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Abstract—The peer-to-peer (P2P) file-sharing applications are  However, the measurement results in [4] show that a file
becoming increasingly popular and account for more than 70% download session in a P2P network is rather long and varies a
of the Internet's bandwidth usage. Measurement studies show o from yser to user. For instance, downloading an 100MB file
that a typical download of a file can take from minutes up to . '
several hours depending on the level of network congestion or & Ina Gnutglla networ'k can rahge from several hours whale
service capacity fluctuation. In this paper, we consider two major Week While theoretical studies provide performance bounds
factors that have significant impact on average download time, for ideal cases, there are many factors that make the re&d wor
namely, the spatial heterogeneity of service capacities in differén performance much worse than the theoretical predictiomeSo
source peers and the temporal fluctuation in service capacity of of the major challenges facing a P2P network in the real world

a single source peer. We point out that the common approach of . ]
analyzing the average download time based omverage service include peer selection [S], [6], [7], [8] and data search and

capacity is fundamentally flawed. We rigorously prove that both  routing [9], [10], [11], [12], [13].
spatial heterogeneity and temporal correlations in service capac

ity increase the average download time in P2P networks and then o .
analyze a simple, distributed algorithm to effectively remove these ~ Due to the distributed nature of the P2P network, searching

negative factors, thus minimizing the average download time. We and locating data of interest in the network has been an
show through analysis and simulations that it outperforms most jmportant issue in the literature. In reality, data seargtiime
of other algorithms currently used in practice under various only contributes a very small portion of a download session
network configurations. ; . .

while the most delay is caused by actually transferring the
file from source peers as shown in [14]. Thus, if we want to

minimize the download time for each user, reducing the &ctua

_Peer-to-peer (P2P) technology is heavily used for cONt&ft, iransfer time would make more noticeable differencesMo
distribution applications. The early model for contentil- ocont studies, however, have focused on reducing the total

tion is a centralized one, in which the service provider $§mp . yn|oad duration, i.e. the time required fat usersto finish

sets up a server and every user downloads files from it. #fir jownload. This total download time is a system-wide
this type of network architecture (server-client), mangres qrtormance metric. On the other hand, there are very few
have t(_) compete for I_imited resources in terms of bottleneggsults in analyzing the performance edch individual user
bandwidth or processing power of a single server. As a 1eSylls the measurement study shows [4], the per-user perforanc
each user may receive very poor performance. From a single; pap network may be even worse than that of a centralized
user's perspective, the duration of a download sessioriedr ey york architecture. Those results suggest that theraighm

download time for that individual user is the most often userxaom for improvement in the P2P system in terms of per-user

performance metric. , .. performance, i.e. the file download time of each user.
P2P technology tries to solve the issue of scalability by

making the system distributed. Each computer (peer) in the
network can act as both a server and a client at the samélowever, there have been very few results in minimizing
time. When a peer completes downloading some files froffte download time foeach uselin a P2P network. In recent
the network, it can become a server to service other pe#f@rk [5], [6], the problem of minimizing the download time
in the network. It is obvious that as time goes on, the serviéeformulated as an optimization problem by maximizing the
capacity of the entire network will increase due to the insge aggregated service capacity over multiple simultaneotigeac
in the number of servicing peers. With this increasing servilinks (parallel connections) under some global constsaint
capacity, theoretical studies have shown that the averaga-d There are two major issues in this approach. One is that globa
load time foreach userin the network is much shorter thaninformation of the peers in the network is required, which
that of a centralized network architecture in ideal casgs [25 not practical in real world. The other is that the analysis
[3]. In other words, users of a P2P network should enjoy muéhbased on the averaged quantitiesg., average capacities of
faster downloads. all possible source peers in the network. The approach nfjusi

) ) the average service capacity to analyze the average dogvnloa
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A subset of results reported in this paper has appeared iprteeedings tiMe has been a common practice in the literature [2], [3], [5
of Conference in Information Science and Systems (CISS) 20D6 | [6], [15], [16], [17].

