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On the Forwarding Performance under
Heterogeneous Contact Dynamics in Mobile

Opportunistic Networks
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Abstract—In this paper we focus on how the heterogeneous contact dynamics of mobile nodes impact the performance of forwarding

algorithms in mobile opportunistic networks. To this end, we consider two representative heterogeneous network models, each of which

captures heterogeneity among node pairs (individual) and heterogeneity in underlying environment (spatial), respectively, and examine

the full extent of difference in delay performance they cause on forwarding algorithms through formal stochastic comparisons. We first

show that these heterogeneous models correctly capture non-Poisson contact dynamics observed in real traces. We then rigorously

establish stochastic/convex ordering relationships on the delay performance of direct forwarding and multicopy two-hop relay protocol

under these heterogeneous models and the corresponding homogeneous model, all of which have the same average inter-contact

time of a random pair of nodes. In particular, we demonstrate that the heterogeneous models predict an entirely opposite ordering

relationship in delay performance depending on which of the two heterogeneity structures is captured. We also provide simulation

results including the delay performance of epidemic routing protocol to support the analytical findings. Our results thus suggest that the

heterogeneity in mobile nodes’ contact dynamics should be properly taken into account for the performance evaluation of forwarding

algorithms. Our results will also be useful for better design of forwarding algorithms correctly exploiting the heterogeneity structure.

Index Terms—Mobile opportunistic networks, heterogeneous contact dynamics, non-Poisson contact dynamics, forwarding perfor-

mance, stochastic/convex ordering relationships
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1 INTRODUCTION

In mobile opportunistic networks (MONs) a.k.a. de-
lay/disruption tolerant networks (DTNs), frequent dis-
ruptions in end-to-end connectivity arise due to many
factors such as node mobility, power limitations, etc.
To overcome the intermittent connectivity, mobile nodes
relay or copy messages to other mobile nodes upon
encounter by the so-called ‘store-carry-and-forward’ prin-
ciple, which ensures that the messages eventually reach
their destinations. The performance of message delivery
depends on how to relay or copy messages to mo-
bile nodes. Thus, many forwarding algorithms such as
epidemic routing [2], two-hop relay [3], [4], spray and
wait [5], to name a few, have been proposed and com-
monly analyzed based upon a ‘homogeneous’ network
model in which contacts between any pair of nodes occur
according to a Poisson process [5], [4], [6], [7], [8]. This
homogeneous model is typically supported by observing
that the inter-contact time1 between two successive con-
tacts for any node pair follows an exponential distribu-
tion via numerical simulations under synthetic mobility
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1. The inter-contact time of two mobile nodes is defined as the time
interval from when their communication becomes unavailable to the
time when the communication resumes. See [9], [10] for its formal
definition.

models [4], [7]. Other analytical works also resort to
the homogeneous model for their investigation on the
cost-delay tradeoff [11], [12], the design of forwarding
policy [13], and content distribution [14].

However, many measurement studies [15], [16], [17],
[18], [19], [20] point out the existence of heterogeneity
in a wide range of mobile networking scenarios, while
recent empirical and/or analytical observations [9], [21]
show that the inter-contact time distribution is no longer
pure exponential; rather, it is a mixture of power-law
and exponential distributions. In particular, from real
mobility traces and survey data, [17], [18] observe the
characteristics of heterogeneity in mobile nodes’ contact
dynamics, and [15], [16], [18], [19], [20] uncover spa-
tially and/or socially formatted community structures
in nodes’ mobility, which all make contact dynamics
deviate from a pure Poisson process. The observed het-
erogeneity structures have been actively used for the
development of new mobility models [15], [22], [20]
and empirically exploited to design new forwarding
algorithms [16], [23], [18].

In the literature, there are two widely used hetero-
geneous network models [17], [24], [25], [26], [27], [19],
[28], each of which captures individual (social) or spatial
heterogeneity observed in real traces. In the individually
heterogeneous network model [17], [24], [25], [26], [27],
the heterogeneity is characterized by allowing different
contact rates for different node pairs, while the inter-
contact time distribution of each pair is still exponen-
tial (but with different rates). On the other hand, in
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the spatially heterogeneous network model [19], [28],
the heterogeneity arises on each spatial cluster (site) in
which mobile nodes reside, while they can move to the
other spatial clusters. (See Section 2 for more details.)
However, none of these works analytically investigates
how the heterogeneity structure impacts the perfor-
mance of forwarding algorithms, not to mention whether
the considered heterogeneity improves or deteriorates
the performance.

1.1 Summary of Contributions

In this paper, we examine how the forwarding perfor-
mance under the two heterogeneous network models de-
viates from that under the aforementioned homogeneous
model. We first show that each of the heterogeneous
models correctly captures the non-Poisson contact dy-
namics (i.e., non-exponential inter-contact time distribu-
tion of a random pair of nodes) as observed in real traces.
Then, we rigorously establish stochastic/convex order-
ing relationships among the delay performance of direct
forwarding and multicopy two-hop relay protocol [4],
[7], [29], [30] under the two heterogeneous models and
the corresponding homogeneous model, all of which are
indistinguishable from the viewpoint of the average inter-
contact time of a random node pair.

Specifically, we prove that the message delivery de-
lays of direct forwarding and multicopy two-hop relay
protocol under the spatially heterogeneous model are
stochastically larger than those under the corresponding
homogeneous model, respectively. We also prove that
the delay of direct forwarding under the individually
heterogeneous model is larger than that under the cor-
responding homogeneous model in convex ordering (see
Section 4 for its formal definition), while the average
delay of multicopy two-hop relay protocol under the
individually heterogeneous model is smaller than that
under the corresponding homogeneous model. As a spe-
cial case of the above results, we show that the hetero-
geneity structure in the spatially heterogeneous model
deteriorates the average delay performance of multicopy
two-hop relay protocol, whereas the other heterogene-
ity structure in the individually heterogeneous model
improves its average delay performance when compared
with that under the corresponding homogeneous model.
This implies that each of the two heterogeneous models
predicts an entirely opposite average delay performance.
We also observe this opposite performance result for
epidemic routing protocol2 [2], [4], [6], [7], [30], [24] via
numerical simulations.

We further demonstrate that the delay performance of
direct forwarding and multicopy two-hop relay protocol
under the spatially heterogeneous model is worse than
that under the individually heterogeneous model, even

2. The forwarding algorithms considered in this paper are ‘oblivious’
to the underlying network structures, which enables an unbiased eval-
uation on the forwarding performance under heterogeneous contact
behaviors of mobile nodes.

when the entire distributions of inter-contact time of a
random node pair under both heterogeneous models are
precisely matched. Our results collectively suggest that
merely capturing non-Poisson contact dynamics from the
viewpoint of a random node pair is not enough and
that one should carefully evaluate the performance of
forwarding algorithms under a properly chosen hetero-
geneous network setting. Our results will also be use-
ful in correctly exploiting the underlying heterogeneity
structure so as to achieve better forwarding performance.

1.2 Outline of Paper

The rest of this paper is organized as follows. Section 2
gives preliminaries on the formal description of two rep-
resentative (individually and spatially) heterogeneous
network models. Section 3 presents the characteristics of
inter-contact time under each of the two heterogeneous
models. Sections 4 and 5 provide our theoretical results
on the stochastic comparison of message delivery de-
lays for direct forwarding and multicopy two-hop relay
protocol under each of the heterogeneous models and
its corresponding homogeneous model, respectively. We
provide simulation results in Section 6 and conclude in
Section 7.

2 PRELIMINARIES

In this section, we present the details of two hetero-
geneous network models to be used for our paper.
In general, mobile nodes typically belong to different
societal groups, with different preferred sites following
different mobility patterns. For example, in Fig. 1, there
exist several popular places (e.g., library, dormitory,
or dining hall) in a campus and students may form
spatially separate clusters around the popular places,
while occasionally move to other clusters according
to their own daily schedules. Further, in each spatial
cluster, students from different groups (e.g., ECE/CS
departments or undergraduate/graduate) typically mix
together, but making more frequent contacts with others
from the same group than from different groups. These
social (or individual) and spatial heterogeneity structures
can be captured under the following two heterogeneous
network models [17], [24], [25], [26], [27], [19], [28],
each of which directly characterizes the heterogeneity in
mobile nodes’ contact dynamics in a different manner,
rather than defining detailed mobile trajectories inside a
small domain or group (or social ‘clique’).

