the random nature in packet arrivals, given WN
i (k) = wN

i (k) for i = 1, 2, . . . , N , we assume that

the actual aggregate packet arrivals to the queue within one RTT can be modeled by a Poisson

process with mean rate λN (k) given by

λN (k) :=
1

T

N
∑

i=1

wN
i (k). (1)

See Figure 3 for illustration. Thus, the arrival process to the queue of interest is modeled by a

conditional Poisson process (or doubly stochastic Poisson process) [24, 25]. We note that, under

WN (k) = wN (k), the Poisson assumption for the aggregate arrivals to the queue within one RTT is

reasonable as long as packet arrivals from each flow are jittered independently at different upstream

queues, due to the fact that the superposition of independent point processes under a suitable scaling

converges weakly to a Poisson process [26, 27]. These Poisson packet arrivals over small time scale

(sub-second scale or RTT-level) have also been empirically observed in [28, 29, 30, 31].

Remark 1 Note that a conditional Poisson process is not a Poisson process since the rate over

one RTT is given by the sum of the random window sizes. In other words, the rate itself is a

random process, making the arrival process doubly-stochastic. Similar doubly-stochastic approaches

for TCP/AQM systems have been used in [17, 11, 8]. However, results in [17, 11] are not applicable

to systems under the aggressive scale, and in [8], the conditional Poisson process is used only to

show that the process is dominated by a standard Poisson process with some larger constant rate

(in terms of the maximum window size of each flow) and all the analysis was conducted via this

standard Poisson process for the system under O(1) scale with constant buffer size. Instead, we focus
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Figure 3: Model for the arrival process to the queue within each RTT.

on different scalings and attempt to solve the constructed Markov chain for the doubly-stochastic

model (random arrivals and random packet markings) in the steady-state with stationary distribution

and derive the asymptotic performance results. 2

As before, pN (x) here is the probability that a packet is marked when the queue-length is x. In

particular, our marking function pN (x) of scale α ∈ (0, 1/2) will satisfy the following: there exist a

non-decreasing function p : R
+ → [0, 1] such that, for all N and x,

pN (Nαx) = p(x), (2)

where

lim
x→0

p(x) = 0 and lim
x→∞

p(x) = 1. (3)

Note that this assumption is very general and the base marking function p(x) can be any non-

decreasing function with p(0) = 0 and p(∞) = 1. See Figure 1 for examples satisfying the above

assumptions.

Within one RTT and given WN (k) = wN (k), since we assume that the arrival is a Poisson

process with mean rate λN (k), we can find the distribution of the queue-length during the kth RTT

by using any standard queueing model such as M/D/1 or M/G/1 as long as λN (k) < NC. Further,

we assume that if λN (k) ≥ NC, all the incoming packets are marked.§ Now, given WN (k) = wN (k)

during kth RTT, let Q
wN (k)

be the random variable denoting the queue-length fluctuation due to the

random arrival instants. From our formulation above, we see that Q
wN (k)

is distributed according

to the steady-state queue-length distribution of the M/D/1 or M/G/1 if λN (k) < NC where λN (k)

is from (1). When λN (k) ≥ NC, we can conveniently set Q
wN (k)

= ∞ since p(∞) = 1 from (3) and

all the incoming packets will be marked. Also, this implies that
∑N

i=1 WN
i (k) < NCT + N all the

time, since all the flows will drop their rates by half once the sum of the window sizes goes beyond

NCT .

Now, given WN (k) = wN (k) and given a realization of queue-length, each packet will be marked

with probability pN (Q
wN (k)

). Since flow i transmits wN
i (k) packets, we see that flow i receives no

mark during the kth RTT with probability

pi,N,k := EQ

{

[

1 − pN
(

Q
wN (k)

)]wN
i (k)

}

, (4)

§This corresponds to an unstable queue with utilization ρ ≥ 1. Thus, for large N , the queue-length will explode

for any marking scale Nα (0 < α < 1/2) within that RTT and almost all packets will be marked.
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where EQ{·} is the expectation over all possible realizations of the queue-length under WN (k) =

wN (k).

Given WN (k) = wN (k), suppose first λN (k) < NC. Then the queue remains stable within that

RTT (i.e., utilization < 1), and each packet will be marked independently of any other. We thus

expect that the events of flow i receiving at least one marked packet are likely to be independent

for different i, which implies independence of window sizes among different flows at the next RTT.

In the case of λN (k) ≥ NC, since all the flows will back off in the next RTT, the window sizes

at the next RTT will not be independent. However, we will show that this event becomes rare for

large N in the sense that P{∑N
i=1 WN

i (k) ≥ NCT} → 0 as N increases (See Lemma 1). Hence, for

any case, we can assume the following:

Assumption 1 Given WN (k) = wN (k), the random variables WN
i (k + 1) (i = 1, 2, . . . , N) are

independent.

Indeed, our simulation results in Section 5.3 will also show that the window sizes for different

flows are mostly independent even under our aggressive marking scale (see Figure 6). Further,

Assumption 1 will be used only to construct a Markov chain for the system and will never be used

again once the system enters a steady-state.

Now, for any given N ,
{

WN (k)
}

k≥0
forms an N-dimensional homogeneous Markov chain with

its state space given by

E := {1, 2, . . . , wmax}N ∩ S(N), (5)

where

S(N) =
{

WN (k)|N ≤
N

∑

i=1

WN
i (k) < N(CT + 1)

}

. (6)

From Assumption 1, the transition probability is given by

P
{

WN (k+1) = wN (k+1)
∣

∣ WN (k) = wN (k)
}

=
N
∏

i=1

P
{

WN
i (k+1)=wN

i (k+1)
∣

∣ WN (k)=wN (k)
}

. (7)

where

P
{

WN
i (k + 1) = wN

i (k + 1)
∣

∣WN (k) = wN (k)
}

=















pi,N,k if wN
i (k + 1) = (wN

i (k) + 1) ∧ wmax

1 − pi,N,k if wN
i (k + 1) = bwN

i (k)/2c ∨ 1

0 otherwise,

(8)

and pi,N,k is from (4).

