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Abstract—The peer-to-peer (P2P) file-sharing applications are
becoming increasingly popular and account for more than 70%
of the Internet’s bandwidth usage. Measurement studies show
that a typical download of a file can take from minutes up to
several hours depending on the level of network congestion or the
service capacity fluctuation. In this paper, we consider two major
factors that have significant impact on average download time,
namely, the spatial heterogeneity of service capacities in different
source peers and the temporal fluctuation in service capacity of
a single source peer. We point out that the common approach of
analyzing the average download time based onaverage service
capacity is fundamentally flawed. We rigorously prove that both
spatial heterogeneity and temporal correlations in service capac-
ity increase the average download time in P2P networks and then
analyze a simple, distributed algorithm to effectively remove these
negative factors, thus minimizing the average download time. We
show through analysis and simulations that it outperforms most
of other algorithms currently used in practice under various
network configurations.

I. I NTRODUCTION

Peer-to-peer (P2P) technology is heavily used for content
distribution applications. The early model for content distribu-
tion is a centralized one, in which the service provider simply
sets up a server and every user downloads files from it. In
this type of network architecture (server-client), many users
have to compete for limited resources in terms of bottleneck
bandwidth or processing power of a single server. As a result,
each user may receive very poor performance. From a single
user’s perspective, the duration of a download session, or the
download time for that individual user is the most often used
performance metric.

P2P technology tries to solve the issue of scalability by
making the system distributed. Each computer (peer) in the
network can act as both a server and a client at the same
time. When a peer completes downloading some files from
the network, it can become a server to service other peers
in the network. It is obvious that as time goes on, the service
capacity of the entire network will increase due to the increase
in the number of servicing peers. With this increasing service
capacity, theoretical studies have shown that the average down-
load time foreach userin the network is much shorter than
that of a centralized network architecture in ideal cases [2],
[3]. In other words, users of a P2P network should enjoy much
faster downloads.
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However, the measurement results in [4] show that a file
download session in a P2P network is rather long and varies a
lot from user to user. For instance, downloading an 100MB file
in a Gnutella network can range from several hours to awhole
week. While theoretical studies provide performance bounds
for ideal cases, there are many factors that make the real world
performance much worse than the theoretical prediction. Some
of the major challenges facing a P2P network in the real world
include peer selection [5], [6], [7], [8] and data search and
routing [9], [10], [11], [12], [13].

Due to the distributed nature of the P2P network, searching
and locating data of interest in the network has been an
important issue in the literature. In reality, data searching time
only contributes a very small portion of a download session
while the most delay is caused by actually transferring the
file from source peers as shown in [14]. Thus, if we want to
minimize the download time for each user, reducing the actual
file transfer time would make more noticeable difference. Most
recent studies, however, have focused on reducing the total
download duration, i.e. the time required forall usersto finish
their download. This total download time is a system-wide
performance metric. On the other hand, there are very few
results in analyzing the performance ofeach individual user.
As the measurement study shows [4], the per-user performance
in a P2P network may be even worse than that of a centralized
network architecture. Those results suggest that there is much
room for improvement in the P2P system in terms of per-user
performance, i.e. the file download time of each user.

However, there have been very few results in minimizing
the download time foreach userin a P2P network. In recent
work [5], [6], the problem of minimizing the download time
is formulated as an optimization problem by maximizing the
aggregated service capacity over multiple simultaneous active
links (parallel connections) under some global constraints.
There are two major issues in this approach. One is that global
information of the peers in the network is required, which
is not practical in real world. The other is that the analysis
is based on the averaged quantities, e.g., average capacities of
all possible source peers in the network. The approach of using
the average service capacity to analyze the average download
time has been a common practice in the literature [2], [3], [5],
[6], [15], [16], [17].
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A. Limitations of Approach via Average Service Capacity

We here illustrate limitations of the approach based on
averaged quantities in a P2P network by considering the
following examples. Suppose that a downloading peer wants to
download a file of sizeF from N possible source peers. Let
ci be the average end-to-end available capacity between the
downloading peer and theith source peer (i = 1, 2, . . . , N ).
Notice that the actual value ofci is unknown before the
downloading peer actually connects to the source peeri.
The average service capacity of the network,C̄, is give by
C̄ =

∑N

i=1 ci/N . Intuitively, the average download time,T ,
for a file of sizeF would be

T = F/C̄. (1)

In reality, however, (1) is far different from the true average
download time for each user in the network. The two main
reasons to cause the difference are (i) thespatial heterogeneity
in the available service capacities of different end-to-end paths
and (ii) the temporal correlationsin the service capacity of
a given source peer. We first consider the impact of hetero-
geneity. Suppose that there are two source peers with service
capacities ofc1 = 100kbps andc2 = 150kbps, respectively,
and there is only one downloading peer in the network.
Because the downloading peer does not know the service
capacity of each source peer1 prior to its connection, the
best choice that the downloading peer can make to minimize
the risk is to choose the source peers with equal probability.
In such a setting, the average capacity that the downloading
peer expects from the network is(100+150)/2 = 125kbps. If
the file sizeF is 1MB, we predict that the average download
time is 64 seconds from (1). However, the actual average
download time is 1/2(1MB/100kbps)+1/2(1MB/150Mbps) =
66.7 seconds! Hence, we see that the spatial heterogeneity
actually makes the average download time longer.

Suppose now that the average service capacity can be known
beforethe downloading peer makes the connection. Then, an
obvious solution to the problem of minimizing the average
download time is to find the peer with themaximum average
capacity, i.e., to choose peerj with the average capacitycj

(cj ≥ ci for all i), as the average download timeTi over source
peeri would be given byF/ci. We assume that each peer can
find the service capacity of its source peers via packet-level
measurements or short-term in-band probing [18].

Consider again the previous two-source peer example with
c1 = 100kbps andc2 = 150kbps. As we want to minimize
the download time, an obvious choice would be to choose
source peer 2 as its average capacity is higher. Now, let us
assume that the service capacity of source peer 2 is not a
constant, but is given by a stochastic processC2(t) taking
values 50 or 250kbps with equal probability, thus giving
E{C2(t)} = c2 = 150kbps. If the processC2(t) is strongly
correlated over time such that the service capacity for a fileF
is likely to be the same throughout the session duration, it takes

1Although the fluctuation seen by a downloader can be caused bychange
both in the status of the end-to-end network path and in the status of the
source peer itself, we use “service capacity of a source peer” to unify the
terminology throughout the paper.

on average (1MB/50kbps + 1MB/250kps)/2 = 96 seconds,
while it takes only 80 seconds to download the file from
source peer 1. In other words, it may take longer to complete
the download when we simply choose the source peer with
the maximum average capacity! It is thus evident that the
impact of correlations (second-order statistics) or higher-order
statistics associated with the capacity fluctuation in timewill
need to be taken into account, even for finding a source peer
with minimum averagedownload time.

B. Our Contribution

The examples in Section I-A give us a motivation to seek
methods that can reduce the download time of each individual
user. The main contribution of this paper is to show that the
predicted value given in (1) is actually achievable without
requiring any global information, regardless of the distribution
of service capacities and correlations in a P2P network.