2.1 Individually Heterogeneous Network Model

An individually heterogeneous network model (simply,
an individual model) was introduced in [17] and de-
scribed as follows. This individual model has been also
used in [25], [24], [26], [27].

Consider a set of mobile nodes N in the network.
The pairwise inter-contact time between nodes i and
j follows an independent exponential distribution with
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Group A

Group B

Fig. 1. An example for spatial and social (individual) heterogeneity in an opportunistic campus mobile network.

rate λij , i.e., contacts between nodes i and j occur
according to a Poisson process with rate parameter λij ,
where i, j ∈ N and i 6= j and λji = λij . The pairwise
inter-contact times between any two node pairs are also
mutually independent. In this model, the heterogeneity
in mobile nodes’ contact dynamics is captured by differ-
ent contact rates λij .

If λij = λ for all i, j, then the individual model
reduces to the homogeneous network model (a.k.a. Pois-
son contact model) in which contacts between any pair of
mobile nodes occur according to a Poisson process with
same rate parameter λ. This heterogeneous model also
captures a social community structure [26] as a special
case. Suppose that there are K different social groups Gi

(i = 1, . . . ,K) forming a partition of N , i.e., N =
⋃K

i=1Gi.
Let λ′lk be common contact rate between any member of
Gl and another member of Gk for l, k = 1, . . . ,K . That is,
λij = λ′lk for all i ∈ Gl and j ∈ Gk where l, k = 1, . . . ,K .
Fig. 2(a) shows an example with K = 2.

The individual model has been validated in [17], [26].
They independently show through statistical methods
that empirical pairwise inter-contact time distributions,
obtained in real mobility traces, for a large portion of
node pairs can be well fitted by exponential distributions
but with different rates.

Group 1

Group 2
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(a) A case of two social groups (b) A case of two spatial clusters

Fig. 2. Examples of the individual and spatial models.

2.2 Spatially Heterogeneous Network Model

A spatially heterogeneous network model (simply, a
spatial model) was introduced in [19] and also similarly

used in [28]. This spatial model is formally described
below.

Consider a set of mobile nodes N in the network.
There are M different spatial clusters (or preferred sites).
Let Si be a spatial cluster (site) i, where i = 1, . . . ,M .
Then, each mobile node independently moves between
sites and encounters with others within each site as
follows:

(i) Each mobile node in site Si moves to site Sj with
rate qij at any time t.

(ii) Any pair of mobile nodes in site Si has Poisson
contacts with rate βi, i.e. the inter-contact time for
a node pair in site Si is independently and expo-
nentially distributed with mean 1/βi. The pairwise
inter-contact times between any two node pairs in
site Si are also mutually independent. Fig. 2(b)
depicts an example with M = 2.

Let X(t) ∈ {S1, . . . , SM} , Ω be the site that a
mobile node belongs to at time t. From the condition
(i), {X(t)}t≥0 is a continuous time Markov chain with
transition rate matrix (or infinitesimal generator) Q =
{qij}. We assume {X(t)} is irreducible, i.e., any mobile
node can reach everywhere in finite time with positive
probability. For analytical simplicity, we also assume that
qij=qji, i.e., the transition rates of mobile nodes between
sites Si and Sj are the same.

The spatial model was justified in [19]. In particular,
the condition (ii) is supported in [19] by empirically
observing that 90% of all the inter-contacts gathered in
a confined area, a subset of whole network domain,
approximately follows an exponential distribution but
with different rates over different subsets. The Poisson
contacts over a small confined area has been also theoret-
ically justified in [10], regardless of the mobility pattern
of each mobile node inside that small confined area. In
this spatial model, the heterogeneity arises by allowing
different contact rates βi over different sites.

3 INTER-CONTACT TIME UNDER HETEROGE-
NEOUS NETWORK MODELS

In this section, we show that each heterogeneous net-
work model can capture non-Poisson contact dynamics
as observed in real traces. For notational simplicity, we
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enumerate each of node pairs and define an index set for
the node pair as I = {1, 2, . . . , |N |(|N | − 1)/2}. We also
define by I a random variable to indicate a random node
pair, which is uniformly distributed over I. Further, we
define by TI and Ti the aggregate inter-contact time over
all node pairs and pairwise inter-contact time for a given
node pair i ∈ I, respectively. Here, the aggregate inter-
contact time distribution can be obtained by randomiz-
ing the pairwise inter-contact time distributions over all
node pairs, i.e.,

P{TI > t} = E{P{TI > t|I}} =
∑

i∈I

P{Ti > t}
1

|I|
.

We will use different superscripts ‘IN’,‘SP’, and ‘HO’ to
distinguish TI and Ti for the individual, spatial, and
homogeneous models, respectively.

From the definition of the individual model, it follows
that

P{T IN
i > t} = e−λit, and P{T IN

I > t} =
∑

i∈I

e−λit
1

|I|
,

where λi is the contact rate of a given node pair i ∈ I.
We can rewrite this as

P{T IN
I > t} = E{e−t/XIN}, (1)

where XIN is a discrete random variable taking values
1
λi

with probability 1
|I| . Note that the actual distribution

of XIN can be quite general by suitably setting λi.
3

For the spatial model, we have the following results:

Proposition 1: For the spatial heterogeneous model as
defined earlier, we have for any i ∈ I,

P{T SP
i > t} = P{T SP

I > t} = E{e−t/XSP}, (2)

for some positive random variable XSP.

Proof: See Section 8.1.

Proposition 1 says that the inter-contact time for
spatial model follows a hyper-exponential distribution.
Here, the random variable XSP depends on Q and βi.
We refer to the proof of Proposition 1 for more details.
From (1)–(2) and by noting that E{T }=

∫∞

0
P{T > t}dt,

we have

E{T IN
I }=E{XIN}=

∑

i∈I

1

λi

1

|I|
, and E{T SP

I }=E{XSP}.

It was addressed in [31] how to approximate a power-
law (heavy-tail) distribution in the regions of primary
interest by a mixture of exponentials while the approx-
imated distribution still has an exponential tail. This
implies that the observed ‘dichotomic’ inter-contact time
distribution with power-law and exponential mixture [9]
can be approximated by hyper-exponential distributions
within any desired degree of accuracy. Note that the

3. For example, setting λ1 = λ2 6= λi for i ≥ 3 will give non-
uniform distribution while setting λi = λ for all i makes XIN = 1/λ,
for which the aggregate inter-contact time follows a pure exponential
distribution.

‘dichotomic’ inter-contact time distribution is mainly ob-
tained from aggregate inter-contact time samples. Since
the aggregate inter-contact time distribution under both
the individual and spatial models is a form of hyper-
exponential distributions as shown in (1)–(2), both mod-
els can capture this non-exponential inter-contact time
behavior.

Throughout the rest of this paper, we focus on the
stochastic comparison of message delivery delays for
direct forwarding and multicopy two-hop relay pro-
tocol under the individual, spatial, and corresponding
homogeneous models. By the homogeneous model, we
hereafter mean that for all i ∈ I,

P{THO
i > t} = P{THO

I > t} = e−t/τ , (3)

where τ =E{XIN}=E{XSP}, unless otherwise specified.
Thus, under the constructed homogeneous model, the
inter-contact time of any pair of nodes is exponentially
distributed (thus giving Poisson contacts) with the same
average aggregate inter-contact time as the other hetero-
geneous models.

Throughout the rest of this paper, we assume the
followings as in other analytical works [4], [7], [29],
[30], [25], [19]. First, the network is sparse and network
traffic is light. We also assume that each node has no
resource constraint, i.e., it has infinite bandwidth and
buffer. Hence, the interference and contention incurred
during message transfers are not primary factors that
govern the forwarding performance. In addition, we
assume that a message transfer between any two nodes
at their contact instant takes negligible time with respect
to their inter-contact time. Finally, we consider the delay
performance of a source and destination pair which is
uniformly chosen over I unless specified.