I. INTRODUCTION



A. Limitations of Approach via Average Service Capacity on average (1MB/50kbps + 1MB/250kps)/2 = 96 seconds,

We here illustrate limitations of the approach based Ji{ile it takes only 80 seconds to download the file from

averaged quantities in a P2P network by considering tfgU'ce Peer 1. In other words, it may take longer to complete

following examples. Suppose that a downloading peer wantsif€ download when we simply choose the source peer with

download a file of size” from N possible source peers. Lett1® maximum average capacity! It is thus evident that the

¢ be the average end-to-end available capacity between {Ract of correlations (second-order statistics) or higireler
downloading peer and thé" source peeri(= 1,2 N) statistics associated with the capacity fluctuation in timik

Notice that the actual value of. is unknown before the need to be taken into account, even for finding a source peer
(]

downloading peer actually connects to the source peerWith minimum averagedownload time.
The average service capacity of the netwatk, is give by
C = Zf.vzl ¢;/N. Intuitively, the average download tim&, B. Our Contribution

for a file of size/” would be The examples in Section I-A give us a motivation to seek

T=F/C. 1) Methods that can reduce the download time of each individual
user. The main contribution of this paper is to show that the
In reality, however, (1) is far different from the true avgea predicted value given in (1) is actually achievable without
download time for each user in the network. The two maii¢quiring any global information, regardless of the disition
reasons to cause the difference are (i)ghatial heterogeneity of service capacities and correlations in a P2P network.
in the available service capacities of different end-td-paths  In this paper, we first characterize the relationship betwee
and (ii) thetemporal correlationsin the service capacity of the heterogeneity in service capacity and the average dawainl
a given source peer. We first consider the impact of hetef@me for each user, and show that the degree of diversity in
geneity. Suppose that there are two source peers with senservice capacities has negative impact on the average down-
capacities ofc; = 100kbps andc, = 150kbps, respectively, load time. After we formally define the download time over
and there is only one downloading peer in the networR stochastic capacity process, we prove that the corresatio
Because the downloading peer does not know the servibethe capacity make the average download time much larger
capacity of each source peérprior to its connection, the than the commonly accepted vallgc, wherec is the average
best choice that the downloading peer can make to minimigapacity of the source peer. It is thus obvious that the geera
the risk is to choose the source peers with equal probabilidownload time will be reduced if there exists a (possibly dis
In such a setting, the average capacity that the downloaditigputed) algorithm that can efficiently eliminate the nixga
peer expects from the network (i$00+ 150)/2 = 125kbps. If impact of both the heterogeneity in service capacities over
the file sizeF is 1MB, we predict that the average downloadifferent source peers and the correlations in time of argive
time is 64 seconds from (1). However, the actual averageurce peer.
download time is 1/2(1MB/100kbps)+1/2(1MB/150Mbps) = In practice, most P2P applications try to reduce the down-
66.7 seconds! Hence, we see that the spatial heterogenkigd time by minimizing the risk of getting stuck with a
actually makes the average download time longer. ‘bad’ source peer (the connection with small service cappci
Suppose now that the average service capacity can be kndwnusing smaller file sizes and/or having them downloaded
beforethe downloading peer makes the connection. Then, aver different source peers (e.g., parallel downldalt).other
obvious solution to the problem of minimizing the averagwords, they try to reduce the download time by minimizing
download time is to find the peer with tmeaximum average the bytestransferred from the source peer with small capacity.
capacity i.e., to choose peef with the average capacity; However, we show in this paper that this approach cannot
(c; > ¢; for all i), as the average download tirfigover source effectively remove the negative impact of both the corretet
peeri would be given byF/c;. We assume that each peer caif the available capacity of a source peer and the heterdgene
find the service capacity of its source peers via packet-leve different source peers. This approach may help to reduce
measurements or short-term in-band probing [18]. average download time in some cases but not always. Rather,
Consider again the previous two-source peer example wathsimple and distributed algorithm that limits the amount of
¢1 = 100kbps andc, = 150kbps. As we want to minimize time each peer spends on a bad source peer, can minimize the
the download time, an obvious choice would be to choog¥erage download time for each user almost in all cases as
source peer 2 as its average capacity is higher. Now, let W& Will show in our paper. Through extensive simulations, we
assume that the service capacity of source peer 2 is notlgo verify that the simple download strategy outperforhs a
constant, but is given by a stochastic procésgt) taking other schemes widely used in practice under various network
values 50 or 250kbps with equal probability, thus giving configurations. In particular, both the average downloateti
E{Cy(t)} = ¢; = 150kbps. If the procesg’(t) is strongly and the variation in download time of our scheme are smaller
correlated over time such that the service capacity for afilethan any other scheme when the network is heterogeneous