In the next section, we will investigate the limiting behaviors of this Markov chain in the

steady-state as N increases and provide key performance results under the aggressive scale.
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4 Theoretical Results

From the Markov chain defined in (7) and (8) with its state space given by (5) and (6), it is not

difficult to see that the chain is irreducible and aperiodic. Further, for any given N , the state

space E is finite. Thus, from Theorem 3.3 in [32](p.105), the chain is positive recurrent, hence is

ergodic. So, there exists a unique stationary distribution π, and the process {WN (k)}k≥0 converges

in variation to π [32, 33]. In other words, we have

lim
k→∞

∑

wN∈E

∣

∣

∣P

{

WN (k) = wN
}

− π
{

wN
}∣

∣

∣ = 0. (9)

This proves that, regardless of initial distributions of window sizes of N flows, the chain converges

to a steady-state in which the process WN (k) has a stationary distribution π. In the steady-

state, we basically have a steady-state queueing system, where the input process to the queue is

a conditional Poisson process (which has stationary increments, but not independent increments)

and its underlying process WN (k) is a homogeneous, ergodic Markov chain with a stationary

distribution π. As the distribution of WN (k) does not depend on k in the steady-state, we will

use WN to denote the window sizes random variables in the steady-state and π to denote the

distribution for WN whenever there is no ambiguity.

In principle, since we know the transition matrix from (7) and (8), it is theoretically possible

to find out the stationary distribution π by solving a set of balance equations. However, due to the

complicated structure for the transition matrix (especially for large N), direct calculation of the

steady-state distribution is computationally prohibitive. Instead, our approach here is to derive

some properties of key performance metrics of the system as N increases, without explicitly solving

for the stationary distribution.

From (9), since (1−pN (·))W N
i is bounded, we know that the (unconditional) probability of flow

i not marked during the kth RTT also converges to the following steady-state probability of flow i

not marked:

FN
i := E

{

[

1 − pN
(

Q
W N

)]W N
i

}

, (10)

where the expectation is taken both over WN and random queue-length fluctuation. Specifically,

we can calculate (10) as follows:

FN
i = E

W N

{

EQ

{

[

1 − pN
(

Q
W N

)]W N
i

∣

∣

∣

∣

WN

}}

.

The following result will be used in proving our main results.

Proposition 1 For any given N > 0 and i (1 ≤ i ≤ N), we have

E{WN
i } − 1

wmax + 1
≤ E

{

[

1 − pN (Q
W N )

]W N
i

}

. (11)

Further, there exists a constant B ∈ (0, 1) (independent of N) such that

E

{

[

1 − pN (Q
W N )

]wmax
}

≤ B < 1, ∀N > 0. (12)

10



Proof: See Appendix A. 2

We define the steady-state utilization of the system by

ρN = ρ(N) :=
1

NCT
E{WN

1 + WN
2 + · · · + WN

N }. (13)

As the system is in the steady-state with a stationary arrival process to the queue (a conditional

Poisson process), we should have ρ(N) < 1 for all N , since otherwise the queue-length will increase

without bound almost surely and eventually all the flows will drop their rates by half, contradicting

the fact that the distribution of window sizes does not depend on time.

In the steady-state, we already observed that the stationary arrival process to the queue of in-

terest becomes the conditional (or doubly-stochastic) Poisson process where the underlying process

is a stationary, ergodic Markov chain. Hence, given WN (k) = wN (k), within that RTT duration,

the arrival process to the queue becomes a Poisson process with rate λN (k) as in (1). In general,

under WN (k) = wN (k), this Poisson characterization within that RTT enables us to describe the

queueing dynamics in terms of λN (k) and any general service time distribution G. However, in

order to prevent the analysis from being intractable and unwieldy, we will assume that the service

time distributions of each packet are i.i.d. and exponentially distributed throughout the rest of

the paper. In this way, given WN (k) = wN (k), the queue dynamics can be described by that of

M/M/1 queue within each RTT.¶

Let us define XN
i = WN

i /ρ(N)CT such that E{XN
i } = 1, and also their scaled sum YN by

YN :=
XN

1 + XN
2 + · · · + XN

N − N√
N

. (14)

We will then assume the following:

Assumption 2 The distribution of YN for large N is well-behaved in the sense that for any positive

sequence θN with θN ↓ 0 as N ↑ ∞, we have

lim sup
N→∞

E{eθNYN } < ∞. (15)

Remark 2 Assumption 2 is quite technical. It basically states that the distribution of YN is not

so much different from a Gaussian random variable for large N and the difference between YN and

the limiting Gaussian random variable is well-behaved. For example, suppose that there exists a

sequence of random variables {LN}N≥1 with lim supN→∞ E{eθNLN} < ∞ such that

YN
d
= N (0, σ2) + LN , for some σ2, (16)

¶Given W N (k) = wN (k), the queue dynamics can be similarly analyzed via M/M/1/K or M/D/1/K (with

a buffer of size O(Nβ). In order to avoid unnecessary complicated derivations, however, we use M/M/1 as an

approximation. Note also that the loss probability of a finite buffer of size K is bounded by the overflow probability

of an infinite-buffer with level K.
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where N (0, σ2) is a Gaussian random variable with zero mean and variance σ2. Then, from Hölder’s

inequality. it is not difficult to see that (16) implies (15). Similarly, if WN
i , i = 1, 2, . . . , N are

i.i.d., then we note that (15) also follows. To see this, observe that from 1 ≤ WN
i ≤ wmax, the

random variable ZN
i with ZN

i = XN
i − 1 = WN

i /ρ(N)CT − 1 is also bounded. Thus, for some

θ > 0, E{eθZN
i } < ∞. Now, from Taylor’s expansion and E{ZN

i } = 0, we have

log E
{

exp(θZN
i )

}

=
θ2

2
Var{ZN

i } + o(θ2), (17)

for all sufficiently small θ > 0. Here, o(x) is a function with o(x)/x ↓ 0 as x ↓ 0. Since ZN
i ,

i = 1, 2, . . . , N are i.i.d. and YN = (ZN
1 + ZN

2 + · · · + ZN
N )/

√
N from (14), we have

E{eθNYN } =

(

E

{

exp

(

θN√
N

ZN
i

)})N

.