4 DELAY PERFORMANCE OF DIRECT FOR-
WARDING

In this section, we first stochastically compare the delay
performance of direct forwarding (i.e., a source node
waits until it meets a destination node to deliver a
message) under the three models. Although the direct
forwarding is very simple and there certainly exist other
algorithms with better performance, its performance can
serve as a basis for performance evaluation or prediction

of two-hop or multi-hop forwarding algorithms. Let D
[1]
IN ,

D
[1]
SP, and D

[1]
HO be the message delivery delay of direct

forwarding under the individual, spatial, and homoge-
neous models, respectively.

To proceed, we need the following definitions for the
stochastic and convex orderings between two random
variables Y and Z , denoted by Y ≥(·) Z , if E{φ(Y )} ≥
E{φ(Z)} for a class of functions φ for which the expec-
tation exists.

Definition 1: [32] Y is said to be larger than Z in the
usual stochastic order (denoted by Y ≥st Z) if E{φ(Y )} ≥
E{φ(Z)} holds for any increasing function φ, or equiva-
lently if P{Y >u} ≥ P{Z>u} for all u ∈ R.
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Definition 2: [32] We define a convex (resp. concave)
order, written Y ≥cx Z (resp. Y ≥cv Z), if E{φ(Y )} ≥
E{φ(Z)} holds for any convex (resp. concave) function
φ. Similarly, we also define an increasing convex (resp. in-
creasing concave) order, written Y ≥icx Z (resp. Y ≥icv Z),
if E{φ(Y )} ≥ E{φ(Z)} holds for any increasing4 convex
(resp. increasing concave) function φ.

From Definitions 1–2, one can easily establish the
following implications. If Y ≥st Z , then Y ≥icx Z and
Y ≥icv Z . Similarly, if Y ≥cx Z (resp. Y ≥cv Z), then
Y ≥icx Z (resp. Y ≥icv Z). Also, by noting that φ is
concave if −φ is convex, from Definition 2, Y ≥cx Z
implies Y ≤cv Z . Moreover, by Definition 1, if Y ≥st Z ,
then E{Y } ≥ E{Z}, while from Definition 2, if Y ≥cx Z ,
then E{Y } = E{Z} and Var{Y } ≥ Var{Z} by taking
φ(·) = (·)2.

The message delivery delay for a given source and
destination pair is nothing but their residual (or remain-
ing) inter-contact time after the message is generated at
the source node. First, for the homogeneous model, we
have

P{D
[1]
HO > t} = P{THO

I > t} = e−t/τ

due to the memoryless property of the exponential inter-
contact time distribution with mean τ for any pair of
nodes. Similarly, for the individual model,

P{D
[1]
IN > t|I = i} = P{T IN

I > t|I = i} = e−λit

for a given pair i ∈ I, thus from (1), we have

P{D
[1]
IN > t} = E{P{D

[1]
IN > t|I}} = P{T IN

I > t}

= E{e−t/XIN}.

However, for the spatial model, the inter-contact time of
a given pair i ∈ I is no longer memoryless but of hyper-
exponential form as in (2). Under stationary regime, note
that the residual inter-contact time Ri of a pair i ∈ I
follows the equilibrium distribution of Ti [33], [29], [21],
i.e., P{Ri > t} = 1

E{Ti}

∫∞

t P{Ti > u}du. Then, from (2),
we can write for any i ∈ I,

P{Ri > t} =
1

E{Ti}

∫ ∞

t

E{e−u/X}du

=
1

E{Ti}
E

{∫ ∞

t

e−u/Xdu

}

=
1

E{X}
E{Xe−t/X}, (4)

where Ti and X here represent T SP
i and XSP for the

spatial model, respectively. Since (4) holds for any i ∈ I,
we have

P{D
[1]
SP
> t} = P{Ri > t} =

1

E{XSP}
E{XSP · e−t/XSP}.

Now, we present our results for stochastic comparison
on the delay performance of direct forwarding under the
individual, spatial, and homogeneous models.

Proposition 2: Let XIN1, XIN2 be random variables in
(1) for two different scenarios under the individual

4. Here, ‘increasing’ means non-decreasing.

model, and D
[1]
IN1, D

[1]
IN2 be the corresponding message

delivery delays of direct forwarding. Then, if XIN1 ≥cx

XIN2, we have D
[1]
IN1 ≥cx D

[1]
IN2.

Proof: By noting that P{D
[1]
IN > t} = E{e−t/XIN} and

E{XIN1} = E{XIN2}, we have E{D
[1]
IN1} = E{D

[1]
IN2}. Thus,

in order to prove D
[1]
IN1 ≥cx D

[1]
IN2, it is enough to show that

∫∞

a P{D
[1]
IN1 > t}dt ≥

∫∞

a P{D
[1]
IN2>t}dt for all a > 0 [32].

It is equivalent to showing that

E{XIN1 · e
−a/XIN1} ≥ E{XIN2 · e

−a/XIN2}, (5)

for all a > 0.
Let g(x) , xe−a/x. It is easy to see that g(x) is a convex

function of x > 0 for all a > 0. Thus, from XIN1 ≥cx XIN2

and Definition 2, the above inequality (5) holds by taking
φ(x) = xe−a/x. This completes the proof.

Proposition 2 says the message delivery delay gets
larger in the sense of convex order, as the underly-
ing individual model becomes ‘more heterogeneous’ (in
larger convex ordering of X). In particular, if E{T IN

I } =
E{THO

I } = τ (the same average aggregated inter-contact
time under the individual and homogeneous models),
we have

D
[1]
IN ≥cx D

[1]
HO
,

since XIN ≥cx E{XIN} = E{T IN
I } = τ . This means that

the message delivery delay of direct forwarding under
the individual model is more variable than that under the
homogeneous model, while the average delays under
both models are the same.

Proposition 3: If E{T SP
I } = E{THO

I }, then D
[1]
SP

≥st

D
[1]
HO.

Proof: Recall that P{D
[1]
HO > t} = e−t/τ and

P{D
[1]
SP
> t} =

1

E{XSP}
E{XSP · e−t/XSP}.

Note also that XSP ≥cx E{XSP}=E{T SP
I }= τ . Let XHO

be a random variable that takes the value τ = E{XSP}
with probability 1. Then, we can write

P{D
[1]
HO > t} =

1

E{XHO}
E{XHO · e−t/XHO}.

Hence, since XSP ≥cx XHO and xe−t/x is a convex
function of x > 0 for all t > 0, from Definition 2, we
have

E{XSP · e−t/XSP} ≥ E{XHO · e−t/XHO}

for all t > 0. Then, by noting that E{XSP} = E{XHO},

it follows that P{D
[1]
SP > t} ≥ P{D

[1]
HO > t} for all t > 0.

From Definition 1, the result follows.

Proposition 3 says that the message delivery delay of
direct forwarding under the spatial model is stochasti-
cally larger than that under the homogeneous model,
when the average inter-contact time under both models
are matched. From Propositions 2 and 3, we see that
the delay performance of direct forwarding under each
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heterogeneous model deviates from that under the ho-
mogeneous model in a different manner, though three
models are the same in the average aggregate inter-
contact time point of view.

Next, we compare the delay performance of direct
forwarding under the spatial and individual models,
when their entire distributions of the aggregate inter-
contact time remain identical. This can be achieved by

setting XSP
d
= XIN in (1)–(2). Still, our next result tells

us that the delay of direct forwarding under the spatial
model is always stochastically larger than that under the
individual model.

Proposition 4: If T SP
I

d
= T IN

I , then D
[1]
SP

≥st D
[1]
IN .

Proof: Recall that P{D
[1]
IN > t} = E{e−t/XIN} and

P{D
[1]
SP
> t} =

1

E{XSP}
E{XSP · e−t/XSP}.

Since e−t/x is increasing in x > 0 for any given t > 0,
we have

E{XSP · e−t/XSP} ≥ E{XSP} · E{e
−t/XSP}. (6)

Then, from the assumption that

P{T SP
I > t} = E{e−t/XSP} = E{e−t/XIN} = P{T IN

I > t}

for any given t > 0, and from (6) we have

P{D
[1]
SP
> t} =

1

E{XSP}
E{XSP · e−t/XSP}

≥ E{e−t/XSP}=E{e−t/XIN}=P{D
[1]
IN > t},

for all t > 0. From Definition 1, the result follows.