is likely to be the same throughout the session duratioakits  (Possibly correlated) and many downloading peers coextht w
source peers, as is the case in reality.
IAlthough the fluctuation seen by a downloader can be causezhaiyge
both in the status of the end-to-end network path and in thristof the 2For example, Overnet, BitTorrent, and Slurpie divide filet i@500KB,
source peer itself, we use “service capacity of a source”geennify the 256KB, and 256KB file segments (chunks), respectively [12)],[[21], and
terminology throughout the paper. a downloader can transfer different chunks from differemnirse peer.



The rest of the paper is organized as follows. In Seednning on a source peer (usually a PC), such as online games,
tion Il, we provide some background on service capacityay throttle the CPU and impact the amount of capacity it can
characteristics in a P2P network in terms of the heterogeneoffer. Third, temporary congestion at any link in the netiwor
over different connections and correlations over time for @an also reduce the service capacity of all users utilizirag t
given connection. In Section Ill, we analyze the impact dink.
heterogeneity in service capacities as well as the coiwakt
in a given connection on each user’s average download time. |
Section IV, we show that our simple and distributed algonith
and can virtually eliminates all the negative impacts of- het
erogeneity and correlations. Our scheme thus greatly esduc
the average download time and achieves the simple relation
in (1) regardless of network settings. Section V provides
simulation results to test our algorithm and compare with

others under various network settings, and we conclude dig- 1. Typical variation in ene-to-end available bandWiditased on the
work in Section VI results in [24], [23]. Drastic changes usually occur in tbals of minutes.

Typical session length

Service capacity

Time

Il. BACKGROUND Figure 1 shows a typical available end-to-end capacity

In this section we briefly describe the characteristics #fictuation similar to that presented in [23], [24]. The time
the service capacity that a single user receives from thgale for the figure in the measurement study is on the order
network from the user’s perspective. Specifically, we coersi Of minutes. We know from [4] that a typical file download
the heterogeneity of service capacities over differenvagt  S€ssion can last from minutes to hours for a file size of sévera

paths and the stochastic fluctuation of the capacity ovee tiffl€gabytes. This implies that the service capacity over the
for a given source peer. timescale of one download session is stochastic and ctedela