In this paper, we first characterize the relationship between
the heterogeneity in service capacity and the average download
time for each user, and show that the degree of diversity in
service capacities has negative impact on the average down-
load time. After we formally define the download time over
a stochastic capacity process, we prove that the correlations
in the capacity make the average download time much larger
than the commonly accepted valueF/c, wherec is the average
capacity of the source peer. It is thus obvious that the average
download time will be reduced if there exists a (possibly dis-
tributed) algorithm that can efficiently eliminate the negative
impact of both the heterogeneity in service capacities over
different source peers and the correlations in time of a given
source peer.

In practice, most P2P applications try to reduce the down-
load time by minimizing the risk of getting stuck with a
‘bad’ source peer (the connection with small service capacity)
by using smaller file sizes and/or having them downloaded
over different source peers (e.g., parallel download).2 In other
words, they try to reduce the download time by minimizing
thebytestransferred from the source peer with small capacity.
However, we show in this paper that this approach cannot
effectively remove the negative impact of both the correlations
in the available capacity of a source peer and the heterogeneity
in different source peers. This approach may help to reduce
average download time in some cases but not always. Rather,
a simple and distributed algorithm that limits the amount of
time each peer spends on a bad source peer, can minimize the
average download time for each user almost in all cases as
we will show in our paper. Through extensive simulations, we
also verify that the simple download strategy outperforms all
other schemes widely used in practice under various network
configurations. In particular, both the average download time
and the variation in download time of our scheme are smaller
than any other scheme when the network is heterogeneous
(possibly correlated) and many downloading peers coexist with
source peers, as is the case in reality.

2For example, Overnet, BitTorrent, and Slurpie divide files into 9500KB,
256KB, and 256KB file segments (chunks), respectively [19], [20], [21], and
a downloader can transfer different chunks from different source peer.
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The rest of the paper is organized as follows. In Sec-
tion II, we provide some background on service capacity
characteristics in a P2P network in terms of the heterogeneity
over different connections and correlations over time for a
given connection. In Section III, we analyze the impact of
heterogeneity in service capacities as well as the correlations
in a given connection on each user’s average download time. In
Section IV, we show that our simple and distributed algorithm
and can virtually eliminates all the negative impacts of het-
erogeneity and correlations. Our scheme thus greatly reduces
the average download time and achieves the simple relation
in (1) regardless of network settings. Section V provides
simulation results to test our algorithm and compare with
others under various network settings, and we conclude our
work in Section VI.

II. BACKGROUND

In this section we briefly describe the characteristics of
the service capacity that a single user receives from the
network from the user’s perspective. Specifically, we consider
the heterogeneity of service capacities over different network
paths and the stochastic fluctuation of the capacity over time
for a given source peer.

A. Heterogeneity of Service Capacity

In a P2P network, just like any other network, the service
capacities from different source peers are different. There
are many reasons for this heterogeneity. On each peer side,
physical connection speeds at different peers vary over a wide
range [22] (e.g., DSL, Cable, T1, etc). Also, it is reasonable
to assume that most peers in a typical P2P network are just
personal computers, whose processing powers are also widely
different. The limitation in the processing power can limithow
fast a peer can service others and hence limits the service
capacity.

On the network side, peers are geographically located over
a large area and each logical connection consists of multiple
hops. The distance between two peers and the number of hops
surely affect its round-trip-time (RTT), which in turns affects
the throughput due to the TCP congestion control. Moreover,
in a typical P2P network, this information is usually ‘hidden’
when a user simply gets a list of available source peers that
have contents the user is looking for.

Note that the aforementioned factors do not change over the
timescale of any typical P2P session (days or a week). Hence,
we assume that those factors mainly determine the long-term
average of the service capacity over a given source peer.

B. Correlations in Service Capacity

While the long-term average of the service capacity is
mainly governed by topological parameters, the actual service
capacity during a typical session is never constant, but always
fluctuates over time [23], [24]. There are many factors causing
this fluctuation. First, the number of connection a source peer
allows is changing over time, which creates a fluctuation in the
service capacity foreach user. Second, some user applications

running on a source peer (usually a PC), such as online games,
may throttle the CPU and impact the amount of capacity it can
offer. Third, temporary congestion at any link in the network
can also reduce the service capacity of all users utilizing that
link.
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Fig. 1. Typical variation in ene-to-end available bandwidth based on the
results in [24], [23]. Drastic changes usually occur in the scale of minutes.

Figure 1 shows a typical available end-to-end capacity
fluctuation similar to that presented in [23], [24]. The time
scale for the figure in the measurement study is on the order
of minutes. We know from [4] that a typical file download
session can last from minutes to hours for a file size of several
megabytes. This implies that the service capacity over the
timescale of one download session is stochastic and correlated.
In Figure 1, the short-term variations in the capacity are mainly
due to the window size fluctuation in TCP, while the long-term
variations are due to network congestion, changes in workload
or the number of connecting users at the source peer, etc. The
long-term fluctuation typically lasts over a longer time scale,
say, few minutes up to several hours.

As illustrated in the introduction, both the heterogeneity
over different source peers and the correlations of the capacity
in a given source peer have significant impact on the average
download time. To the best of our knowledge, however, there
has been no result available in the literature addressing these
issues. All the existing studies have simply assumed that the
service capacity is given by a constant (its average value) for
the duration of a download. Consequently, the download time
of a file of sizeF is simply given byF/c, where c is the
average service capacity. As will be seen later on, however,
this is true only when the service capacity is constant ori.i.d.
over time, neither of them is true in reality. In the next section,
we will analyze the impact of these two factors on the per-user
performance in terms of the average download time.

III. C HARACTERIZING THE DOWNLOAD TIME IN A P2P
NETWORK

We consider our network as a discrete-time system with
each time slot of length∆. For notational simplicity, through-
out the paper, we will assume that the length of a time slot
is normalized to one, i.e.,∆ = 1. Let C(t) denote the time-
varying service capacity (available end-to-end bandwidth) of a
given source peer at time slott (t = 1, 2, . . .) over the duration
of a download. Then, the download timeT for a file of size
F is defined as

T = min

{

s > 0
∣

∣

∣

s
∑

t=1

C(t) ≥ F

}

. (2)
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Note thatT is a stopping time or thefirst hitting time of a
processC(t) to a fixed levelF .

If C(t), t = 1, 2, . . . are independent and identically
distributed (i.i.d.), then by assuming an equality in (2), we
obtain from Wald’s equation [25] that

F = E

{

T
∑

t=1

C(t)

}

= E{C(t)}E{T}. (3)

The expected download time, measured in slots, then becomes
E{T} = F/E{C(t)}. Note that (3) also holds ifC(t) is
constant (overt). Thus, when the service capacity isi.i.d. over
time or constant, there exists a direct relationship between the
average service capacity and the average download time, as
has typically been assumed in the literature.

A. Impact of Heterogeneity in Service Capacity

We first consider the impact of heterogeneous service ca-
pacities of different source peers. In order to decouple the
effect of correlations from that of heterogeneity, in this section,
we assume that Wald’s equation holds true foreach source
peer (i.e., the service capacity of a given source peer is
either constant ori.i.d. over time). But we allow the average
capacities for different source peers to be different. We will
consider the impact of correlations in Section III-B.