To sum up, from Propositions 2–4, we observe that
the performance of direct forwarding varies depending
on which of the two heterogeneous models is chosen,
i.e., how the non-Poisson contact dynamics observed in
the real traces are modeled. In addition, the aggregated
inter-contact time statistics (the whole distribution) are
still insufficient to correctly predict the forwarding per-
formance, even though many existing works [33], [9],
[19] have relied on the aggregated inter-contact time
samples to uncover the characteristics of mobile nodes’
contact patterns and justify their modeling choices.

5 DELAY PERFORMANCE OF MULTICOPY

TWO-HOP RELAY PROTOCOL

We now turn our attention to multicopy two-hop relay
protocol [4], [7], [29], [30] as a test case for a further
investigation of the impact of the heterogeneity structure
on the forwarding performance. In this protocol, only
source node can replicate a message and forward its copy
to any relay node that does not have the message copy
upon encounter.

Consider the delivery of a single message in the
network with |N | = n+ 2. Given a pair of source s and
destination d which is uniformly chosen over I, there are
n possible relay nodes (r1, r2, . . . , rn). We hereafter use

Tij , instead of Tl (l ∈ I), to represent the pairwise inter-
contact time of nodes i and j if needed to specify nodes
(i, j) of each node pair, where i, j ∈ {s, r1, . . . , rn, d} and
i 6= j. Similarly, Rij stands for the residual inter-contact
time of nodes i and j. Then, as shown in [29], [30], the
message delivery delay of the multicopy two-hop relay
protocol (denoted by D) – the time interval from the
time when the message is generated at a source node to
the time when any copy of the message first reaches its
destination, is given by

D
d
= min{Rsd, Rsr1 +Rr1d, . . . , Rsrn +Rrnd}. (7)

As before, D
[2]
IN , D

[2]
SP, and D

[2]
HO denote the message deliv-

ery delay of multicopy two-hop relay protocol under in-
dividual, spatial, and homogeneous models, respectively.
Here, we use superscript D[2] to indicate the multicopy
two-hop relay protocol, whereby D[1] was used for the
direct forwarding (single-hop) protocol in Section 4.

We first show that the stochastic ordering relationship
in Proposition 3 still holds for the message delay delays
of multicopy two-hop relay protocol under the spatial
and homogeneous models.

Proposition 5: If E{T SP
I } = E{THO

I }, then D
[2]
SP ≥st

D
[2]
HO

.

Proof: Let RSP
ij and RHO

ij be the residual inter-contact
time of a given node pair (i, j) under the spatial and ho-
mogeneous models, respectively. From Proposition 3, we
have RSP

ij ≥st R
HO
ij . From the independence of RSP

ij and

RHO
ij over different node (i, j) pairs, the stochastic order

is also closed under convolutions [32]. Thus, RSP
sd ≥st

RHO
sd and RSP

sri + RSP
rid

≥st R
HO
sri + RHO

rid
(i = 1, 2, . . . , n).

Then, it easily follows that these stochastic ordering
relationships still hold for their first order statistic, i.e.,

min{RSP
sd , R

SP
sr1 +RSP

r1d, . . . , R
SP
srn +RSP

rnd}

≥st min{RHO
sd , R

HO
sr1 +RHO

r1d, . . . , R
HO
srn +RHO

rnd}.

That is, D
[2]
SP ≥st D

[2]
HO, which completes the proof.

Proposition 5 also implies that the hyper-exponential
inter-contact time yields stochastically larger delay than
the exponential inter-contact time for the mulicopy two-
hop relay protocol when their average inter-contact
times are matched.

Next, we show the stochastic comparison for the
delays of multicopy two-hop relay protocol under the
individual and homogeneous models. Specifically, we
first compare the delay performance for a given source
and destination pair under the individual and homoge-
neous models, as the pairwise inter-contact times are
statistically different for different node pairs under the
individual model unlike to the spatial and homogeneous
models. Later on, we will continue our stochastic com-
parison on the delay performance for a uniformly and
randomly chosen source and destination pair under both
models. In this stochastic comparison, we assume that
each message reaches its destination via relay nodes
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only and the direct path from source to destination is
not considered. This may be the case with a moderate
to large number of mobile nodes (e.g., campus-wide
MONs), i.e., the ‘best’ of n relay nodes is likely to reach
the destination earlier than the source node does.

Let D
[2]
IN(s,d) be the message delivery delay for a given

source and destination (s, d) pair under the individual

model. Here, for a proper comparison between D
[2]
IN(s,d)

and D
[2]
HO

, we set the average inter-contact time for the
corresponding homogeneous model as

τ =
1

2n

n
∑

i=1

[

1

λsri
+

1

λrid

]

. (8)

That is, the average inter-contact time for any node pair
under the constructed homogeneous model is simply
the arithmetic mean of the average inter-contact times
over all node pairs in n two-hop relay paths under
the individual model. Let T IN

ij and THO
ij be the inter-

contact time of each node pair (i, j) under the individual
and homogeneous models, respectively. Then, due to
the memoryless property of exponential pairwise inter-
contact time distributions under the individual and ho-
mogeneous models, D

[2]
IN(s,d) and D

[2]
HO are given by

D
[2]
IN(s,d) = min{T IN

sr1 + T IN
r1d, . . . , T

IN
srn + T IN

rnd}, (9)

D
[2]
HO

= min{THO
sr1 + THO

r1d, . . . , T
HO
srn + THO

rnd}. (10)

Instead of directly comparing D
[2]
IN(s,d) with D

[2]
HO

, we
compare each of these message delivery delays with
that under a partially homogeneous setting (a special case
of the individual model). Fig. 3(b) shows this partially
homogeneous setting in which the delay over each relay
path is now a sum of two i.i.d. exponential random
variables with mean 1

2 [1/λsri+1/λrid] (homogeneous for
a given path, but heterogeneous over different paths).
Let Ssri and Srid be i.i.d. exponential random variables
with mean

1

µi
,

1

2

[

1

λsri
+

1

λrid

]

, (11)

where i = 1, . . . , n. Then, the message delivery delay in

this partially homogeneous model, D̃
[2]
IN(s,d), is given by

D̃
[2]
IN(s,d) = min{Ssr1 + Sr1d, . . . , Ssrn + Srnd}. (12)

Fig. 3 depicts the aforementioned three different settings
of n two-hop relay paths with varying degrees of het-
erogeneity over the average inter-contact times in the
network.

To proceed, we collect several definitions on majoriza-
tion [34] ordering. This is a partial order over vectors of
real numbers and is useful in capturing the degree of
heterogeneity in vector components.

Definition 3: [34] For ~y, ~z ∈ R
n, ~y is said to be majorized

by ~z, or ~z majorizes ~y, (written ~y ≺ ~z), if
∑m

i=1 y[i] ≤
∑m

i=1 z[i], (m = 1, 2, . . . , n−1), and
∑n

i=1 y[i] =
∑n

i=1 z[i],
where y[1] ≥ y[2] ≥ · · · ≥ y[n] (z[1] ≥ z[2] ≥ · · · ≥ z[n])

denote the components of ~y (resp. ~z) in decreasing order.

From (11) and Definition 3, we have
(

1

λsri
,

1

λrid

)

≻

(

1

µi
,
1

µi

)

(13)

for any λsri , λrid > 0, and (1/µi, 1/µi) is the smallest
in the sense of majorization ordering. Further, note that
from (8) and (11),

τ =
1

2n

n
∑

i=1

[

1

λsri
+

1

λrid

]

=
1

n

n
∑

i=1

1

µi
.

This implies that
(

1

µ1
, . . . ,

1

µn

)

≻ (τ, . . . , τ) (14)

for any µi > 0.

Definition 4: [34] For ~y, ~z ∈ R
n, a real-valued function

ψ defined on R
n is said to be Schur-convex, if ~y ≺ ~z

implies ψ(~y) ≤ ψ(~z). Similarly, ψ is said to be Schur-
concave, if ~y ≺ ~z implies ψ(~y) ≥ ψ(~z).

We also need the following result on the preservation
of the increasing concave ordering.