In Figure 1, the short-term variations in the capacity areiyia
. . . due to the window size fluctuation in TCP, while the long-term
A. Heterogeneity of Service Capacity variations are due to network congestion, changes in wacklo
In a P2P network, just like any other network, the servicer the number of connecting users at the source peer, etc. The
capacities from different source peers are different. &helong-term fluctuation typically lasts over a longer timels¢a
are many reasons for this heterogeneity. On each peer sigigy, few minutes up to several hours.
physical connection speeds at different peers vary oveda wi As illustrated in the introduction, both the heterogeneity
range [22] (e.g., DSL, Cable, T1, etc). Also, it is reasoaabbver different source peers and the correlations of theaifypa
to assume that most peers in a typical P2P network are jista given source peer have significant impact on the average
personal computers, whose processing powers are alsoywidgdwnload time. To the best of our knowledge, however, there
different. The limitation in the processing power can limitv  has been no result available in the literature addressieseth
fast a peer can service others and hence limits the servissues. All the existing studies have simply assumed that th
capacity. service capacity is given by a constant (its average value) f
On the network side, peers are geographically located ovhe duration of a download. Consequently, the download time
a large area and each logical connection consists of meiltiglf a file of size F' is simply given byF/c, wherec is the
hops. The distance between two peers and the number of hapsrage service capacity. As will be seen later on, however,
surely affect its round-trip-time (RTT), which in turns @fts this is true only when the service capacity is constantiod.
the throughput due to the TCP congestion control. Moreovewer time, neither of them is true in reality. In the next &&tt
in a typical P2P network, this information is usually ‘hisde we will analyze the impact of these two factors on the per-use
when a user simply gets a list of available source peers thirformance in terms of the average download time.
have contents the user is looking for.
Note that the aforementioned factors do not change over thﬁI
timescale of any typical P2P session (days or a week). Hence,
we assume that those factors mainly determine the long-term

average of the service capacity over a given source peer. ~We consider our network as a discrete-time system with
each time slot of lengti\. For notational simplicity, through-

. . . . out the paper, we will assume that the length of a time slot
B. Correlations in Service Capacity is normalized to one, i.eA = 1. Let C(t) denote the time-
While the long-term average of the service capacity ifarying service capacity (available end-to-end bandvidfta

mainly governed by topological parameters, the actualiservgiven source peer at time sloft = 1,2, .. .) over the duration
capacity during a typical session is never constant, bubyw of a download. Then, the download tinfefor a file of size
fluctuates over time [23], [24]. There are many factors aaysi £ is defined as
this fluctuation. First, the number of connection a souraer pe

T = min {

CHARACTERIZING THE DOWNLOAD TIME IN A P2P
NETWORK

allows is changing over time, which creates a fluctuatiomen t
service capacity foeach userSecond, some user applications

s>0’i0(t)>F}. )

t=1



Note thatT is a stopping time or théirst hitting timeof a time in a heterogeneous network is always larger than that
processC(t) to a fixed levelF'. given by ‘the average capacity of the network’ as in (5).

If C(t), t = 1,2,... are independent and identically To quantify the difference between (6) and (5), we adopt
distributed (i.i.d.), then by assuming an equality in (2 wsimilar technigues as in [26]. Lef be the random variable

obtain from Wald's equation [25] that taking values ofcy,co,...,cy with equal probability, i.e.
T P{C = ¢;} = 1/N for all i. Consider the following Taylor
F—F {Zc(t)} = E{C(t)}E{T?}. (3) expansion of the functiorf(z) = 1/z around some pointo:
t=1

1
The expected download time, measured in slots, then becomeb(®) = f(zo) + f'(z0)(z — z0) + §f”(330)(“7 —a)*. (7)
E{T} = F/E{C(t)}. Note that (3) also holds i’(t) is
constant (ovet). Thus, when the service capacityiisd. over
time or constant, there exists a direct relationship betvibe
average service capacity and the average download time, as E F F _ F-Var{C}
has typically been assumed in the literature. {C} E{C} ~ E{C})?

A. Impact of Heterogeneity in Service Capacity From (8), we see th_at the (_jifference between the predicted
i . . . average download time using (1) and the actual average
We first consider the impact of heterogeneous service CRilue is governed by two factors, the file size and the

pacities of diffe_rent source peers. In order o de?°‘%p'e Wriance of the service capacityar{C}. First, the actual
effect of correlations from that of heterogeneity, in thestson, average download time will be different from (5) if the file

we assume that Wald's equation holds true éach source is large. Second, more importantly, if the service capesiti

peer (ie., the service capamty of a given source peer Sier different source peers vary over a wide range, the hctua
either constant oi.i.d. over time). But we allow the average y,vnload time will be much larger than (5)

capacities for different source peers to be different. Wi wi
consider the impact of correlations in Section IlI-B.