Let N be the number of source peers in the network (N
different end-to-end paths) andCi(t) be the service capacity
of source peeri at time slott. We assume thatCi(t) is either
constant ori.i.d. overt such that (3) holds. Letci = E{Ci(t)}
be the average capacity of source peeri. Then, the average
service capacity the network offers to a user becomes

A(~c) =
1

N

N
∑

i=1

ci, (4)

where~c = (c1, c2, . . . , cN ) and A(~c) is the arithmetic mean
of the sequencec1, c2, . . . , cN . Thus, one may expect that the
average download time,E{T}, of a file of sizeF would be

E{T} =
F

A(~c)
. (5)

As we mentioned earlier, however, the actual service capac-
ity of each source peer remains hidden unless a network-wide
probe is conducted. So the common strategy for a user is to
randomly pick one source peer and keep the connection to it
until the download completes. If the user connects to source
peer i (with service capacityCi(t)), the average download
time over that source peer becomesF/ci from (3). Since the
user can choose one ofN source peers with equal probability,
the actual average download time in this case becomes

E{T} =
1

N

N
∑

i=1

F

ci

=
F

H(~c)
, (6)

whereH(~c) is the harmonic mean ofc1, c2, . . . , cN defined by
H(~c) = [ 1

N

∑N

i=1
1
ci

]−1. BecauseA(~c) ≥ H(~c) 3, it follows
that (6)≥ (5). This implies that the actual average download

3The arithmetic mean is always larger than or equal to the harmonic mean,
where the equality holds when allci’s are identical.

time in a heterogeneous network is always larger than that
given by ‘the average capacity of the network’ as in (5).

To quantify the difference between (6) and (5), we adopt
similar techniques as in [26]. LetC be the random variable
taking values ofc1, c2, . . . , cN with equal probability, i.e.
P{C = ci} = 1/N for all i. Consider the following Taylor
expansion of the functionf(x) = 1/x around some pointx0:

f(x) ≈ f(x0) + f ′(x0)(x − x0) +
1

2
f ′′(x0)(x − x0)

2. (7)

Letting x = C, x0 = E{C} and taking expectation in both
sides of (7) give

E

{

F

C

}

−
F

E{C}
≈

F · Var{C}

(E{C})3
. (8)

From (8), we see that the difference between the predicted
average download time using (1) and the actual average
value is governed by two factors, the file sizeF and the
variance of the service capacity,Var{C}. First, the actual
average download time will be different from (5) if the file
is large. Second, more importantly, if the service capacities
over different source peers vary over a wide range, the actual
download time will be much larger than (5).

B. First Hitting Time of a Correlated Stochastic Process

In this section we show that the expected first hitting time
of a ‘positively correlated process’ is larger than that of an
i.i.d. counterpart. Consider a fixed network path between a
downloading peer and its corresponding source peer for a file
of sizeF . Let C(t) be a stationary random process denoting
the available capacity over that source at time slott. We will
assume thatC(t) is positively correlated over time. Then, as
before, we can define the download time of a file (or the
first hitting time of the processC(t) to reach a levelF ) as
Tcor, where the subscript ‘cor’ means thatC(t) is a correlated
stochastic process.

Suppose now that we are able to remove the correlations
from C(t). Let C ′(t) be the resulting process andTind be the
stopping time for the processC ′(t) to reach levelF , where
the subscript ‘ind’ now means thatC ′(t) is independent over
time. Then, again from Wald’s equation, we have

E{Tind} =
F

E{C ′(t)}
=

F

E{C(t)}
.

First, as introduced earlier, consider the case thatC(t) is
100% correlated over time, i.e.,C(t) = C for some random
variableC for all t. Then, the download timeTcor becomes
Tcor = F/C assuming an equality in (2). Hence, from Jensen’s
inequality, we have

E{Tcor} = FE

{

1

C

}

≥
F

E{C}
= E{Tind},

i.e., the average first hitting time of an 100% correlated process
is always larger than that of ani.i.d. counterpart. In order to
characterize any degree of positive correlations inC(n), we
need the following definition [25]:
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Definition 1: Random variablesX1,X2, . . . ,Xn are said to
be ‘associated’ if for all increasing functionsf andg

E

{

f( ~X)g( ~X)
}

≥ E{f( ~X)}E{g( ~X)} (9)

where ~X = (X1, . . . ,Xn), and we sayh is an increasing
function if h(x1, . . . , xn) ≤ h(y1, . . . , yn) wheneverxi ≤ yi

for i = 1, . . . , n. 2

Relation (9) characterizes the positive dependence among
the random variablesX1,X2, . . . ,Xn. In words, if some of
them become larger, then the other random variables are also
likely to be larger. Note that (9) implies positive correlations
in C(t) by settingf( ~X) = Xi andg( ~X) = Xj . Definition 1
can be generalized to a stochastic process as follows.

Definition 2: The stochastic process{X(t), t = 1, 2, . . .} is
said to be associated if for allk and t1, . . . , tk, the random
variablesX(t1), . . . ,X(tk) are associated. 2

In fact, the set of associated processes comprises a large class
of processes. Perhaps, the most popular example is of the
following type:
Theorem 4.3.13. in [27]:Let {X(t)} be a stochastic process
with static spaceS = R

d of the form

X(t + 1) = ϕ(X(t), Z(t)), for t = 0, 1, . . . (10)

If the {Z(t)} are mutually independent and independent of
X(0), then{X(t)} is associated ifϕ(x, z) is increasing inx.
2

Stochastic processes of the form (10) constitute large por-
tion of Markov processes. For example, any auto-regressive
type model with positive correlation coefficient can be written
in the form of (10). Specifically, for an AR-1 sequenceX(t)
defined by

X(t + 1) = ρX(t) + bξ(t),

where 0 < ρ < 1 and ξ(t) (t = 0, 1, . . .) is a sequence of
i.i.d. random variables and independent ofX(0), we can write
X(t + 1) = ϕ(X(t), ξ(t)) whereϕ(x, ξ) = ρx + bξ. Sinceϕ
is increasing inx, the process{X(t)} is associated.

We now present our theorem.
Theorem 1:Suppose that{C(t), t ≥ 1} is associated. Then,

we have
E{Tcor} ≥ E{Tind}.

Proof: First, for any given k, we set f(~C) =
C(k) and g(~C) = 1{C(1)+···+C(k)>F}, where ~C =
(C(1), C(2), . . . , C(k)). Note that both functionsf andg are
increasing. Observe that

{Tcor < k} ≡ {C(1) + · · · + C(k) > F}. (11)

Thus, we have, for anyk,

E
{

C(k)1{Tcor<k}

}

= E
{

C(k)1{C(1)+···+C(k)>F}

}

= E

{

f(~C)g(~C)
}

≥ E{f(~C)}E{g(~C)} (12)

= E{C(k)}P {C(1) + · · · + C(k) > F}

= E{C}P {Tcor < k} , (13)

where the inequality in (12) follows sinceC(t) is associated,
and (13) is from the stationarity ofC(k) in k and (11).

Since E{C(k)} = E{C(k)1{Tcor<k}} + E{C(k)1{Tcor≥k}},
it follows that

E
{

C(k)1{Tcor≥k}

}

≤ E{C}P{Tcor ≥ k}. (14)

Now, let us assume that an equality holds in the definition
of Tcor (see (2)). Then, we have

F = E

{

Tcor
∑

k=1

C(k)

}

= E

{

∞
∑

k=1

C(k)1{Tcor≥k}

}

=
∞
∑

k=1

E
{

C(k)1{Tcor≥k}

}

. (15)

Substituting (14) into (15) yields

F ≤

∞
∑

k=1

E{C}P{Tcor ≥ k}

= E{C}
∞
∑

k=1

P{Tcor ≥ k} = E{C}E{Tcor}.