Proposition 6: [35, Proposition 9.5.4] If Y1, . . . , Yn are
independent random variables and Z1, . . . , Zn are in-
dependent random variables, and Yi ≥icv Zi for each
i=1, . . . , n, then f(Y1, . . . , Yn) ≥icv f(Z1, . . . , Zn) for all
increasing and componentwise concave function f .

Now we present our main result on the stochastic

comparison among D
[2]
IN(s,d), D̃

[2]
IN(s,d), D

[2]
HO

– the message
delivery delay of multicopy two-hop relay protocol over
the network setting in Fig. 3(a), (b), (c), respectively.

Theorem 1: If E{THO
I }= τ = 1

2n

∑n
i=1

[

1
λsri

+ 1
λrid

]

, then

D
[2]
IN(s,d) ≤icv D̃

[2]
IN(s,d) ≤st D

[2]
HO.

Proof: (A) Proof of D
[2]
IN(s,d) ≤icv D̃

[2]
IN(s,d): Let U1 and

U2 be i.i.d. exponential random variables with rate one.
Then, observe that

T IN
sri

d
=

1

λsri
U1, and T IN

rid
d
=

1

λrid
U2.

Similarly, we have

Ssri
d
=

1

µi
U1, and Srid

d
=

1

µi
U2.

Thus, from the independence of T IN
sri and T IN

rid
and the

independence of Ssri and Srid, we have

T IN
sri + T IN

rid
d
=

1

λsri
U1 +

1

λrid
U2,

Ssri + Srid
d
=

1

µi
U1 +

1

µi
U2.

(15)

Note that if Y1, . . . , Yn are exchangeable random vari-
ables, then ψ(~a) =E{f(

∑

aiYi)} is Schur-convex on R
n



SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING 8

Fully Hetero. Relay Paths

• • •

1/λr1d

s

d

r1 r2 rn

1/λsr1

1/λr2d

1/λsr2

1/λrnd

1/λsrn

1/µ1

1/µ1

1/µ2

1/µ2

1/µn

1/µn

Partially Homo. Relay Paths
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Fig. 3. Three different settings of n two-hop relay paths with varying degrees of heterogeneity: (a) a fully

heterogeneous setting, (b) a partially homogeneous setting where each relay path is homogeneous. (i.e., two-hop
components in each relay path have the same average inter-contact time as 1/µi =

1
2 [1/λsri + 1/λrid]), and (c) a fully

homogeneous setting where the average inter-contact time for any node pair is τ = 1
2n

∑n
i=1[1/λsri + 1/λrid].

for any convex function f [34, p.287, Proposition B.2].
Thus, from (13), (15), and Definition 4, we have,

E{f(T IN
sri + T IN

rid)} = E

{

f

(

1

λsri
U1 +

1

λrid
U2

)}

≥ E

{

f

(

1

µi
U1 +

1

µi
U2

)}

= E{f(Ssri + Srid)},

for any convex function f . Equivalently, from Defini-
tion 2, we have T IN

sri + T IN
rid

≥cx Ssri + Srid for each
i = 1, . . . , n. As mentioned in Section 4, it follows that

T IN
sri+T

IN
rid ≥cx Ssri+Srid ⇒ T IN

sri+T
IN
rid ≤cv Ssri+Srid

⇒ T IN
sri+T

IN
rid ≤icv Ssri+Srid,

for any i. Then, since min{x1, . . . , xn} is increasing on
R

n and concave in each argument xi, from (9), (12), and
Proposition 6, we have

D
[2]
IN(s,d) ≤icv D̃

[2]
IN(s,d). (16)

(B) Proof of D̃
[2]
IN(s,d) ≤st D

[2]
HO: Let νi ,

1
µi

and

g(νi) , P {Ssri + Srid > t} =

(

1 +
t

νi

)

e−t/νi

for any given t>0. We also define another function by

h(~ν) , P

{

D̃
[2]
IN(s,d) > t

}

=
n
∏

i=1

g(νi),

where ~ν , (ν1, ν2, . . . , νn). It is straightforward to check
log g(νi) is concave in νi > 0 for all t > 0. Then, since
g(νi) is log-concave, h(~ν) =

∏

g(νi) is Schur-concave on
(0,∞)n [34, p.73, Proposition E.1]. Thus, from (10), (12),
(14) and Definition 4, we have for any ~ν ∈ (0,∞)n,

P

{

D̃
[2]
IN(s,d) > t

}

= h(ν1, . . . , νn)

≤ h(τ, . . . , τ) = P

{

D
[2]
HO

> t
}

,

for any given t > 0. In other words, by Definition 1,

D̃
[2]
IN(s,d) ≤st D

[2]
HO. (17)

From (16) and (17), we are done.

By noting that ≤st⇒≤icv, Theorem 1 implies that if
E{THO

I } = 1
2n

∑n
i=1[1/λsri + 1/λrid], then

D
[2]
IN(s,d) ≤icv D

[2]
HO
.

Since φ(x) = x is increasing and concave, from Defini-
tion 2, it further implies

E{D
[2]
IN(s,d)} ≤ E{D

[2]
HO}. (18)

We now move on to the stochastic comparison on
message delivery delays for a uniform source and des-
tination pair. Note that the average message delivery
delay of a uniform pair is nothing but the arithmetic
mean of the average message delivery delays over all
possible |N |(|N | − 1)/2 source and destination (s, d)
pairs. Also, as in (18), for each (s, d) pair, if E{THO

I } =
1
2n

∑n
i=1[1/λsri+1/λrid], then E{D

[2]
HO} becomes an upper

bound of E{D
[2]
IN(s,d)}. Hence, after computing the arith-

metic mean of the upper bounds of E{D
[2]
IN(s,d)} over all

(s, d) pairs, we obtain the following corollary.

Corollary 1: If E{THO
I } = E{T IN

I } =
∑

i∈I
1
λi

1
|I| , then

E{D
[2]
IN } ≤ E{D

[2]
HO

}.

Proof: See Section 8.2.

As shown in Theorem 1 and Corollary 1, the path
diversity (heterogeneity) over n relay paths under the
individual model results in better delay performance of
multicopy two-hop relay protocol. It also turns out that
Proposition 5 still holds under the same scenario (i.e.,
no direct path is used) considered in Corollary 1. Thus,
under this scenario, if E{T SP

I } = E{T IN
I } = E{THO

I }, we
have

E{D
[2]
IN } ≤ E{D

[2]
HO

} ≤ E{D
[2]
SP
}. (19)
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This means that the heterogeneity structure in the spa-
tial model makes the average delay performance of
multicopy two-hop relay protocol worse, whereas the
other heterogeneity structure in the individual model is
beneficial to its average delay performance when com-
pared with that under the corresponding homogeneous
model. In addition, even if the whole aggregate inter-
contact time distribution under both the spatial and

individual models remains the same, i.e., T SP
I

d
= T IN

I ,
since E{T SP

I } = E{T IN
I }, it follows from (19) that

E{D
[2]
IN } ≤ E{D

[2]
SP
}.

Along with Proposition 4, it clearly shows that the ag-
gregate inter-contact time statistics are still not sufficient
in accurately estimating the forwarding performance.

From our theoretical results, we expect that the delay
performance of other two-hop or multi-hop forwarding
protocols under each heterogeneous model differs con-
siderably from that under the homogeneous model and
there exists a significant performance gap between the
two heterogeneous models as we observed, even when
the entire aggregate inter-contact time distributions are
precisely matched.

6 SIMULATION RESULTS

In this section, we present simulation results on the
average delay performance of multicopy two-hop relay
protocol and epidemic routing protocol for a uniform
source and destination pair under the individual, spatial,
and homogeneous models, all of which are the same
in the average inter-contact time of a random pair of
nodes (the same average aggregate inter-contact time) to
support our analytical findings. In the epidemic routing
protocol [2], [4], [6], [7], [30], [24], a commonly used
reference forwarding algorithm for MONs, every node
can copy a message and forward its copy (‘infect’) to any
other node that does not have the message already upon
encounter. We use a custom event-driven simulator im-
plemented using C++ to conduct numerical simulations.