Let N be the number of source peers in the netwakk ( B. First Hitting Time of a Correlated Stochastic Process
different end-to-end paths) an@;(¢t) be the service capacity
of source peei at time slott. We assume that;(¢) is either
constant or.i.d. overt such that (3) holds. Let; = E{C;(¢)}
be the average capacity of source péefrhen, the average
service capacity the network offers to a user becomes

Letting z = C,zy = E{C} and taking expectation in both
sides of (7) give

(8)

In this section we show that the expected first hitting time
of a ‘positively correlated process’ is larger than that of a
i.i.d. counterpart. Consider a fixed network path between a
downloading peer and its corresponding source peer for a file
of size F. Let C(t) be a stationary random process denoting

1 & the available capacity over that source at time slad/e will
A =+ > i, (4) assume tha€(t) is positively correlated over time. Then, as
i=1 before, we can define the download time of a file (or the
wherec = (c1,ca,...,cy) and A(C) is the arithmetic mean first hitting time of the procesg’(t) to reach a levelF') as
of the sequencey, ca, ..., cy. Thus, one may expect that theT,,,., where the subscriptor’ means that”(¢) is a correlated
average download timé&{T}, of a file of sizeF would be  stochastic process.
F Suppose now that we are able to remove the correlations
E{T} = Gh (5) from C(t). Let C'(t) be the resulting process afig,  be the

stopping time for the process’(t) to reach levelF’, where

As we mentioned earlier, however, the actual service capgga subscriptind’ now means that’(t) is independent over
ity of each source peer remains hidden unless a network-wiglge Then, again from Wald's equation, we have

probe is conducted. So the common strategy for a user is to

randomly pick one source peer and keep the connection to it E{Ting} = r _ r .
until the download completes. If the user connects to source E{C’'(t)} E{C(t)}
peeri (with service capacityC;(t)), the average download
time over that source peer becom@gc; from (3). Since the

user can choose one &f source peers with equal probability,
the actual average download time in this case becomes

N
1 F F
E{T)= -5~ =
M =525 -7 1. F
i= B{Tir) = FE{ &} 2 g = B{Tina).
whereH (¢) is E\r[le harmonic mean af;, co, . . ., ¢y defined by c E{C}

H(e) =[5 Xi=; o] 7" BecauseA() > H(c) ° it follows e the average first hitting time of an 100% correlated:pss
that (6) > (5). This implies that the actual average downloag ajways larger than that of aini.d. counterpart. In order to

3The arithmetic mean is always larger than or equal to the haommgean, characterize an.y degr(_ag .Of pOSIt.Ive Correlatlonfml)’ we
where the equality holds when ai)’s are identical. need the following definition [25]:

First, as introduced earlier, consider the case @) is
100% correlated over time, i.e(j(t) = C for some random
variable C' for all t. Then, the download tim&,,, becomes
T.. = F/C assuming an equality in (2). Hence, from Jensen’s
inequality, we have



Definition 1: Random variables(;, X», ..., X, are saidto Since E{C(k)} = E{C(k)lir.,, <1} + E{C(k)l{7.,, >}

be ‘associated’ if for all increasing functiorfsand g it follows that

E{f(X)g(X)} = E{f()}E{g(X)} (©) E{C(R) 1z, 210} < BACYP{Teor 2 k). (14)