Thus, we have

E{Tcor} ≥
F

E{C}
= E{Tind}.

This completes the proof.
Theorem 1 states that the average download time of a file

from a source peer with correlated service capacity (in the
sense of association defined in (9)) is always larger than that
of ani.i.d. counterpart. In the subsequent section, we show the
relationship between the degree of correlation of a processand
the average first fitting time of that process, and illustratehow
much E{Tcor} can be larger thanE{Tind}. From previous
discussions, we know that in general the average download
time, E[T ], should be calculated usingE[F/C(t)] rather than
the commonly usedF/E[C(t)].

C. First Hitting Time and Degree of Correlation

To illustrate the relationship between the average download
time and the degree of correlation in the available bandwidth
C(n), assume thatC(t) is given by a stationary first-order
autoregressive process (AR-1), i.e.,

C(t + 1) = ρ · C(t) + ǫ(t) + α. (16)

Here,ǫ(t) is a sequence ofi.i.d. random variables with zero
mean, which represents a noise term of the process. Then,
from the stationarity of the process, we get

E{C(t)} = µ = α/(1 − ρ). (17)

We vary the constantα such that the average capacity is always
fixed to E{C(t)} = µ = 10 under differentρ. Since the
available bandwidth cannot be negative, we limit the range of
C(t) such thatC(t) ∈ [0, 20], while keeping the same mean.
The file size isF = 250 and the noise term,ǫ(t), is chosen
to be uniformly distributed over[−1, 1], [−5, 5], and [−9, 9]
to see how the noise term affects the average download time.

Remark 1:The choice of the autoregressive process is
for the sake of presentation, not to actually reflex the real
fluctuation in an end-to-end available bandwidth in real world.
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Fig. 2. Relationship between the average download time and different degrees
of correlationρ.

It is easy to generate AR-1 process with the same mean but
different correlation structures. Similar results can be obtained
if the AR-1 process is replaced by other processes with more
complicated correlation structures. 2

Figure 2 (a) shows the relationship between the average
download time and the degree of correlation of the process
(16) for different ρ and ǫ(t). As the degree of correlation
increases, the average download time increases. In particular,
for a heavily correlated process, the average download time
can be about40% larger than that for a uncorrelated or weakly
correlated process, regardless of different noise terms. In other
words, the long term variation in the service capacity is the
main determining factor of the average download time, and
the short-term random noise in the service capacity, such as
the one caused by TCP congestion control mechanism over
short time scales (RTTs), does not have significant impact on
the average download time.

To see the impact of the variance ofC(t) itself, we restrict
the range ofC(t) to some fixed interval. For example,C(t) ∈
[9, 11] means that we setC(t) = 9 whenever it becomes
smaller than9 andC(t) = 11 when larger than11. Figure 2
(b) shows the relationship between the average download time
and the degree of correlation ofC(t) under different variation
range forC(t). When the range of fluctuation ofC(t) gets

smaller, the download time is less affected by the correlation
of the process. This is well expected since the processC(t)
fluctuates only within[9, 11] and thus behaves more like a
constant process. In contrast, when the range forC(t) is
large, the impact of correlation becomes apparent as shown
in Figure 2(b).

In real data networks, the available capacity of a connection
typically shows wild fluctuation; it becomes very low when
congestion occurs, and it can reach up to the maximum link
bandwidth when things go well. In addition, as technology
advances, people are getting links of higher and higher speed,
hence the range of available capacity fluctuation is also likely
to increase. Therefore, it is very important to consider the
effect of correlation in capacity over time when we calculate
the average download time of a file transfer.

IV. M INIMIZING AVERAGE DOWNLOAD TIME OVER

STOCHASTIC CHANNELS

Intuitively, if a downloader relies on a single source peer
for its entire download, it risks making an unlucky choice
of a slow source resulting in a long download. Since the
service capacity of each source peer is different and fluctuates
over time, utilizing different source peers either simultaneously
(parallel downloading) or sequentially within one download
session would be a good idea to diversify the risk. Parallel
downloading improves the performance by reducing the file
size over the ‘worst’ source peer and also may increase the
service capacity one receives from the network by utilizing
‘unused’ capacities of other source peers. If a downloader
utilizes one source peer at a time, switching around seems
to be a good strategy to avoid the ’bad’ source peer. Now,
the question is, “What is the criterion for switching, i.e., is it
chunk-based or time-based?” In this section we will analyze
the performance of (i) parallel downloading, (ii) random
chunk-based switching, and (iii) random time-based (periodic)
switching.

Different strategies have different impact on the average
download time of each peer, which may result in different
system dynamics as well, e.g., how fast a downloader can
start to contribute (become a source peer) or how fast a peer
leaves the system after finishing download. If there is no
peer leaving the system and all peers are willing to share
after they complete their download (either the entire file or
a chunk), the aggregate service capacity in the system keeps
increasing as time goes on because the number of source peers
continuously grows. In this case, the dynamics in the increase
of aggregate service capacity becomes the dominent factor in
the average download time for each peer. On the other hand,
if no peer is willing to share after download, the aggregate
capacity will then eventually drop to zero, thus throttlingall
the performance metrics. In reality, however, the P2P network
will reach a steady-state at some point in which the peer
arrivals and departures are balanced and the aggregate service
capacity remains around some constant with little variation as
shown in [3]. This suggests that the number of source peers
in the system will also be around some constant with little
fluctuation in the steady-state. In this paper, we are mostly
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interested in the impact of stochastic variations of capacities
on the average download time of each peer in the steady-state,
rather than in the impact of sources-downloaders dynamics in
the transient period, which is beyond the scope of this paper.

Before we start our analysis, we have the following assump-
tions:

(i) The service capacity of a source is constant within one
time slot.

(ii) Each downloader selects its source independently.
(iii) Each downloader makes blind choice, i.e. the sources are

randomly chosen uniformly over all available sources.

Assumption (i) is reasonable since it is expected that there
is no major event that triggers dramatic fluctuation in the
service capacity within a short period of time. There may be
small short-term fluctuations, on the order of seconds, in the
service capacity due to the nature of the network protocol,
such as TCP congestion window changes, or OS interrupt
handling, etc. These changes however do not impose serious
impact on the service capacity. Thus, we are not interested
in such small short-term variations, but are more interested
in the fluctuation on a longer time scale caused by change
in the number of connections at a source peer or change in
network congestion status, which all usually last for longer
time (say, minutes to hours). We have the assumption (ii)
because it is impractical for any downloader to know how
other downloaders choose their source peers in the network.
Hence the downloader cannot not make its source selection
decision based on other downloaders’ decision. Assumption
(iii) is based on the fact that the downloader does not know
the service capacity of each source peer a priori. Although
some protocols require peers to broadcast information about
its physical connection speed, it is hard to tell the “true” instant
service capacity of each source peer due to many factors such
as competition among other peers, changing workload of the
source peer, or the network congestion status. Therefore, a
simple way to select a source peer is just to make blind choice.