Specifically, for the spatial model, we consider a two-
states spatial model (a special case) where random
contact events of each node pair occur according to
a Poisson process with rate βi only when two nodes
of the pair reside in the same state (site) i ∈ {1, 2},
while every node can move between two states with
transition rates q12, q21. In addition, we consider the
following scenario for the individual model: all node
pairs (total |N |(|N |−1)/2 pairs) are equally divided into
5 groups, in which the contact rate of any node pair in
each group is the same, but different from that of the
other group, though the inter-contact time distribution
of each pair is still exponential. For the homogeneous
model, by its definition, contact events of any node pair
happen according to a Poisson process with same rate
parameter. We below explain parameter settings which
ensure the same average aggregate inter-contact time for
all the three models.
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(a) q12 = q21 = 10
−5
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(b) q12 = q21 = 5× 10
−5

Fig. 4. Pairwise inter-contact time distribution under the
two-states spatial model with varying q12 (= q21). τ=8000
for both cases.

In the simulations of the two-states spatial model,
we use β1 = 10−4 and β2 = 4× 10−4 for the contact
rates associated with states S1 and S2, respectively, and
consider two different cases of the transition rates q12
and q21, i.e., q12= q21=10−5 and q12= q21=5×10−5. We
here present the complementary cumulative distribution
function (CCDF) of the inter-contact time of a node pair
on semi-log scale under the above parameter settings
in Fig. 4. The graphs labeled ‘simulation’ are plotted
based on inter-contact time samples of a node pair from
numerical simulations, while the other graphs labeled
‘analysis’ are obtained from the derivation of pairwise
inter-contact time distribution shown in the proof of
Proposition 1 (i.e., numerical computation of (22) in Sec-
tion 8.1). From Fig. 4, we can identify that the simulation
results show a good agreement with the analysis of
the pairwise inter-contact time distribution. In Fig. 4,
an exponential distribution with mean τ , which is set
to be the same average inter-contact time observed in
each simulation, is also drawn to explicitly show that the
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Fig. 5. The average delay of multicopy two-hop relay

protocol under the spatial, individual, and homogeneous

models, all of which have the same average aggregate
inter-contact time.

pairwise inter-contact time distribution under the two-
states spatial model deviates much from that under the
homogeneous model, a pure exponential distribution.
The average inter-contact time observed under each of
both simulations is almost the same as 8000 seconds
(i.e., τ = 8000). This value of τ is also used for the
average inter-contact time of any node pair under the
homogeneous model in the subsequent simulations. In
addition, for the simulations of the individual model,
the average inter-contact time for each of 5 groups of
node pairs is given by τ − 2∆, τ − ∆, τ, τ + ∆, τ + 2∆,
respectively, where τ =8000 and ∆=2000, 3000. In this
way, the average inter-contact time of a randomly chosen
pair of nodes remains the same for the three models.

We then conduct numerical simulations to measure the
average delay performance of multicopy two-hop relay
protocol and epidemic routing protocol under each of
the three models with the above parameter settings. In
each simulation, a message is independently generated

20 25 30 35 40 45 50
0

2000

4000

6000

8000

Number of nodes

A
v
e
ra

g
e
 D

e
la

y
 (

s
e
c
)

Epidemic Routing Protocol

Homogeneous Model

Spatial Model (q12 =q21 =5×10−5 )

Spatial Model (q12 =q21 =10−5)
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Fig. 6. The average delay of epidemic protocol under the

spatial, individual, and homogeneous models, all of which

remain the same in the average inter-contact time of a
random pair of nodes.

at a random time for a uniformly and randomly chosen
source and destination pair and total 105 messages are
generated during the simulation. All simulation results
are obtained based upon the message delivery of 105

messages. We also change the number of nodes |N | from
20 to 50 in the simulations.

Fig. 5 shows the average delays of multicopy two-hop
relay protocol under the spatial, individual, and homo-
geneous models. First, as shown in Fig. 5(a), the spatial
model with a different set of transition rates yields worse
performance than the homogeneous model in terms of
the average delay, which is in good agreement with our
analytical findings in Section 5 (see Proposition 5 and
(19)). This performance degradation results from that
pairwise inter-contact time under the spatial model is
no longer memoryless and more variable, which tends
to have longer inter-contact time sample with higher
probability, as seen from Fig. 4. We can further observe
that for the spatial model, the average delay performance
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under the case of q12=q21=10−5 is worse than the other.
This is also due to higher variability of inter-contact time
under the former case.

In addition, as can be seen from Fig. 5(b), the individ-
ual model (with ∆=2000, 3000) results in better average
delay performance than the homogeneous model. This
also confirms our findings in Theorem 1 and Corollary 1.
As mentioned in Section 5, the main reason of the
performance improvement is the path diversity in the
individual model. In other words, since the message
delivery delay is the minimum path delay over direct and
two-hop relay paths, the diversity in path delays under
the individual model can improve the delay perfor-
mance. We also observe that the more variable scenario
of the individual model in terms of the average inter-
contact time for each node pair (∆= 3000), the smaller
average delay of the multicopy two-hop relay protocol.
This improvement comes from higher path diversity for
the case of ∆=3000.

We also present the average delays of epidemic rout-
ing protocol under the spatial, individual, and homo-
geneous models in Fig. 6. We can see the same trend
in the average delay performance of epidemic routing
protocol as observed above for the multicopy two-hop
relay protocol. Hence, all the simulation results collec-
tively exhibit an opposite prediction on the forwarding
performance from each of the two heterogeneous models
and also show the presence of a performance gap be-
tween the performance predictions, which confirms our
analytical results.

7 CONCLUSION

In this paper we have mainly focused on how the
underlying heterogeneity structure in mobile nodes’ con-
tact dynamics impacts the performance of forwarding
algorithms in MONs. Based upon two representative
heterogeneous network models, we have investigated
their non-Poisson contact dynamics and stochastically
compared their delay performance of direct forwarding
and multicopy two-hop relay protocol with those un-
der the homogeneous model. In particular, our findings
show that each heterogeneous model predicts an en-
tirely opposite delay performance when compared with
that under the homogeneous model. Simulation results
including the delay performance of epidemic routing
protocol are also provided to support these findings.
Our results call for much more careful studies on the
forwarding performance under non-Poisson contacts,
and perhaps more importantly, under properly chosen
heterogeneous models.

8 PROOFS

8.1 Proof of Proposition 1

We here prove that the inter-contact time of any node
pair which is uniformly chosen in I has a hyper-expone-
ntial distribution under the spatial model. By the defini-
tion of the spatial model, the distribution of inter-contact

time of a node pair is identical to the others, it is enough
to show the inter-contact time distribution of a given
node pair i ∈ I.

Let TAB be inter-contact time between randomly cho-
sen nodes A and B. Without loss of generality, we
assume that a contact between nodes A and B occurs at
time 0. Let A(t), B(t)∈Ω be the sites that nodes A and
B belong to at time t, respectively. By the definition of
the spatial model, we know {A(t)}t≥0 and {B(t)}t≥0 are
continuous time Markov chains with state space Ω. We
hereafter use state i, instead of state Si, for simplicity
(Ω = {1, 2, . . . ,M}). Since each of the Markov chains
is irreducible and its state space is finite, it is ergodic
and thus there exists a unique stationary distribution
~π = [πi, i ∈ Ω] such that ~πQ = ~0 [35], [36]. We assume
that the system is in the steady-state with its stationary
distribution ~π. Recall that the transition rate matrix Q of
the Markov chains is given by

Q =











−q1 q12 · · · q1M
q21 −q2 · · · q2M

...
...

...
. . .

qM1 qM2 · · · −qM











,

where qi =
∑

k 6=i qik. We also define a matrix B by
B = diag{β1, β2, . . . , βM}. From the definition of the
spatial model, we know that a contact process based
on B between nodes A and B is modulated by {A(t)}
and {B(t)}. In other words, a contact between nodes
A and B happens according to a Poisson process with
rate βi, only when two nodes reside in the same state
i ∈ Ω. One can expect the similarity as a point process
between the contact process under the spatial model and
an arrival process governed by the Markov Modulated
Poisson Process (MMPP) [37] widely used in teletraffic
engineering. In the MMPP, packet arrivals occur accord-
ing to a Poisson process with a different rate which is
modulated by an irreducible continuous time Markov
chain.