Thus, from (17), we get

lim sup
N→∞

E{eθNYN } = lim sup
N→∞

exp

(

θ2
N

Var{ZN
i }

2
+ N · o(θ2

N/N)

)

= 1 < ∞,

since θN ↓ 0 as N ↑ ∞.

Assumption 2 is readily satisfied in practice as we will show in Section 5.3 that the window

sizes for different flows behave as if they are more or less independent under our aggressive marking

scale (see Figure 6).

Our first main result shows that the utilization of the steady-state system converges to 1 as N

increases.

Theorem 1 Under Assumption 2, we have

lim
N→∞

ρ(N) = 1.

Proof: See Appendix B. 2

Theorem 1 guarantees that E{WN
i } ≈ C > 1 for all large N . Since 1 ≤ WN

i ≤ wmax and from

Proposition 1, it is straightforward to see that there exist constants a, b such that

0 < a < E{pN (Q
W N )} < b < 1, for all large N. (18)

In other words, the expected marking probability of each packet is bounded away from 0 and 1

uniformly over N .

Before proceed to our second main result, we present the following lemma.

12



Lemma 1 Suppose CT > 3. Then, under Assumption 2, we have

lim
N→∞

P

{

N
∑

i=1

WN
i ≥ NCT

}

= 0. (19)

Proof: See Appendix C. 2

We now present our second main result, which states that the fluctuation of the steady-state

queue-length is no more than O(Nα+ε).

Theorem 2 Let Q
W N be the steady-state queue-length random variable. Suppose that CT > 3 and

Assumption 2 is satisfied. Then, for any ε > 0, we have

lim
N→∞

Q
W N

Nα+ε
= 0 in probability. (20)

Proof: See Appendix D. 2

In Theorem 2, the positive constant ε plays a critical role to ensure that Q
W N is no larger than

O(Nα+ε). From Proposition 1 and Theorem 1, we can see that E
{

pN (Q
W N )

}

is always bounded

away from 0 and 1 (uniformly over N). Since the marking function is scaled on the order of Nα

(Recall pN (Nαx) = p(x)), this in turns implies that P{Q
W N ∈ O(Nα)} is also bounded away from

0 and 1 uniformly over N . Thus, if we set the buffer size to O(Nα), the loss probability will not

go to zero. Instead, the added ‘margin’ of length O(N ε) is necessary to make the loss probability

go to zero under the buffer of size O(Nα+ε) and to ensure that all the ‘congestion signals’ are from

packet marking, not from packet loss.

Remark 3 From the practical point of view, however, the added margin O(N ε) may grow very

slowly. For example, if ε = 0.1, then even for N = 1000 flows, we have N ε ≈ 2, and this margin

(a factor of 2) may not be large enough to ensure almost zero packet loss. In other words, in

Theorem 2, the speed of convergence to zero can be quite slow. But, we emphasize that our results

provide theoretical basis and the loss probability can be made indeed arbitrarily small for any given

constant ε > 0 and for all ‘sufficiently large’ N . 2

5 Numerical Results

In this section, we provide numerical results using ns-2 [34] to validate our results in Section 4.

First, we show that even under our aggressive scale, the window sizes of each of N flows tend to

be independent or weakly correlated, which is required for our theoretical analysis. Second, we

show that as the number of flows and the size of the link capacity increase,‖ the queueing delay

becomes smaller, the link utilization increases, and the packet loss probability decreases, although

the convergence for the loss probability is a bit slow as predicted.

‖Note that each flow will get approximately the same bandwidth share regardless of the size of the system N .
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Throughout the simulations, we consider the following four performance metrics: (i) average

queueing delay, (ii) delay jitter, (We calculate the standard deviation from all the measured queue-

ing delays.) (iii) link utilization, (iv) packet loss ratio.

5.1 AQM Configurations

We consider three different queue-based AQM schemes with O(Nα) scales for our simulations: two

RED schemes under different configurations (referred by RED1 and RED2) and EXP as in Figure 1

(b). We set all the thresholds in the queue-length to be proportional to Nα, (i.e., pN (Nαx) = p(x)).

Table 1 summarizes the parameters of each AQM scheme used in our simulation.

Table 1: AQM parameters for ns-2 simulations.

AQM Parameters

RED1 qminNα = 2Nα, qmaxNα = 10Nα

Pmax = 0.2, Buffer Size B(N) = 12Nα+ε

EXP γ = −10/ ln (1 − Pmax), Buffer Size = 12Nα+ε

RED2 qminNα = 4Nα, qmaxNα = 11Nα

Pmax = 0.05, Buffer Size B(N) = 12Nα+ε

For RED1, the minimum and the maximum thresholds (qminNα and qmaxNα in Figure 1(a))

are 2 × Nα and 10 × Nα, respectively. The maximum dropping probability, Pmax, is set to 0.2

and the queue averaging factor, q weight , is set to 1. (We have also run simulations with other

queue averaging factors, e.g., q weight =0.002, and obtained similar results.) As to EXP, we use

a queue-based AQM with an exponential marking profile as in Figure 1(b). In order to make a

fair comparison with RED, we choose γ = − 10
ln (1−Pmax) (as in Figure 1(b)) such that pN (maxth) =

pN (10Nα) = Pmax. RED2 is similar to RED1, but with different thresholds and Pmax. In any case,

the buffer size in our simulations is set to B(N) = 12 × Nα+ε with ε = 0.1, as the margin O(N ε)

is required in Theorem 2.

5.2 Simple Dumbbell Topology

We first consider a simple dumbbell topology with a single bottleneck link shared by N long-lived

TCP flows. We set the sum of two-way propagation delays for N flows to be i.i.d. and uniformly

distributed over [120, 280] ms (with mean 200 ms, as in [2]). Each packet size is fixed to 500 bytes

and the link capacity is NC = N ×100 kbps. Thus, the target throughput for each flow is C = 100

kbps or 25 packets/sec.