A. Effect of Parallel Downloading

Parallel downloading is one of the most noticeable way to
reduce the download time [28], [16]. If the fileF is divided
into k chunks of equal size, andk simultaneous connections
are used, the capacity for this download session becomesc1 +
c2+. . .+ck, whereci is the service capacity ofith connection.
Intuitively, this parallel downloading seems to be optimalin
all cases. But, it is worth noting that the download time for
parallel downloading is given bymax{t1, t2, . . . , tk} rather
than F/(c1 + c2 + . . . + ck), whereti is the download time
of a chunk overith connection. This is because the chunk
that takes the longest time to complete determines the entire
download session.

To illustrate that parallel downloading is better than single
download, we consider the following simple example. Assume
that there are only two source peers in the network, andc1, c2

are the service capacities of the two source peers. Without loss
of generality, we assume thatc1 ≤ c2. If parallel downloading
is used for downloading a file of sizeF from the network, the

download timeTp is given by

Tp = max

{

F

2c1
,

F

2c2

}

=
F

2c1
.

For the case of single download, the average download time
E{Ts} is

E{Ts} =
1

2

(

F

c1
+

F

c2

)

> E{Tp} = Tp.

Now, given that parallel download is better than single
download, one may ask whether it is as good as the predicted
value in (1). To answer this, let’s recall the two-source peers
example. From (1), the predicted download time is

E{T} =
F

A(~c)
=

2F

c1 + c2
.

An easy calculation showsE{T} < E{Tp} if c2 > 3c1. Thus,
even in the network with one user, parallel downloading may
not reduce the download time to the predicted value in all
cases. Instead, the performance of parallel download depends
upon the distribution of the underlying service capacitiesand
could be much worse than the ideal case,F/A(~c). Indeed,
it is shown in [15] that if we can make the chunk-size
proportional to the service capacity of each source peer,
parallel downloading can yield the optimal download time. But
such scheme requires global information of the network. One
of our goals is to find a simple and distributed algorithm with
no global informationsuch that the value in (1), orF/A(~c),
can be achieved under almost all network settings.

We have already seen that parallel downloading may not
achieve F/A(~c) even when there is only one user in the
network. Further, it is shown [28], [16] that in a multi-user
network, maintaining just a few parallel connections, say,4
to 6, is better than having parallel connections to all possible
source peers. Hence, if there is an algorithm that can increase
the performance ofeach individualconnection among such a
few parallel connection, then each individual user may achieve
the download time predicted by (1) or even better.

B. Random Chunk-based Switching

In the random chunk-based switching scheme, the file of
interest is divided into many small chunks just as in the parallel
download scheme. A user downloads chunks sequentially one
at a time. Whenever a user completes a chunk from its current
source peer, the user randomly selects a new source peer and
connects to it to retrieve a new chunk. In this way, if the
downloader is currently stuck with a bad source peer, it will
stay there for only the amount of time required for finishing
one chunk. The download time for one chunk is independent of
that of the previous chunk. Intuitively, switching source peers
based on chunk can reduce the correlation in service capacity
between chunks and hence reduce the average download time.
However, there is another factor that has negative impact on
the average download time, the spatial heterogeneity.

First, suppose that there is no temporal correlation in service
capacity and Wald’s equation holds for each source peer. A file
of sizeF is divided intom chunks of equal size, and lettj be
the download time for chunkj. Then, the total download time,
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Tchunk, is Tchunk =
∑m

j=1 tj . Since each chunk randomly
chooses one ofN source peers (with equal probability), the
expected download time will be

E{Tchunk} =

m
∑

j=1

1

N

N
∑

i=1

F/m

ci

=
F

H(~c)
. (18)

The result in (18) is identical to the download time given in
(6) where a user downloads the entire file from an initially
randomly chosen source peer. In other words, the chunk-based
switching is still subject to the ‘curse’ of spatial heterogeneity.
While there is no benefit of the chunk-based switching from
the average download time point of view, it turns out that this
scheme still helps reduce the variance of the download time
under a relatively smaller number of users by diversifying the
risk with smaller chunks. (See Figure 5(b) in Section V.)

In the chunk-based switching, if we get stuck in a source
peer with very low service capacity, downloading a fix amount
of bytes from that source peer may still take a long time.
We could avoid this long wait by making the size of each
chunk very small, but this then would cause too much overhead
associated with switching to many source peers and integrating
those many chunks into a single file. Therefore, instead of
waiting until we finish downloading a fixed amount of data
(chunk or file), we may want to get out of that bad source
peer after some fixed amount of time. In other words, we
randomly switch based on time. In the subsequent section,
we will investigate the performance of this random switching
based on time and show that it outperforms all the previous
schemes in the presence of heterogeneity of service capacities
over space and temporal correlations of service capacity of
each source peer.

C. Random Periodic Switching

In this section, we analyze a very simple, distributed al-
gorithm and show that it effectively removes correlations in
the capacity fluctuation and the heterogeneity in space, thus
greatly reducing the average download time. As the algorithm
will be implemented at each downloading peer in a distributed
fashion, without loss of generality, we only focus on a single
downloader throughout this section.

In our model, there areN possible source peers for a fixed
downloader. LetCi(t) (t = 0, 1, 2, . . . and i = 1, 2, . . . , N )
denote the available capacity during time slott of source peer
i. Let U(t) ∈ {1, 2, . . . , N} be a source selection function for
the downloader. IfU(t) = i, this indicates that the downloader
selects pathi and the available capacity it receives isCi(t)
during the time slott. We assume that eachCi(t) is stationary
in t and Ci(t) of different source peersi = 1, 2, . . . , N
are independent.4 We however allow that they have different
distributions, i.e.,E{Ci(t)} = ci are different for differenti
(heterogeneity). For any giveni, the available capacityCi(t)
is correlated over timet. As before, when each connection

4We note that different paths (overlay) may share the same link at the
network core, but still, the bottleneck is typically at the end of network,
e.g., access network type, or CPU workload, etc. Thus, the independence
assumption here is reasonable.

has the same probability of being chosen, the average service
capacity of the network is given byA(~c) = 1

N

∑N

i=1 ci.
In this setup, we can consider the following two schemes:(i)

permanent connection, and(ii) random periodic switching. For
the first case, the source selection function does not change
in time t. When the searching phase is over and a list of
available source peers is given, the downloader will choose
one of them randomly with equal probability. In other words,
U(t) = U whereU is a random variable uniformly distributed
over{1, 2, . . . , N}. For example, if the downloader choosesu
(u ∈ {1, 2, . . . , N}) at time0, then it will stay with that source
peerpermanently(U(t) = u) until the download completes.

C1(t)

C2(t)

CN(t)

 U(1)=1

U(2)=N

U(3)=2

U(t)

U(4)

S
ou

rc
es

 (
In
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nd
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t)

Time (correlated)

. . . .

Fig. 3. The operation of source selection functionU(t) for random periodic
switching

For the random periodic switching, the downloader ran-
domly chooses a source peer at each time slot, independently
of everything else. In other words, the source selection func-
tion U(t) forms ani.i.d. sequence of random variables, each
of which is again uniformly distributed over{1, 2, . . . , N}.
Figure 3 illustrates the operation of the source selection
function U(t) for random periodic switching. In this figure,
source 1 is selected at time 1, sourceN is selected at time 2,
and so on.

Let us define an indicator function

Iu(t) =

{

1, if U(t) = u

0, otherwise.