Let C(t) , (A(t), B(t)) ∈ Ω2 to represent a pair
of states that nodes A and B belong at time t. Then,
{C(t)}t≥0 is a continuous time Markov chain with state
space Ω2 and its transition rate matrix Q′ = {q′~u,~v}~u,~v∈Ω2

is also written as

Q′ =















−q′1 q12 q13 · · · 0
q21 −q′2 q23 · · · 0
q31 q32 −q′3 · · · 0

...
...

...
. . .

...
0 0 0 · · · −q′M2















.

Here, the entries of the rate matrix Q′ are ordered
lexicographically, i.e., (1, 1), (1, 2), . . . , (1,M), (2, 1), (2, 2),
. . . , (M,M), and q′l =

∑

k 6=i qik +
∑

k 6=j qjk for each
l = M(i − 1) + j, where i, j ∈ Ω. Also, the station-
ary distribution ~π′ of {C(t)} is now given by ~π′ =
[π2

1 π1π2 · · · π1πM π2π1 · · · π2
M ].

For notational convenience, we define another M2 ×
M2 matrix B′ from the M × M matrix B, as the rate
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matrix Q′ is a M2 × M2 matrix. The B′ is a diagonal
matrix with B′

jj = βi if j =M(i−1)+ i, otherwise zero,
where j ∈ {1, 2, . . . ,M2} and i ∈ {1, 2, . . . ,M}. Thus, the
contact process based on B′ between nodes A and B is
modulated by {C(t)}. That is, when the Markov chain
{C(t)} is in state (i, i), contacts occur according to the
Poisson process of βi. Therefore, it has exactly the same
structure of MMPP with (Q′, B′).

Consider the epochs of successive contacts in the
MMPP with (Q′, B′) to obtain the pairwise inter-contact
time distribution between nodes A and B, i.e., P{TAB >
t}. As mentioned above, the contact process between
nodes A and B starts at an “arbitrary contact epoch”, i.e.,
t = 0 is a contact epoch. It is called interval-stationary
process in the MMPP [37]. We denote Jn, n ≥ 0, to be
the state of the Markov chain {C(t)} associated with the
nth contact (J0 is the state at t=0). We also denote Xn,
n ≥ 1, to be the inter-contact time between the (n−1)st

and the nth contacts with X0 = 0. Then, the sequence
{(Jn, Xn), n ≥ 0} is a Markov renewal sequence with
transition probability matrix [37], [38]

F(t)=

∫ t

0

e(Q
′−B′)uduB′=

[

I−e(Q
′−B′)t

]

(B′−Q′)−1B′

=
[

I− e(Q
′−B′)t

]

F(∞), (20)

where the element Fij(t) of F(t) is the conditional
probability {Jn = j,Xn ≤ t | Jn−1 = i} for any n ≥ 1,
and I is a M2 ×M2 identity matrix.

The matrix F(∞) = (B′−Q′)−1B′ is stochastic and its
stationary vector ~p is given by [37], [38]

~p = ~p (B′ −Q′)−1B′ =
1

~π′~β′
~π′B′,

where ~β′
M2×1 , [β′

1 β
′
2 · · · β′

M2 ]T . Here, β′
j = βi if j =

M(i− 1) + i, otherwise zero, where j ∈ {1, . . . ,M2} and

i ∈ {1, . . . ,M}. Thus, an element of ~p is
π2
i
βi∑

M

k=1
π2
k
βk

if it

corresponds to that of state (i, i), otherwise 0. Here, since
the contact process between nodes A and B governed by
the MMPP with (Q′, B′) is interval-stationary, the initial
probability vector {J0} of the MMPP with (Q′, B′) is
chosen to be ~p. Thus, since P{TAB > t} = P{Xn > t} for
any n ≥ 1, from (20) with ~p, we have

P{TAB > t} = ~p e(Q
′−B′)t(B′ −Q′)−1B′~e

= ~p e(Q
′−B′)t~e, (21)

where ~eM2×1 = [1 1 · · · 1]T . The second equality is from
the fact that the matrix (B′−Q′)−1B′ is stochastic. Note
that (21) is the marginal distribution of an inter-contact
time between two successive contact epochs.

Recall that qij = qji in the rate matrix Q of each of
{A(t)} and {B(t)}, where i, j ∈ Ω. Hence, it is easy to
see that the matrix Q′−B′ is symmetric, and thus its
eigenvalues and eigenvectors are real. By the spectral
theorem [39], the matrix Q′−B′ can be diagonalized by an
orthogonal matrix. In other words, Q′−B′ = MUM−1,
where M is a M2 × M2 orthogonal matrix containing

orthonormal eigenvectors of Q′−B′, and U is a M2×M2

diagonal matrix in which each diagonal element is its an
eigenvalue. Thus, (21) becomes

P{TAB > t} = ~p e(Q
′−B

′)t~e = ~p MeUtM−1~e. (22)

Here, since all the eigenvalues of Q′−B′ are real and
e(Q

′−B′)t → 0 as t → ∞ in (20), all the eigenvalues (in
U) should be negative [39]. Therefore, (22) becomes a
weighted sum of exponentials (i.e., hyper-exponential).
This completes the proof.

8.2 Proof of Corollary 1

We here show that if E{THO
I } = E{T IN

I } =
∑

i∈I
1
λi

1
|I| ,

then E{D
[2]
IN } ≤ E{D

[2]
HO

}. First, observe that from the
independence of THO

ij over different node (i, j) pairs, for
any source and destination pair, we have

E{D
[2]
HO} =

∫ ∞

0

P{min{THO
sr1+T

HO
r1d, . . . , T

HO
srn+T

HO
rnd}>t}dt

=

∫ ∞

0

n
∏

i=1

P{THO
sri +T

HO
rid > t}dt

=

∫ ∞

0

(1 + t/τ)ne−nt/τdt

= τ

n
∑

i=0

n!

(n− i)!ni+1
= τf(n), (23)

where τ = E{THO
I } and f(n) ,

∑n
i=0

n!
(n−i)!ni+1 . Also,

from Theorem 1, we know that if τ = 1
2n

∑n
i=1[1/λsri +

1/λrid], then

E{D
[2]
IN(s,d)} ≤ E{D

[2]
HO

} =
1

2n

n
∑

i=1

[

1

λsri
+

1

λrid

]

f(n), (24)

where the equality is from (23).
As mentioned earlier, the average delay for a uniform

source and destination pair is the arithmetic mean of
the average delays for all |N |(|N | − 1)/2 source and
destination (s, d) pairs. We hereafter use (i, j), instead of
(s, d), to clearly distinguish each source and destination
pair, where i, j ∈ N , {1, 2, . . . , n+2}. Then, the average
delay for a uniform source and destination pair is given
by

E{D
[2]
IN } =

2

(n+2)(n+1)

n+2
∑

i=1

n+2
∑

j>i

E{D
[2]
IN(i,j)}

=
1

(n+2)(n+1)

n+2
∑

i=1

n+2
∑

j 6=i

E{D
[2]
IN(i,j)}

≤
1

(n+2)(n+1)

n+2
∑

i=1

n+2
∑

j 6=i

1

2n

n+2
∑

k 6=i,j

(

1

λik
+

1

λkj

)

f(n)

=
f(n)

(n+2)(n+1)2n

n+2
∑

i=1

n+2
∑

j 6=i

n+2
∑

k 6=i,j

(

1

λik
+

1

λkj

)

, (25)

where the first equality is from the symmetry of the
contact process of each node pair (λij = λji) under
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the individual model, and the inequality is from (24).
Further, the summation terms in (25) can be simplified
as follows. Observe that

n+2
∑

i=1

n+2
∑

j 6=i

n+2
∑

k 6=i,j

1

λik
=

n+2
∑

i=1





n+2
∑

k 6=i

n+1

λik
−

n+2
∑

j 6=i

1

λij





=

n+2
∑

i=1

n+2
∑

j 6=i

n

λij
,

and

n+2
∑

i=1

n+2
∑

j 6=i

n+2
∑

k 6=i,j

1

λkj
=

n+2
∑

i=1

n+2
∑

j=1

n+2
∑

k 6=i,j

1

λkj
−

n+2
∑

j=1

n+2
∑

k 6=j

1

λkj

=

n+2
∑

j=1





n+2
∑

k 6=j

n+2

λkj
−

n+2
∑

h 6=j

1

λhj



−
n+2
∑

j=1

n+2
∑

k 6=j

1

λkj

=

n+2
∑

j=1

n+2
∑

k 6=j

n

λkj
=

n+2
∑

j=1

n+2
∑

k 6=j

n

λjk
.