= . . . Now, let us assume that an equality holds in the definition
wher.eX' = (X1,...,X,), and we sayh is an increasing of T.» (s€€ (2)). Then, we have
function if h(zy,...,2,) < h(y1,...,yn) Wheneverz; < y;
fori=1,...,n. | Teor il
Relation (9) characterizes the positive dependence among F=E Z Ck) o =E Zak’)l{ﬂm«zk}
the random variablex;, X», ..., X,. In words, if some of . k=1 k=1
them become larger, then the other random variables are also
' = E{C(k)1 . 15

likely to be larger. Note that (9) implies positive corrédais kzzl { (k) {T“”Tzk}} (15)

in C(t) by settingf(X) = X, and g(X) = X;. Definition 1

can be generalized to a stochastic process as follows. Substituting (14) into (15) yields

Definition 2: The stochastic proce§sX (¢),t =1,2,...} is °°
said to be associated if for all andt,,...,¢;, the random F < B{CYP{T.or > k}
variablesX (t1),..., X (tx) are associated. O k=1 .
In fact, the set of associated processes comprises a large cl —E{C} ZP{TCOT > k} = B{CYE{Too, }.

of processes. Perhaps, the most popular example is of the
following type:
Theorem 4.3.13. in [27]:Let {X (#)} be a stochastic process'NUS: We have
with static spaces = R? of the form Fo
]E{Tcor} 2 E{C} - E{Tznd}

This completes the proof. [ ]
If the {Z(t)} are mutually independent and independent of Theorem 1 states that the average download time of a file
X(0), then{X(t)} is associated if>(z, z) is increasing inv.  from a source peer with correlated service capacity (in the
o sense of association defined in (9)) is always larger than tha

Stochastic processes of the form (10) constitute large pefani.i.d. counterpart. In the subsequent section, we show the
tion of Markov processes. For example, any auto-regressi@ationship between the degree of correlation of a proards
type model with positive correlation coefficient can be terit the average first fitting time of that process, and illusttate
in the form of (10). Specifically, for an AR-1 sequen&d?) much E{T,,.} can be larger tham{T},,}. From previous
defined by discussions, we know that in general the average download

X(t+1) = pX(t) + b&(t), time, E[T7, should be calculated usirig[F/C(t)] rather than

the commonly used”/E[C(t)].

k=1

X(t+1) = p(X(t), Z(t)), for t=0,1,...  (10)

where0 < p < 1 and{(t) (¢t = 0,1,...) is a sequence of
i.i.d. random variables and independent’®f0), we can write _ o _ _
X(t+1) = (X(t),£(t)) wherep(z,€) = px + bE. Since  C. First Hitting Time and Degree of Correlation

is increasing inz, the procesg X (¢)} is associated. To illustrate the relationship between the average dovehloa
We now present our theorem. time and the degree of correlation in the available bandwidt
Theorem 1:Suppose thatC'(t),t > 1} is associated. Then, C(n), assume that’(¢) is given by a stationary first-order
we have autoregressive process (AR-1), i.e.,
E{Tecor} > E{Tina}-
{Teor} 2 E{Tina} 3 Clt+1)=p-C(t) +€(t) + a. (16)
Proof: First, f i k, t = . . . .
foof: First, for any given k, we set f(C) _Here,¢(t) is a sequence afi.d. random variables with zero

C(k) and g(C) = lioayptom=r}, Where C
(C(1),C(2),...,C(k)). Note that both functiong andg are
increasing. Observe that

(Tow <k} ={C() +---+C(k) > F}.  (11) E{CO} =p=0a/(L=p) (17)

We vary the constant such that the average capacity is always
fixed to E{C(t)} = p = 10 under differentp. Since the

mean, which represents a noise term of the process. Then,
from the stationarity of the process, we get

Thus, we have, for any,

E{C(k)lz,,, <1y} = E{C(k)L{c(1)++ct)>F} } available bandwidth cannot be negative, we limit the rarfge o
o= = = C(t) such thatC(t) € [0,20], while keeping the same mean.
=E {f(C)g(C)} = E{f(C)}E{g(C)} (12)  The file size isF = 250 and the noise termg(t), is chosen
= E{C(k)YP{C(1)+---+C(k) > F} to be uniformly distributed ovef—1,1], [-5,5], and [-9, 9]
— E{C)P{T,0, < k}, (13) to see how the noise term affects the average download time.