Then, sinceU(t) can take values only from{1, 2, . . . , N}, the
actual available capacity at timet can be written as

X(t) = CU(t)(t) =

N
∑

u=1

Cu(t)Iu(t)

for both the permanent connection and the random periodic
switching strategies. Since each downloader chooses a source
peer independently of the available capacity,U(t) is also
independent fromCu(t), and so isIu(t). Note that, from
E{Iu(t)} = 1/N for any u, we have

E{X(t)} =

N
∑

u=1

E{Cu(t)Iu(t)}

=

N
∑

u=1

E{Cu(t)}E{Iu(t)} =

N
∑

u=1

cu

N
= A(~c), (19)

i.e., the average available capacity for the two source selection
strategies are the same.
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In order to analyze how the two different strategies affect
the correlation inX(t), we consider the correlation coefficient
of X(t) defined as

r(τ) =
Cov{X(t),X(t + τ)}

Var{X(t)}
.

Then, we have the following result.
Proposition 1: Let rper(τ) andrran(τ) denote the correla-

tion coefficient ofX(t) under the permanent connection and
the random periodic switching, respectively. Then, we have

rran(τ) =
1

N
rper(τ), ∀ t ≥ 1.

2

Proof: Since the average capacity for both strategies
remains the same (see (19)), without loss of generality, we
can assume thatCu(t) for any source peeru has zero mean
by subtractingE{Cu(t)} if necessary. From the independence
among different source peers, we have, for anyu 6= v,

E{Cu(t) · Cv(t′)} = E{Cu(t)}E{Cv(t′)} = 0. (20)

Then, the covariance ofX(t) becomes

Cov{X(t),X(t′)}

= E

{

N
∑

u=1

Cu(t)Iu(t) ·

N
∑

v=1

Cv(t′)Iv(t′)

}

= E

{

N
∑

u=1

N
∑

v=1

Cu(t)Cv(t′)Iu(t)Iv(t′)

}

=
N

∑

u=1

N
∑

v=1

E{Cu(t)Cv(t′)}E{Iu(t)Iv(t′)}. (21)

From (20), we can rewrite (21) as

N
∑

u=1

E{Cu(t)Cu(t′)}E{Iu(t)Iu(t′)}. (22)

First, consider the case oft = t′. Then, it follows that

E{Iu(t)Iu(t)} = E{Iu(t)} =
1

N
.

Hence from (22) witht = t′, the variance ofX(t) is given by

Var{X(t)} =
1

N

N
∑

u=1

E{Cu(t)Cu(t)}

=
1

N

N
∑

u=1

Var{Cu(t)}, (23)

regardless of the strategies forU(t).
Now, consider the case oft 6= t′. Under the permanent

connection strategy, sinceIu(t) = Iu(t′) all the time, we get

E{Iu(t)Iu(t′)} =
1

N
.

On the other hand, for the random periodic switching, we have

E{Iu(t)Iu(t′)} = E{Iu(t)}E{Iu(t′)} =
1

N2
,

sinceIu(t) andIu(t′) for t 6= t′ are independent.

Finally, sett′ = t+τ . Then, from (22) and since the variance
of X(t) remains the same for both strategies as in (23), we
haverran(τ) = rper(τ)/N and this completes the proof.

From Proposition 1, we see that under the random periodic
switching strategy, the correlation ofX(t) is N times smaller
than that of permanent connection strategy. For example,
when each downloader has about 10 available source peers
(N = 10), the correlation coefficient of the newly obtained
capacity process under our random periodic switching is no
more than0.1 regardless of the correlations present in the
original capacity fluctuation. So, by using our random periodic
switching, we can always make the capacity processvery
lightly correlated, or almost independent. From Figure 2, we
see that the average download time for a lightly correlated
process is very close to that given by Wald’s equation. It is thus
reasonable to assume that Wald’s equation holds for the lightly
correlated processX(t) under our random periodic switching
strategy. Specifically, if we defineTran as the download time
for a file of sizeF under the random periodic switching, we
have

F = E

{

Tran
∑

t=1

CU(t)(t)

}

= E{Tran}E{CU(t)(t)}

= E{Tran}E
{

E
{

CU(t)(t) | U(t)
}}

= E{Tran}
1

N

N
∑

u=1

E{Cu(t)}

= E{Tran}
1

N

N
∑

u=1

cu = E{Tran}A(~c). (24)

We then have the following comparison result between the
permanent connection and periodic switching.

Proposition 2: Suppose that the processCu(t) for eachu is
associated (i.e., it is correlated over timet). Let Tper andTran

be the download time for the permanent connection and for
the random periodic switching, respectively. Then, we have

E{Tper} ≥ E{Tran}.

2

Proof: Assume that the file size isF . Since Cu(t) is
associated, from Theorem 1, we have

E{Tper|U = u} ≥
F

E{CU (t)|U = u}
, (25)

for any given source peeru. Observe now that

E{Tper} = E{E{Tper | U}} ≥ E

{

F

E{CU (t)|U}

}

(26)

≥
F

E{E{CU (t)|U}}
=

F

E{CU (t)}
(27)

=
F

A(~c)
= E{Tran}, (28)

where (26) is from (25), (27) is from Jensen’s inequality and
the convexity of a functionf(x) = 1/x for x > 0, and (28)
is from (24). This completes the proof.

Proposition 2 shows that our random periodic switching
strategy will always reduce the average download time com-
pared to the permanent strategy and that the average download
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time under the random periodic switching is given byF/(~c)
(see (27)). Note that this was made possible since the random
periodic switching removes the negative impact of both the
heterogeneity and the correlations. In addition, our algorithm
is extremely simple and does not require any information about
the system.

D. Discussion

So far, we have analyzed the performance of three differ-
ent schemes that utilize the spatial diversity of the network
to improve per-user performance in terms of the average
download time. We have considered (i) parallel downloading,
(ii) random chunk-based switching, and (iii) random periodic
switching. The parallel downloading may perform well if the
capacity of each possible source peer is known so as to allocate
larger chunks to faster connections and smaller chunks to
slower connections. But this method is not practical as one
cannot know a priori the service capacity of all source peers.
In addition, the service capacity is stochastically fluctuating
all the time, and our analysis show that the performance of
parallel downloading depends much upon the heterogeneity of
the service capacities in different source peers if the chunks
are equal in size.

Many P2P applications nowadays use chunk-based file
transfer with equal chunk size. As mentioned earlier, the
benefit of chunk-based switching is to speed up the conversion
from downloading peers to uploading peers and thus indirectly
affect the average download time. But, in terms of reducing
the average download time directly, it does not help much.
Random chunk-based switching may reduce the correlations
in the service capacity, but it still cannot eliminate the effect
of spatial heterogeneity in different source peers.

In current practice, the chunk based transfer and the parallel
download are often combined. Taking BitTorrent and Overnet
for examples, a file is first divided into 256KB and 9.5MB
chunks of equal size, respectively, and then different chunks
are downloaded from different source peers simultaneously.
However, we separate the analysis of the two strategies to
show how each is different in combating spatial heterogeneity
and temporal correlations. Please note that we are not trying to
compare the performance of parallel downloading with chunk
based transfer since they can be easily combined to yield better
performance. Rather, we are comparing the performance of
the two strategies with our random periodic scheme. Further,
we will present the performance comparison of the combined
strategy with the random periodic scheme in Section V-B.