Thus, (25) can be rewritten as

E{D
[2]
IN } ≤

f(n)

(n+2)(n+1)

n+2
∑

i=1

n+2
∑

j 6=i

1

λij

=





2

(n+2)(n+1)

n+2
∑

i=1

n+2
∑

j>i

1

λij



f(n)

=

(

∑

i∈I

1

λi

1

|I|

)

f(n) = E{T IN
I }f(n), (26)

where the equalities are from the definition of the indi-
vidual model. Then, from the assumption that E{THO

I }=
E{T IN

I }=
∑

i∈I
1
λi

1
|I| and from (23) and (26), we have

E{D
[2]
IN } ≤ E{T IN

I }f(n) = τf(n) = E{D
[2]
HO

}.

This completes the proof.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation under grants CNS-0831825, CCF-0830680,
and CAREER Award CNS-0545893.

REFERENCES

[1] C.-H. Lee and D. Y. Eun, “Heterogeneity in contact dynamics:
helpful or harmful to forwarding algorithms in DTNs?” in Pro-
ceedings of WiOpt, Seoul, South Korea, June 2009.

[2] A. Vahdat and D. Becker, “Epidemic routing for partially-
connected ad hoc networks,” Duke University Technical Report
CS-200006, Tech. Rep., April 2000.

[3] M. Grossglauser and D. N. C. Tse, “Mobility increases the capacity
of ad hoc wireless networks,” vol. 4, pp. 477–486, Aug. 2002.

[4] R. Groenevelt, G. Koole, and P. Nain, “Message delay in mobile ad
hoc networks,” in Proceedings of Performance, Juan-les-Pins, France,
Oct. 2005.

[5] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and
wait: an efficient routing scheme for intermittently connected
mobile networks,” in Proceedings of WDTN, Philadelphia, PA, Aug.
2005.

[6] A. Jindal and K. Psounis, “Performance analysis of epidemic rout-
ing under contention,” in Proceedings of ACM IWCMC, Vancouver,
Canada, July 2006.

[7] X. Zhang, G. Neglia, J. Kurose, and D. Towsley, “Performance
modeling of epidemic routing,” Computer Networks, vol. 51, no. 10,
pp. 2867–2891, 2007.

[8] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Effi-
cient routing in intermittently connected mobile networks: the
multiple-copy case,” IEEE/ACM Trans. on Networking (ToN),
vol. 16, no. 1, pp. 77–90, Feb. 2008.

[9] T. Karagiannis, J.-Y. Le Boudec, and M. Vojnovic, “Power law and
exponential decay of inter contact times between mobile devices,”
in Proceedings of ACM MobiCom, Montreal, Canada, Sep. 2007.

[10] H. Cai and D. Y. Eun, “Crossing over the bounded domain:
from exponential to power-law inter-meeting time in MANET,”
in Proceedings of ACM MobiCom, Montreal, Canada, Sep. 2007.

[11] T. Small and Z. J. Haas, “Resource and performance tradeoffs
in delay-tolerant wireless networks,” in Proceedings of WDTN,
Philadelphia, PA, Aug. 2005.

[12] G. Neglia and X. Zhang, “Optimal delay-power tradeoff in sparse
delay tolerant networks: a preliminary study,” in Proceedings of
CHANTS, Pisa, Italy, Sep. 2006.

[13] E. Altman, T. Basar, and F. D. Pellegrini, “Optimal monotone
forwarding policies in delay tolerant mobile ad-hoc networks,”
in Proceedings of InterPerf, Athens, Greece, Oct. 2008.

[14] O. Helgason and G. Karlsson, “On the effect of cooperation in
wireless content distribution,” in Proceedings of IEEE/IFIP WONS,
Garmisch-Partenkirchen, Germany, Jan. 2008.

[15] W. Hsu, K. Merchant, C. Hsu, and A. Helmy, “Weighted waypoint
mobility model and its impact on ad hoc networks,” ACM Mobile
Computer Communications Review, Jan. 2005.

[16] N. Sarafijanovic-Djukic, M. Piorkowski, and M. Grossglauser,
“Island hopping: efficient mobility-assisted forwarding in parti-
tioned networks,” in Proceedings of IEEE SECON, Reston, VA, Sep.
2006.

[17] V. Conan, J. Leguay, and T. Friedman, “Characterizing pairwise
inter-contact patterns in delay tolerant networks,” in Proceedings
of Autonomics, Rome, Italy, Oct. 2007.

[18] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE Rap: social-based
forwarding in delay tolerant networks,” in Proceedings of ACM
MobiHoc, Hong Kong SAR, China, May 2008.

[19] N. Banerjee, M. D. Corner, D. Towsley, and B. N. Levine, “Relays,
base stations, and meshes: enhancing mobile networks with in-
frastructure,” in Proceedings of ACM MobiCom, San Francisco, CA,
Sep. 2008.

[20] M. Piorkowski, N. Sarafijanovic-Djukic, and M. Grossglauser,
“A parsimonious model of mobile partitioned networks with
clustering,” in Proceedings of COMSNETS, Bangalore, India, Jan.
2009.

[21] H. Cai and D. Y. Eun, “Toward stochastic anatomy of inter-
meeting time distribution under general mobility models,” in
Proceedings of ACM MobiHoc, Hong Kong SAR, China, May 2008.

[22] M. Musolesi and C. Mascolo, “A community based mobility
model for ad hoc network research,” in Proceedings of REALMAN,
Florence, Italy, May 2006.

[23] E. M. Daly and M. Haahr, “Social network analysis for routing
in disconnected delay-tolerant manets,” in Proceedings of ACM
MobiHoc, Montreal, Quebec, Canada, Sep. 2007.

[24] Y.-K. Ip, W.-C. Lau, and O.-C. Yue, “Performance modeling of
epidemic routing with heterogeneous node types,” in Proceedings
of ICC, Beijing, China, May 2008.

[25] V. Conan, J. Leguay, and T. Friedman, “Fixed point opportunistic
routing in delay tolerant networks,” IEEE Journal on Selected Areas
in Communications (JSAC), vol. 26, no. 5, pp. 773–782, June 2008.

[26] W. Gao, G. Li, B. Zhao, and G. Cao, “Multicasting in delay tolerant
networks: a social network perspective,” in Proceedings of ACM
MobiHoc, New Orleans, Louisiana, May 2009.

[27] T. Spyropoulos, T. Turletti, and K. Obraczka, “Routing in delay-
tolerant networks comprising heterogeneous node populations,”
IEEE Trans. on Mobile Computing (TMC), vol. 8, no. 8, pp. 1132–
1147, Aug. 2009.

[28] A. Chaintreau, J.-Y. Le Boudec, and N. Ristanovic, “The age
of gossip: spatial mean field regime,” in Proceedings of ACM
Sigmetrics/Performance, Seattle, WA, June 2009.

[29] A. A. Hanbali, A. A. Kherani, and P. Nain, “Simple models for the
performance evaluation of a class of two-hop relay protocols,” in
Proceedings of IFIP Networking, Atlanta, GA, May 2007.



SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING 14

[30] M. Ibrahim, A. A. Hanbali, and P. Nain, “Delay and resource anal-
ysis in manets in presence of throwboxes,” Performance Evaluation,
vol. 64, no. 9-12, pp. 933–947, 2007.

[31] A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to
long-tail distributions to analyze network performance models,”
in Proc. of IEEE INFOCOM, Washington, DC, April 1997.

[32] M. Shaked and J. G. Shanthikumar, Stochastic orders and their
applications. Academic Press, 1994.

[33] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of human mobility on the design of opportunistic for-
warding algorithms,” in Proc. of IEEE INFOCOM, Barcelona,
Spain, April 2006.

[34] A. W. Marshall and I. Olkin, Inequalities: theory of majorization and
its applications. Academic Press, 1979.

[35] S. M. Ross, Stochastic processes, 2nd ed. New York: John Wiley &
Son, 1996.
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