Figure 4 shows the four performance metrics as the number of long-lived flows (N) increases

under our aggressive scales for AQM schemes with α = 0.2 and ε = 0.1. ∗∗ Note that for all

the schemes considered, the queuing delay and delay-jitter decrease sharply with the increase of

∗∗In our numerical results, we were unable to simulate the case of N larger than 1300 flows mainly because of the

limitation in the ns-2.
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Figure 4: Heterogeneous RTTs: Performance metrics with increasing number of flows (N) for fixed

α = 0.2.

N , and the utilization and the packet loss ratio show clear trend with the number of flows N , as

predicted by Theorems 1 and 2. In addition, RED1 and EXP yields almost identical performance

in all performance metrics, while we observe some tradeoffs between RED1 (or EXP) and RED2.

RED1 and EXP have lower packet-loss ratio with the smaller link utilization, while RED2 produces

higher link utilization with a little larger packet-loss ratio.
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Figure 5: Heterogeneous RTTs: Performance comparison of RED1 and RED2 with increasing

number of flows (N) for different α (α = 0.2 and 0.3)

Figure 5 shows the link utilization and the loss ratio for RED1 and RED2 under α = 0.2 and
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α = 0.3. We see that for larger α, the system yields higher link utilization and smaller loss ratio.

This is reasonable because larger α implies that the corresponding buffer size and the margin for

packet marking O(Nα) is larger. In general, for any given N , it is possible to improve the link

utilization at the expense of higher loss ratio (or vice versa) by using different AQM configurations.

But, under O(Nα) scale, all these differences will disappear when N becomes larger, since the link

utilization will approach to 1 and the loss ratio to zero as shown in Section 4.

5.3 Independence of Window Sizes Among Different Flows

In Sections 3 and 4, we have assumed that there exists independence (or weak dependence) of

window sizes random variables among different flows. Those assumptions, in conjunction with

random packet arrivals within each RTT, play a crucial role in establishing our main results in

Section 4. In this section, we show that the window sizes are indeed almost independent under all

AQM schemes with our aggressive scaling.

To investigate whether there exists any strong correlations among WN
i , i = 1, 2, . . . , N , we

consider a function h(N) defined by

h(N) :=
Var{∑N

i=1 WN
i }

∑N
i=1 Var{WN

i }
.

If the window sizes are independent for all N , we immediately have h(N) = 1 for all N . If they

are all ‘perfectly’ correlated (synchronized), we would have h(N) ≈ N .

From the ns-2 simulation results in Section 5.2, we measured the values h(N) as N varies for

all the AQM schemes considered, and plot them in Figure 6 (a) on a semi-log scale. Figure 6 (b)

shows the corresponding histogram for aggregate window sizes from all N flows under RED1 and

α = 0.2. As we see, the function h(N) mostly stays around 1 for all AQM schemes considered over

all ranges of N . This implies that there exists virtually no positive correlation among the window

sizes for different flows even under the aggressive marking (α = 0.2). From Figure 6, the pdf of

the total window size is shown to be very close to a Gaussian distribution with mean 1419 and

standard deviation 48.52 packets. We also measure the function h(N) and the histogram under

various configurations with N up to 1000 flows and different α ∈ (0, 0.5). In all these cases, we

observe that the function h(N) is always around 1 and the histogram closely matches with some

Gaussian marginal distribution, suggesting that the window sizes for all flows are more or less

independent all the time.

5.4 Multiple Links with Heterogeneous RTTs

Up until now, we have simulated various network scenarios with a single link. In this section, we

present simulations results using multiple links in the network.

Figure 7 depicts a network topology with multiple links of our consideration. In this scenario,

we have three routers and two groups of flows, where group 1 (S1–1 to S1–N) traverses routers 1–3

and group 2 (S2–1 to S2–N) goes through routers 2 and 3. We use drop-tail for routers 1 and 3

with O(N) buffer sizes, and for router 2, we use different AQM schemes as before with the scale of

Nα. The capacities of routers 1 and 2 are N × 100 and 2N × 100 kbps, respectively. The two-way
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i } as a function of N for different AQM

schemes under α = 0.2; (b) Histogram for aggregate window sizes from N flows under RED1,

N = 200, and α = 0.2.

propagation delays of group 1 flows are uniformly distributed over [110, 190] ms with mean 150 ms,

and over [60, 140] with mean 100 ms for group 2.

As before, Figure 8 shows the similar trends for all the performance metrics measured at router

2, which demonstrate that our results hold for more general network configurations. Regarding the

link utilization and packet loss ratio, we see some zigzags when the number of flows is small (up

to around 200). For such small values of N , it is still far away from the domain of convergence

for Theorems 1 and 2, and the performance is mainly governed by other factors. For example, the

buffer size in Table 1 is 12 × Nα+ε, and if N is not large enough, the resulting queue size will be

more affected by the preceding factor, 12, rather than by Nα+ε.
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Figure 8: Multi-hop Topology: Performance metrics with increasing number of flows (N) for fixed

α = 0.2 and ε = 0.1.

6 Discussion

6.1 Importance of Random Arrivals for Aggressive Scale

In Section 2 we already noticed that different ways of scaling lead to different modeling of the

system. In particular, random packet arrivals over sub-RTT levels play a crucial role in capturing

the dynamics of systems with O(1) scale [16, 11, 5], while coarser time-scale models capturing only

RTT-level dynamics suffice for systems with O(N) scale [10, 15, 13, 19]. In this section, we further

illustrate that the random packet arrivals, in conjunction with the random packet marking, are

indispensable components in our modeling for systems under the aggressive scale.