Remark 1:The choice of the autoregressive process is
where the inequality in (12) follows singg(t) is associated, for the sake of presentation, not to actually reflex the real
and (13) is from the stationarity of’(k) in k£ and (11). fluctuation in an end-to-end available bandwidth in realld:or



20 S - smaller, the download time is less affected by the cortati

;s EI‘[—l, i] of the process. This is well expected since the procegs
% g 0[5, 5] fluctuates only within[9,11] and thus behaves more like a
a5 " EB-e0[9, 9] constant process. In contrast, when the range G¢t) is

large, the impact of correlation becomes apparent as shown
in Figure 2(b).

In real data networks, the available capacity of a connectio
typically shows wild fluctuation; it becomes very low when
congestion occurs, and it can reach up to the maximum link
bandwidth when things go well. In addition, as technology
advances, people are getting links of higher and higherdspee
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ hence the range of available capacity fluctuation is alsalik
01 02 0-3’Co?r§ati%fco%§icighz( 08 09 1 to increase. Therefore, it is very important to consider the

_ _ p)_ effect of correlation in capacity over time when we calcgilat

(2) under different noise ter(t) in (16). the average download time of a file transfer.

Average Download Time (slots)

45 \ \ :

—e—C(t) 0[9,11]

—8—C(t) 0 [5,15] IV. MINIMIZING AVERAGE DOWNLOAD TIME OVER
40f| ——c(t) 0[1,19] ] STOCHASTIC CHANNELS

Intuitively, if a downloader relies on a single source peer
for its entire download, it risks making an unlucky choice
of a slow source resulting in a long download. Since the
service capacity of each source peer is different and fltesua
over time, utilizing different source peers either simaéausly
(parallel downloading) or sequentially within one dowrdoa
session would be a good idea to diversify the risk. Parallel

20 : : : : : : : : downloading improves the performance by reducing the file
01 02 03 04 05 06 07 08 0.9 1 . .
Correlation Coefficient (p) size over the ‘worst’ source peer and also may increase the
(b) under different range fof!(%). service capacity one receives from the network by utilizing
‘unused’ capacities of other source peers. If a downloader
Fig. 2. Relationship between the average download time dfetetit degrees utilizes one source peer at a time, switching around seems
of correlationp. to be a good strategy to avoid the 'bad’ source peer. Now,
the question is, “What is the criterion for switching, i.es,it
chunk-based or time-based?” In this section we will analyze
It is easy to generate AR-1 process with the same mean @ performance of (i) parallel downloading, (i) random
different correlation structures. Similar results can beamed  chunk-based switching, and (iii) random time-based (jfitjo
if the AR-1 process is replaced by other processes with mafgitching.
complicated correlation structures. = Different strategies have different impact on the average

Figure 2 (a) shows the relationship between the averagéwnload time of each peer, which may result in different
download time and the degree of correlation of the procesgstem dynamics as well, e.g., how fast a downloader can
(16) for different p and ¢(t). As the degree of correlationstart to contribute (become a source peer) or how fast a peer
increases, the average download time increases. In garicueaves the system after finishing download. If there is no
for a heavily correlated process, the average download tifpger leaving the system and all peers are willing to share
can be about0% larger than that for a uncorrelated or weaklfter they complete their download (either the entire file or
correlated process, regardless of different noise temnsther a chunk), the aggregate service capacity in the system keeps
words, the long term variation in the service capacity is thacreasing as time goes on because the number of source peers
main determining factor of the average download time, ar@ntinuously grows. In this case, the dynamics in the irsgea
the short-term random noise in the service capacity, such@saggregate service capacity becomes the dominent factor i
the one caused by TCP congestion control mechanism owes average download time for each peer. On the other hand,
short time scales (RTTs), does not have significant impact gmo peer is willing to share after download, the aggregate
the average download time. capacity will then eventually drop to zero, thus throttlial