The idea of time-based switching scheme is in fact not new.
Such strategy has been implemented in BitTorrent [21] but
with some other purpose in mind. In BitTorrent application,
by using its optimistic choking/unchoking algorithm, a peer
changes one of its servicing neighbors with the lowest up-
load capacity every 10 seconds in hope to find some peers
offering higher service capacity. However, the idea of switch-
ing source peer periodically in the BitTorrent’s optimistic
choking/unchoking algorithm is to discover new potential
sources rather than to explicitly remove the negative impact
of temporal correlations and spatial heterogeneity in service

capacity. To the best of our knowledge, we are the first to
point out that the random periodic switching gives us the
average download time ofF/A(~c), while all the other schemes
considered so far yield larger average download time.

Our study leads us to believe that the random switching
decision should be based on time rather than ‘bytes’ because
we are interested in the download time, not the average
capacity itself. Indeed, any algorithm based on bytes or a fixed
amount of data will suffer thecurse of bad source peerin
that it has to wait until that amount of data is completely
received from the ‘bad’ source peer. On the other hand, when
the decision is based on time, we don’t need to wait that long
as we can jump out of that source peer after a fixed amount
of time (one period).

V. NUMERICAL RESULTS

In this section we provide numerical results to support our
analysis and compare the performance of the four schemes
for file download under various network configurations. In
any case, in our configuration, different source peers have
different average service capacities, and the service capacity
of each source peer is correlated in time. We consider a single
downloading peer as well as multiple downloading peers to
allow competition among the downloading peers for limited
service capacity of each source peer.

A. Single Downloader with Heterogeneous Service Capacities

We first show the impact of both heterogeneity and corre-
lations in service capacities on the average download time
when there is a single user (downloader) in the network.
There areN = 4 source peers in the network, each offering
different average service capacities. Letci be the average
service capacity of source peeri and~c = (c1, c2, c3, c4). The
average service capacity of the whole network is thenA(~c) =
(c1 + c2 + c3 + c4)/4. We change the heterogeneity in service
capacity by changing eachci, while keepingA(~c) = 200kbps
the same. We measure the degree of heterogeneity in term of
δ =

√

Var{~c}/A(~c), the normalized standard deviation. Table
I shows the different settings used in our simulation in this
subsection.

1 2 3 4 5 6 7 8
c1 185 170 140 110 80 50 35 20
c2 195 190 180 170 160 150 145 140
c3 205 210 220 230 240 250 255 260
c4 215 230 260 290 320 350 365 380
δ 0.05 0.11 0.22 0.33 0.45 0.56 0.61 0.67

TABLE I
AVERAGE SERVICE CAPACITY OF EACH SOURCE PEER UNDER DIFFERENT

CONFIGURATIONS.

To demonstrate the impact of correlation in each fixed
source peer, we use a class of AR-1 random processes to
model the stochastic fluctuation in the service capacity. Itis
reasonable to assume that if the average service capacity is
large, the service capacity is more likely to fluctuate over a
wider range. For instance, for a high-speed source peer(e.g.,
1Mbps), the actual service capacity of the end-to-end session
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may drop down to somewhere around 50kbps and stays
there for a while due to network congestion or limited CPU
resources at the source peer. In this regard, we assume that
the amount of fluctuation inCi(t) is proportional to its mean
value ci. Specifically, for source peeri, we setǫi(t) in (16)
to be uniformly distributed over[ci − θi, ci + θi] whereθi is
chosen such that

√

Var{Ci(t)}/E{Ci(t)} remains the same
for all i.

In our simulation, the length of each time slot (one period) is
chosen to be 5 minutes. We set the file size to 150MB, which is
the typical size of some small video clips or multimedia files.
As the average service capacity (of the network) is 200kbps,
we set the chunk-size for chunk-based switching to be 7.5MB
(= 200kbps× 5 minutes). The purpose of simulating the
chunk-based switching is to show the impact of switching
based on “data size”, hence we choose 7.5MB to allow fair
comparison with the random periodic switching with 5 minute
period. We will show the performance of using smaller chunk
size later in Section V-B.

We consider all three download strategies discussed so far
in comparison with permanent connection. For permanent
connection, the user initially chooses one of four sources
randomly and stays there until the download completes. For
chunk-based switching, the user switches to a new randomly
selected source peer whenever a chunk is completed. Although
we simulate the system as a discrete time system, the user
is allowed to switch to a new source peer anytime within a
time slot whenever it finishes the current chunk. For parallel
download, the file is divided into 4 equal-sized pieces and the
downloading peer connects to all 4 source peer and download
each piece from each source peer simultaneously. Finally, for
periodic switching, a user switches to a new randomly chosen
source peer every 5 minute to further download the remaining
parts of the file.

Figures 4 (a)–(b) show the average download time vs. the
degree of heterogeneity in the average service capacities (δ)
when there is a single downloader in the network. Dashed lines
are for strong correlations (ρ = 0.95) and solid lines represent
the case of light correlations (ρ = 0.5). In Figure 4(a),
when the degree of heterogeneity is small, all three single-link
download strategies (permanent, chunk-based, periodic) under
light correlations perform the same. This is well expected
since the service capacities of all source peers are almost
i.i.d. over space and time, so switching doesn’t make any
difference and the average download time becomesF/A(~c) =
150MB/200kbps = 100 minutes, as commonly used in practice.
On the other hand, when there exists strong correlations in the
service capacity, the download time is longer for all strategies
except the periodic switching. For example, whenδ = 0.1, the
correlation alone can cause more than 20% of increase in the
average download time. Thus, when the network is more like
homogeneous (i.e., smallδ), the temporal correlation in the
service capacity of each source peer becomes a major factor
that renders the average download time longer. However, the
average download time remains the same under the random
periodic switching.

Figure 4 (a) also shows the performance of parallel down-
loading. Intuitively, parallel downloading should perform bet-
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Fig. 4. Average download time vs. degree of heterogeneity under different
download strategies and different degree of correlations.

ter than single link downloading because (i) it utilizes more
than one link at the same time and (ii) if the connection is
poor, parallel downloading reduces the amount of data getting
through that bad source peer. Since there is only a single user,
it utilizes all the service capacity the network can provide
(c1 + c2 + c3 + c4). In this case, the average download time
should be 150MB/(c1 +c2 +c3 +c4) = 150MB/800kbps≈ 25
minutes. We see from Figure 4(a) that parallel downloading
can actually achieve the performance close to our expectation
when the service capacities of different source peers are close
to i.i.d. Still, parallel downloading is prone to the negative
effect of correlations.

As the degree of heterogeneity increases, the average down-
load time sharply increases for all the schemes except the
periodic switching. Figure 4 (b) shows this whenδ is between
0.4 and 0.7 (see Table I). All but periodic switching suffer from
the negative effect of heterogeneity. When both heterogeneity
and correlation are high (δ = 0.65 andρ = 0.95), permanent
connection takes about 350 minutes to complete the download.
This time is about 250 minutes, or 4 hours more than using
periodic switching! It is expected that that the performance of
parallel downloading degrades fast when there is a large degree
of heterogeneity. It is more likely that one of the parallel
connections is ‘poor’ with very small capacity. Thus, even
though the size of chunk (37.5MB) is smaller than the whole
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file (hence reducing the risk of staying with the bad source peer
for too long), this is still not as good as the idea of averaging
capacities all the time, as used in the periodic switching. We
note that temporal correlations still negatively affect inall
these three schemes. However, it should be pointed out that
the random periodic switching performs the sameregardless
of heterogeneity and correlations, and in fact it outperforms
all the other schemes when the network is heterogeneous with
a wide range of service capacities as in the current network.