Suppose that we were to ignore the randomness in packet arrivals within each RTT and consider

only the effect of random packet marking in our modeling. As observed in Section 5.3, under the
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Figure 9: If we consider only the Gaussian marginal distribution of the aggregate window sizes,

packet marking probability goes to zero as the region for packet marking O(Nα) is too small

compared to O(
√

N). However, under the random packet arrivals, packets ‘P’ outside of the

marking region may also be marked as the random arrivals may create temporary queue buildup.

aggressive scale, the window size random variables for N flows are mostly independent and the

aggregate window size is best matched by a Gaussian distribution with standard deviation of

O(
√

N). While the buffer size and the region for marking are smaller than O(
√

N), one may think

that, by appropriately ‘shifting’ the Gaussian marginal distribution, it might be still possible to

explain the high link utilization and low packet loss via the Central-Limit-Theorem (CLT) type

of argument in the steady-state. In this case, the average marking probability of a packet can be

calculated by integrating the Gaussian marginal distribution over a region where the marking takes

place, i.e., an interval I of length O(Nα) (See Figure 9). Thus, as N → ∞, the average marking

probability will become

P{marking} =

∫

I

1√
2πO(

√
N)

e
−

(x−Nµ)2

2O(N) dx

≤ 1√
2πO(

√
N)

∫

I
1 dx =

O(Nα)√
2πO(

√
N)

−→ 0, (21)

since α < 1/2. This means that the probability of packet marking goes to zero as N becomes

larger, and therefore the system will never be in the ‘steady-state’ as (21) clearly contradicts (18).

Thus, independence among flows alone is not sufficient to explain the good performance of the

TCP/AQM system under the aggressive marking scale. This is because the CLT-based argument

lacks the dynamics of random packet arrivals within each RTT. For instance, in Figure 9, consider

packets ‘P’ located on the left side of the distribution. While these packets are outside of the

marking region and thus will never be marked under the CLT-based approach, they may be so

under the random packet arrivals as these may create temporary queue buildup. In fact, due to the

random arrival effects, we note that marking can take place anywhere on the x-axis in Figure 9. So,
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in some sense, the integration in (21) should have been taken over a much larger interval (rather

than over the interval I of length O(Nα)) such that the marking probability does not vanish as

shown in (18).

6.2 Related Work on Hybrid Approach

In the literature, there have been several attempts to integrate stochastic components into the

fluid modeling for TCP/AQM systems under various scales [11, 5]. In [11], the authors considered

the usual fluid recursion driven by a Poisson input and obtained limiting deterministic equations

of system dynamics for the window size evolutions as the system size increases. They considered

O(N) and O(1) for packet marking and showed that the system behaves as if it were a rate-based

one under O(1) scale.

On the other hand, in [5], the authors considered all possible ways of scaling the buffer size,

i.e., B(N) = O(Nγ) with γ = 0, γ = 1, and 0 < γ < 1. The approach is still based on the fluid

model, but with different reasoning obtained from the stochastic queueing theory for different γ.

Specifically, for 0 < γ < 1, the authors applied different open-loop queueing theories with differen

traffic patterns for underload (ρ < 1) and overload (ρ > 1) cases, where ρ is the link utilization.

Then, the authors proceeded to show that the loss probability decreases to zero for underload and

the marking function is given by p = [1−1/ρ]+ for overload. In other words, there is no meaningful

congestion signal when ρ < 1.

However, this approach is somewhat questionable. As we have shown in this paper, the ran-

domness in packet arrivals ensures that, even when ρ < 1, there always exist some packet marks

or losses that contribute to giving some ‘feedback’ to all the senders and the amount of feedback

will be larger as the link utilization gets closer to one (but still less than one). We show that the

link utilization actually increases to one under such a scale for the buffer size and AQM. Thus, we

believe that the dichotomy between underload and overload without considering the randomness in

packet arrivals may not be suitable for capturing the real dynamics of TCP/AQM system, especially

when the system operating point is very close to the boundary (ρ = 1), and that a direct analysis

of the doubly-stochastic, closed-loop model for the system will do a better job. Moreover, it is

argued in [5] that although the scaling of 0 < γ < 1 would work fine when N is moderately large

(say, a few hundreds, as is also shown in [2]), the system will become unstable with possibly poor

performance when N is very large, say, 5000 or more. †† While we have not been able to simulate

such a large N (N ≥ 5000), however, based on the trend in our simulation results in Section 5 and

the results in [2], it is rather hard to believe that instability appears all of a sudden when N is

larger than some threshold. Again, this observed disparity seems to corroborate the difficulty of

deriving a right fluid model or representation of the system under the proposed aggressive scale.

7 Conclusions

In this paper, we have investigated the performance of TCP/AQM systems with ECN marks under

the aggressive scale for packet marking and a buffer of size smaller than O(
√

N). Under such

††No simulation result is reported in [5] to support this argument.
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a scale, we have demonstrated that randomness both in packet arrivals and in packet marking

must be taken into account and developed a doubly-stochastic model to capture all the system

dynamics. Based on our model, we have proven that the system yields good performance in terms

of full link utilization and almost zero packet loss, while making the queueing delay negligible and

saving more buffer space, as the system size increases. We have also provided an extensive set of

numerical results using ns-2 under a variety of network configurations with different AQM schemes,

and further validated our results in more realistic settings. Interestingly enough, it turns out that

our findings of all the good performance somewhat contradict to a recent result implying that the

system under the proposed scale will be unstable for large N . This illustrates the difficulty of

deriving a right fluid model for a system under the proposed scale, which we leave as a future work.

Appendix A: Proof of Proposition 1

As the system is in steady-state, for any well-define (measurable) function g : R → R, we have

E{g(WN
i (k + 1))} = E{g(WN

i (k))}. We now define a function fi : E → [0, 1] as

fi

(

wN
)

:= EQ

{

[

1 − pN (Q
W N )

]W N
i

∣

∣ WN = wN

}

, (22)

i.e., the probability of flow i not marked under WN = wN . Then, given that WN (k) = wN (k), we

have, for any measurable function g,‡‡

g
(

WN
i (k + 1)

)

=







g
((

wN
i (k) + 1

)

∧ wmax

)

with probability fi

(

wN (k)
)

g
(

wN
i (k)/2 ∨ 1

)

with probability 1 − fi

(

wN (k)
)

.

Thus,

E
{

g
(

WN
i (k + 1)

)}

= E
W N (k)

{

EQ

{

g
(

WN
i (k + 1)

) ∣

∣ WN (k)
}}

= E

{

g
((

WN
i (k) + 1) ∧ wmax

)

fi

(

WN (k)
)}

+E

{

g
(

WN
i (k)/2 ∨ 1

)

·
(

1 − fi

(

WN (k)
))}

.

From the steady-state assumption, we have E{g(WN
i (k + 1))} = E{g(WN

i (k))} = E{g(WN
i )}, and

we can rewrite the above equation as

E
{

g
(

WN
i

)}

= E

{

g
((

WN
i + 1

)

∧ wmax

)

fi

(

WN
)}

+ E

{

g
(

WN
i /2 ∨ 1

)

·
(

1 − fi

(

WN
))}

, (23)

where the expectation is taken with respect to π.

First, we choose g(x) = x in (23). Since
W N

i

2 ∨1 ≤ (WN
i +1)/2 (from WN

i ≥ 1) and 0 ≤ fi(·) ≤ 1,

we have from (23),

E
{

WN
i

}

≤ E

{

(

WN
i + 1

)

fi

(

WN
)}

+ E

{

(

WN
i /2 + 1/2

)

(

1 − fi

(

WN
))}

.

‡‡We drop b·c here for notational simplicity and this does not affect our results in the paper.
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This gives

E

{

WN
i − 1

2

}

≤ E

{(

WN
i + 1

2

)

fi

(

WN
)

}

≤
(

wmax + 1

2

)

E

{

fi

(

WN
)}

.

Thus, (11) follows by noting that, from (22),

E

{

fi

(

WN
)}

= E

{

[

1 − pN (Q
W N )

]W N
i

}

. (24)

To obtain the upper bound, let g(·) = (·)2 in (23). We choose constants a, b such that

a + b = 3 and awmax + b = 0. (25)

This gives a = −3/(wmax − 1) < 0 and b = 3wmax/(wmax − 1) > 0. Then, for any x with

1 ≤ x ≤ wmax, it is easy to see that

((x + 1) ∧ wmax)2 ≥ x2 + ax + b.

Thus, from (23) with g(·) = (·)2, we get

E

{

(

WN
i

)2
}

≥ E

{(

(

WN
i

)2
+ aWN

i + b
)

fi

(

WN
)}

+ E

{

(

WN
i /2

)2
(

1 − fi

(

WN
))}

.

After rearranging terms, we obtain

3

4
E

{

(

WN
i

)2
(

1 − fi

(

WN
))}

≥ E

{

(

aWN
i + b

)

fi

(

WN
)}

. (26)

We define a function h : E → R by

h
(

wN
)

:= EQ

{

[

1 − pN (Q
W N )

]wmax
∣

∣ WN = wN
}

. (27)

Clearly, h
(

wN
)

≤ fi

(

wN
)

for any i, and since aWN
i + b ≥ 0 for 1 ≤ WN

i ≤ wmax, we have

3

4
w2

maxE

{

1 − h
(

WN
)}

≥ 3

4
w2

maxE

{

1 − fi

(

WN
)}

≥ 3

4
E

{

(

WN
i

)2
(

1 − fi

(

WN
))}

≥ E

{

(

aWN
i + b

)

fi

(

WN
)}

≥ E

{

(

aWN
i + b

)

h
(

WN
)}

, (28)

where the third inequality follows from (26). Now, summing (28) over i and dividing by N gives

3

4
w2

maxE

{

1 − h
(

WN
)}

≥ E

{(

a

∑N
i=1 WN

i

N
+ b

)

h
(

WN
)

}

.

Since
∑N

i=1 WN
i /N < CT + 1 < wmax and from our choice of a, b in (25), we see that

3

4
w2

maxE

{

1 − h
(

WN
)}

≥ E

{(

a

∑N
i=1 WN

i

N
+ b

)

h
(

WN
)

}

≥ (a(CT + 1) + b) E

{

h
(

WN
)}

= KE

{

h
(

WN
)}

, (29)
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where K := a(CT +1)+b > 0 since wmax > CT +1 and also from (25). Thus, from (29), we obtain

E

{

h
(

WN
)}

≤
3
4w2

max
3
4wmax + K

:= B < 1

for all N . This proves (12) and we are done.

Appendix B: Proof of Theorem 1

Since ρ(N) < 1, we only have to show that lim infN→∞ ρ(N) = 1. Since the function (1 − x)wmax

is convex for x ∈ [0, 1], we have from Jensen’s inequality and from (12) that

[

1 − E
{

pN (Q
W N )

}]wmax ≤ E

{

[

1 − pN (Q
W N )

]wmax
}

≤ B < 1.

Thus, we obtain

0 < A := 1 − B1/wmax ≤ E
{

pN
(

Q
W N

)}

. (30)

where 0 < A < 1. Note that, since p(x) is non-decreasing in x and limx→∞ p(x) = 1, we have

p(x) ≤ p(q) + (1 − p(q))1{x>q}

for any q ∈ (0,∞). Thus, from pN (Nαx) = p(x), we have

pN (Nαx) ≤ p(q) + (1 − p(q))1{Nαx>Nαq}. (31)

By choosing x = Q
W N /Nα and taking expectation in (31), we have from (30)

0 < A ≤ E
{

pN
(

Q
W N

)}

≤ p(q) + (1 − p(q))P
{

Q
W N ≥ qNα

}

.

Note that, since limx→0 p(x) = 0, we can always choose q such that 0 < p(q) < A < 1. Thus, we

have

0 <
A − p(q)

1 − p(q)
≤ P

{

Q
W N ≥ qNα

}

, (32)

for some q ∈ (0,∞).