B. Multiple Downloaders with Competition

In this section, we consider the performance of different
download strategies under a multi-user environment. In our
multi-user setting, we set the number of source peers to
N = 100. The source peers are divided into 4 groups and
each source peer within the same group will have the same
average service capacity. In reality, the service capacityof
each source peer may vary a lot, much greater than the
ones that are presented in Table I. We choose the service
capacity of the four groups as 1Mbps, 500Kbps, 100Kbps,
and 50Kbps, representing typical capacities of LAN, cable,
DSL, and modem connections, respectively. In contrast to the
setting in the previous section, each group now may consist
of different number of source peers to reflect a more realistic
distribution of service capacity. We choose the number in each
group as 10, 5, 65, 20, respectively. This is to reflect the
situation in real world that only few source peers have very
high service capacity while most others have the capacity of
typical DSL (100Kbps) lines or slower modems. The average
service capacity of the network is thenE{C} = 1M · 0.1 +
500K ·0.05+100K ·0.65+50K ·0.2 = 200Kbps. The degree
of heterogeneity (δ) in our setting isδ = 0.99. The fluctuation
in the service capacity is represented by AR-1 process with
correlation coefficient of each source peer set to 0.9. We want
to see the performance of different strategies under the impact
of spatial heterogeneity and temporal correlation.

In our simulation, service capacity of a source peer is
equally divided among all the users connected to that source
peer. The effect of dividing capacity among users gives us
an idea of how different strategies will perform when users
compete for limited resources in the network. To represent
the level of competition, we use thedownloader-sourceratio,
i.e. the ratio between the number of users (downloading peers)
to the number of source peers. Since the service capacity of a
source peer is equally among the users the source peer serves,
we can expect that the service capacity of the system is equally
divided among all users as well. Hence, theaverage per-
user service capacitycan be calculated as the average system
service capacity divided by the downloader-source ratio. For
example, if the number of users is 200, then the downloader-
source ratio 2. The average per-user service capacity will then
be 200Kbps/2 = 100Kbps.

We simulate three strategies. First one is thecombined
strategy of parallel download and the chunk-based transfer.
Since we know from [28], [16] that keeping only a small
number of parallel active connections is better than main-
taining connections to all source peers, we set the number of

parallel connections to 5 for all the combined strategies. We
vary the chunk size to see its impact on the average download
time in conjunction with parallel download. Further, the users
are allowed to request the same chunk from different source
peers when the number of untransferred chunks is less than
the number of active parallel connections. For example, if a
user is three chunks away from completing the entire file,
s/he can request all three chunks from all currently connected
source peers. Although making the same chunk requests to
different source peers will reduce the download time for that
specified chunk, this is at the expense of some waste of the
system resource. Note that we do not allow users to make
duplicate requests to all connected source peers for every
chunk, as this will waste too much resource. This notion of
making requests to different source peers for the same chunk
when a user’s download is nearly complete has been already
implemented in BitTorrent called the “end-game” mode [29].
The second strategy is the random chunk-based switching with
a single connection. The chunks size is chosen to be 7.5MB,
which is identical to what we used in the previous section to
allow fair comparison with the periodic switching. Finally, the
third strategy is the random periodic switching. The switching
period is still 5 minute, but we reduce the length of the system
time slot to 1 min. In this case, there will be capacity variations
within each switching period.

Figure 5(a) shows the average download time for the strate-
gies considered so far. The reference line is given by the file
size divided by the average per-user service capacity. First, we
can clearly see that the periodic switching performs a lot better
than the chunk-based switching. We have a reduction of 40%
in average download time by using periodic switching. Next,
the combined strategies are shown to outperform the chunk-
based switching. Note that when the level of competition is
low, the combined strategy outperforms both the chunk-based
and the periodic switching schemes. This is well expected
because parallelism increases the service capacity each user
can achieve in an under-utilized network. As the level of
competition increases, however, the random periodic switching
readily starts to outperform the combined strategy.Further,
it is interesting to see that chunk based transfer (7.5 MB
per chunk) even outperform parallel downloading using large
chunks (30MB per chunk) when the competition in the system
is heavy. This is due to the fact that the average download time
for parallel downloading is still determined by the slowest
link. In a system where there are already many downloading
peers, parallelism actually increase the level of competition
even more, hence the service capacity of a slow source peer
is further divided among its downloading peers.

Another noticeable trend in Figure 5(a) is that the per-
formance of the combined strategy gets better with smaller
chunk size. Recall that the users can download the same chunk
when there are only several chunks left before the completion
of the entire file, so the last few chunks will be transferred
over the fastest source peer. This method may reduce the
negative impact of spatial heterogeneity a little, but at the
price of wasting some of the system resource transferring
duplicate chunks. The larger the chunk size, the more waste
of recourses in sending the duplicate chunks. In addition, a
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Fig. 5. Performance comparison of different strategies underdifferent levels
of competition.

larger chunk is more prone to the spatial heterogeneity as the
user downloading that larger chunk will have to wait long if
it is from a ‘bad’ source. Certainly, very small chunk sizes
would make the performance of the combined strategy better
and approach the reference line. However,this comes at a cost;
having small chunks means more protocol overheads because
more negotiations between downloaders and source peers are
required. Take the combined strategy using 0.3MB chunks as
an example, a downloader has to make requests for chunks
at least 150MB/0.3MB = 500 times in the entire download
session. However, the downloader using the periodic switching
only needs to make data transfer requests about 120 times
in the extreme case (when the downloader-source ratio is 6).
From our simulation result, we can see that random periodic
switching is the optimal strategy when the network is over-
utilized (downloader-source ratio is 3 or higher).

Figure 5(b) shows the normalized standard deviation (stan-
dard deviation divided by its mean) of the download time for
different strategies as the level of competition varies. Larger
value of the normalized standard deviation means that the
download time among different users will vary more; some
can complete the transfer in a very short period while others
have to wait for a long time to complete with high probability.
Thus, if there is a large variation in the download time, it

is very hard for a user to predict what kind of service s/he
will receive. It would be better to have small variations in the
download time so that the performance is more predictable
and fair. We can clearly see that the periodic switching yields
the smallest variation in download time comparing with other
strategies we have considered so far.

In summary, the periodic switching not only gives down-
loaders the minimal average download time in most network
configurations and introduces less overhead, but it is fair with
more predictable performance as well.

VI. CONCLUSION

In this paper we have focused on the average download
time of each user in a P2P network. With the devastating
usage of network resources by P2P applications in the current
Internet, it is highly desirable to improve the network effi-
ciency by reducing each user’s download time. In contrast to
the commonly-held practice focusing on the notion of average
capacity, we have shown that both the spatial heterogeneity
and the temporal correlations in the service capacity can
significantly increase the average download time of the users
in the network, even when the average capacity of the network
remains the same. We have compared several ‘byte-based’
(file size based) schemes widely used in practice, including
chunk-based file transfer, parallel downloading, as well as
their combination, and have shown that all those byte-based
schemes are not so effective in reducing the two negative
factors that increase the average download time. From our
study, it becomes apparent that all P2P algorithms regarding
the download time should focus directly on ‘time’ rather than
on ‘bytes’, and the notion of average service capacity aloneis
not sufficient to describe each user’s average performance in
a P2P network.
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