Now, observe that, from our construction and the assumption of M/M/1 for queue dynamics

within each RTT, we have

P

{

Q
W N ≥ n

∣

∣

∣ WN = wN
}

=







(∑N
i=1 wN

i

NCT

)n

if
∑N

i=1 wN
i < NCT ,

1 if
∑N

i=1 wN
i (k) ≥ NCT,

which gives, for any n ≥ 0,

P
{

Q
W N ≥ n

}

= E

{(

WN
1 + WN

2 + · · · + WN
N

NCT

)n

∧ 1

}

. (33)

23



So, from the above and (32), we get

0 <
A − p(q)

1 − p(q)
≤ E

{

(

WN
1 + WN

2 + · · · + WN
N

NCT

)qNα

∧ 1

}

≤ E

{

(

WN
1 + WN

2 + · · · + WN
N

NCT

)qNα}

. (34)

Note that for any q ∈ (0,∞),

E

{

(

WN
1 + WN

2 + · · · + WN
N

NCT

)qNα}

= (ρ(N))qNα · E
{

(

1 +
YN√
N

)qNα
}

, (35)

where YN is defined as in (14). For the expectation on the right hand side, we observe that

1 + YN/
√

N > 0 with E{1 + YN/
√

N} = 1. Thus, from the convexity of xqNα
for x > 0 and for all

large N , and from the inequality (1 + x) ≤ ex for any x, we have

1 ≤ E

{

(

1 +
YN√
N

)qNα
}

≤ E

{

exp(qNα−1/2YN )
}

< ∞. (36)

Here, the first inequality follows from Jensen’s inequality, and the last one comes from Assumption 2

since qNα−1/2 ↓ 0 as N ↑ ∞ from 0 < α < 1/2 .

Now, by combining (34)–(36), we have, after some manipulations,

0 < lim inf
N→∞

(ρ(N))qNα

.

Hence, by taking logs, it follows that

−∞ < lim inf
N→∞

Nα log ρ(N). (37)

This proves Theorem 1.

Appendix C: Proof of Lemma 1

Since the system is in steady-state and the chain is ergodic, for any bounded bounded functions

f : E → R and for any initial distribution of WN (0), we have from Theorem 4.1 in [32](p.111) that

lim
n→∞

1

n

n
∑

k=1

f
(

WN (k)
)

= Eπ

{

f
(

WN
)

}

almost surely. (38)

(38) holds true for any bounded function f : E → R. First, define XN (k) by

XN (k) :=

∑N
i=1 WN

i (k)

NCT
.
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Clearly, from (6), we have 1
CT ≤ XN (k) < 1 + 1

CT . Let f
(

WN (k)
)

= 1{XN (k)≥1}. Then, for any

given N , (38) gives

lim
n→∞

1

n

n
∑

k=1

1{XN (k)≥1} = P

{

N
∑

i=1

WN
i ≥ NCT

}

almost surely. (39)

Similarly, the choice of f
(

WN (k)
)

= XN (k) gives

lim
n→∞

1

n

n
∑

k=1

XN (k) = E {XN (k)} = ρ(N) almost surely. (40)

Without loss of generality, we assume that at time k = 0, XN (0) ≥ 1. Then, all the flows will

receive marks and reduce their rates by half. Thus, at k = 1, since the sum of the window sizes is

smaller than N(CT + 1) at k = 0, we have
∑N

i=1 WN
i (1) < N(CT + 1)/2, i.e., XN (1) < 1

2(1 + 1
CT ).

Further, the maximum of the sum of window sizes at k = 2 will happen when none of the N flows

is marked at k = 1. Thus,
∑N

i=1 WN
i (2) < N(CT + 1)/2 + N , i.e., XN (2) < 1

2(1 + 1
CT ) + 1

CT . In

this way, at time k, we have

XN (k) <
1

2
(1 +

1

CT
) +

k − 1

CT
(41)

as long as the RHS of (41) is less than 1. Setting the RHS of (41) equal to 1 gives k = CT+1
2 . In

other words, if the sum of the window sizes becomes larger than NCT at some time (it then drops

back to half at next RTT), then it takes at least m := CT+1
2 number of RTTs to cross the boundary

(NCT ) again. Note that since CT > 3, we have m = (CT +1)/2 > 2. During this period, we have,

for any N

1

m

m−1
∑

k=0

XN (k) <
1

m

(

(1 +
1

CT
) +

m−1
∑

k=1

1

2
(1 +

1

CT
) +

k − 1

CT

)

=
3m2 − m + 2

4m2 − 2m
:= ξ < 1. (42)

Now, given N , let Tn, (n = 1, 2, . . .) be the successive return times to the state {∑N
i=1 WN

i (k) ≥
NCT}, i.e.,

Tn := min

{

t | t > 0 and
N

∑

i=1

WN
i (t + Tn−1) ≥ NCT

}

.

Then, clearly, Tn ≥ m = (CT + 1)/2 for all n. Define Ln := Tn − m ≥ 0. In this setup, the sum of

window sizes is bounded by the case in which it keeps increasing by N until it reaches NCT (this

takes m RTTs.), and stays there (slightly smaller than 1) for Ln amount of time. (See Figure 10

for illustration.)

During [0, T1 + T2 + · · ·+ Tn], the system enters the state {XN (k) ≥ 1} exactly n times. Thus,

from (39), we have

lim
n→∞

n
∑n

i=1 Ti
= lim

j→∞

1

j

j
∑

k=1

1{XN (k)≥1} = P

{

N
∑

i=1

WN
i (k) ≥ NCT

}

a.s. (43)
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N(CT+1)/2

m

Figure 10: Illustration of the proof of Lemma 1

Note that, during an interval S(n) := [
∑n−1

i=1 Ti,
∑n

i=1 Ti), we get from (42) and Figure 10

∑

k∈S(n)

XN (k) < mξ + Ln. (44)

By combining (40), (43)–(44), and from the definition of Tn and Ln, we have

ρ(N) = lim
n→∞

n

T1 + T2 + · · · + Tn
· 1

n

n
∑

j=1

∑

k∈S(j)

XN (k)

≤ lim
n→∞

n

T1 + T2 + · · · + Tn
·



mξ +
1

n

n
∑

j=1

Lj





= P

{

N
∑

i=1

WN
i (k) ≥ NCT

}

·



mξ + lim
n→∞

1

n

n
∑

j=1

Lj





almost surely. (45)

Now, let pN := P

{

∑N
i=1 WN

i (k) ≥ NCT
}

and suppose that

lim sup
N→∞

pN = p∗ > 0.

Then, there exists a subsequence Nl (Nl ↑ ∞ as l ↑ ∞) such that pNl
→ p∗ > 0 as l → ∞. Also,

from (43), for any N with pN > 0, we have

1

pN
= lim

n→∞

1

n

n
∑

i=1

Ti = m + lim
n→∞

1

n

n
∑

i=1

Li a.s. (46)
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Hence, from (45) and (46), we obtain

lim
l→∞

ρ(Nl) ≤ lim
l→∞

pNl

(

mξ +
1

pNl

− m

)

= 1 − lim
l→∞

pNl
m(1 − ξ)

= 1 − p∗m(1 − ξ) < 1,

which contradicts to the result in Theorem 1. Therefore, p∗ = lim supN→∞ pN = 0, and this

completes the proof.

Appendix D: Proof of Theorem 2

First, note that from symmetry, we have

ρ(N) =

∑N
i=1 WN

i

NCT
=

E{WN
i }

CT
.

So, from Theorem 1 and CT > 3, we have

0 < β :=
WN

i − 1

wmax + 1
< 1.

where 0 < β < 1. Thus, from (11), (1 − pN (Q
W N )) ∈ [0, 1], and 1 ≤ WN

i ≤ wmax, we have

0 < β ≤ E

{

[

1 − pN (Q
W N )

]W N
i

}

≤ E
{

1 − pN (Q
W N )

}

= 1 − E
{

pN (Q
W N )

}

.

Thus, we obtain

E
{

pN
(

Q
W N

)}

≤ 1 − β < 1. (47)

Since p(x) is non-decreasing, we clearly have p(q′)1{x≥q′} ≤ p(x) for all q′ ∈ (0,∞). Thus, similarly

as before, we obtain from (47)

p(q′)P
{

Q
W N ≥ q′Nα

}

≤ E
{

pN
(

Q
W N

)}

≤ 1 − β < 1.

Since limx→∞ p(x) = 1, we can choose q′ such that 1 − β < p(q′) < 1. That is,

P
{

Q
W N ≥ q′Nα

}

≤ 1 − β

p(q′)
:= η < 1.

So, from (33), we have

P
{

Q
W N ≥ q′Nα

}

= E

{

(

WN
1 + WN

2 + · · · + WN
N

NCT

)q′Nα

∧ 1

}

≤ η < 1. (48)
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Observe that

E







(

∑N
i=1 WN

i

NCT

)q′Nα

∧ 1







= E







(

∑N
i=1 WN

i

NCT

)q′Nα

1{
∑N

i=1 W N
i <NCT}







+P

{

N
∑

i=1

WN
i ≥ NCT

}

. (49)

Note that, from Hölder’s inequality, we have

E







(

∑N
i=1 WN

i

NCT

)q′Nα

1{
∑N

i=1 W N
i ≥NCT}







≤



E







(

∑N
i=1 WN

i

NCT

)2q′Nα










1/2

×
(

P

{

N
∑

i=1

WN
i ≥ NCT

})1/2

. (50)

From (35), (36) and ρ(N) ≤ 1, it is not difficult to see that the first term in the RHS of (50) is

bounded. Thus, the LHS in (50) goes to zero as N increases from Lemma 1. In addition, from

(49), we have

lim
N→∞

∣

∣

∣

∣

∣

∣

E







(

∑N
i=1 WN

i

NCT

)q′Nα

∧ 1







− E







(

∑N
i=1 WN

i

NCT

)q′Nα






∣

∣

∣

∣

∣

∣

= 0. (51)

From (48) and (51), we see that there exists a constant η′ < 1 such that for all sufficiently large N ,

E

{

(

WN
1 + WN

2 + · · · + WN
N

NCT

)q′Nα}

≤ η′ < 1.

Using the same steps as in (35) and (36), we obtain

lim sup
N→∞

(ρ(N))q′Nα

< 1.

Hence, by taking logs, it follows that

lim sup
N→∞

Nα log ρ(N) < 0. (52)

We will now prove (20). Since 0 < α < 1/2, without loss of generality, we only have to prove (20)

for ε > 0 with α + ε < 1/2. Note that, from (52), there exists κ > 0 such that Nα log ρ(N) ≤ −κ

for all sufficiently large N . Thus,

Nα+ε log ρ(N) ≤ −κN ε, for all sufficiently large N. (53)
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Now, as before, for any given δ > 0, we have

P
{

Q
W N > δNα+ε

}

= E

{

(

WN
1 + WN

2 + · · · + WN
N

NCT

)δNα+ε

∧ 1

}

≤ E

{

(

WN
1 + WN

2 + · · · + WN
N

NCT

)δNα+ε}

+ P

{

N
∑

i=1

WN
i ≥ NCT

}

= (ρ(N))δNα+ε · E
{

(

1 +
YN√
N

)δNα+ε
}

+ P

{

N
∑

i=1

WN
i ≥ NCT

}

= M(ρ(N))δNα+ε

+ P

{

N
∑

i=1

WN
i ≥ NCT

}

, (54)

where

M := E

{

(

1 +
YN√
N

)δNα+ε
}

< ∞ (55)

from the argument as in (36) and α + ε < 1/2. Finally, from (53) – (55), we have

P
{

Q
W N > δNα+ε

}

≤ M · exp(−δκN ε) + P

{

N
∑

i=1

WN
i ≥ NCT

}

for all sufficiently large N . Thus, from Lemma 1, we have

P
{

Q
W N > δNα+ε

}

→ 0

as N increases for any arbitrary δ > 0. This completes the proof of Theorem 2.
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