To see the impact of the variance ©f¢) itself, we restrict the performance metrics. In reality, however, the P2P netwo
the range ofC(t) to some fixed interval. For exampl€y(t) € will reach a steady-state at some point in which the peer
[9,11] means that we sef’(t) = 9 whenever it becomes arrivals and departures are balanced and the aggregateeserv
smaller than9 and C(t) = 11 when larger thari1. Figure 2 capacity remains around some constant with little vanatie
(b) shows the relationship between the average downloaa tishown in [3]. This suggests that the number of source peers
and the degree of correlation 6f(¢) under different variation in the system will also be around some constant with little
range forC(t). When the range of fluctuation @' (¢) gets fluctuation in the steady-state. In this paper, we are mostly

Average Download Time (slots)




interested in the impact of stochastic variations of cajesci download timeT, is given by

on the average download time of each peer in the steady-state

rather than in the impact of sources-downloaders dynamics i T, = max Cy iyl Gl v

the transient period, which is beyond the scope of this paper _ €1 4C2 €1 _
Before we start our analysis, we have the following assumpor the case of single download, the average download time

tions: E{T,} is

(i) The service capacity of a source is constant within one
time slot.

(i) Each downloader selects its source independently. Now, given that parallel download is better than single

(iif) Each downloader makes blind choice, i.e. the sources %ownload, one may ask whether it is as good as the predicted
randomly chosen uniformly over all available sources, 5,6 in (1). To answer this, let's recall the two-sourcergee
Assumption (i) is reasonable since it is expected that thesgample. From (1), the predicted download time is
is no major event that triggers dramatic fluctuation in the P 9F
service capacity within a short period of time. There may be E{T} = 1@ = .
small short-term fluctuations, on the order of seconds, & th @ a+te
service capacity due to the nature of the network protocdipn easy calculation showS{7'} < E{T}} if cz > 3¢;. Thus,
such as TCP congestion window changes, or OS interr@en in the network with one user, parallel downloading may
handling, etc. These changes however do not impose serip@é reduce the download time to the predicted value in all
impact on the service capacity. Thus, we are not intereste@ses. Instead, the performance of parallel download dispen
in such small short-term variations, but are more intetestgpon the distribution of the underlying service capacities
in the fluctuation on a longer time scale caused by changeuld be much worse than the ideal cas&,A(c). Indeed,
in the number of connections at a source peer or changeitins shown in [15] that if we can make the chunk-size
network congestion status, which all usually last for langéroportional to the service capacity of each source peer,
time (say, minutes to hours). We have the assumption (pprallel downloading can yield the optimal download timet B
because it is impractical for any downloader to know howuch scheme requires global information of the network. One
other downloaders choose their source peers in the netwd@kour goals is to find a simple and distributed algorithm with
Hence the downloader cannot not make its source selectih global informationsuch that the value in (1), aF/A(é),
decision based on other downloaders’ decision. Assumptie@n be achieved under almost all network settings.
(iii) is based on the fact that the downloader does not knowWe have already seen that parallel downloading may not
the service capacity of each source peer a priori. Althougehieve I'//A(¢) even when there is only one user in the
some protocols require peers to broadcast information tab&&twork. Further, it is shown [28], [16] that in a multi-user
its physical connection speed, it is hard to tell the “truestant network, maintaining just a few parallel connections, sy,
service capacity of each source peer due to many factors st@!§, is better than having parallel connections to all faesi
as competition among other peers, changing workload of theurce peers. Hence, if there is an algorithm that can iserea
source peer, or the network congestion status. Thereforeth@ performance oéach individualconnection among such a
simple way to select a source peer is just to make blind choi¢ew parallel connection, then each individual user mayechi
the download time predicted by (1) or even better.

E{T.} = % <CFl 4 f) S E(T)} =T,

2

A. Effect of Parallel Downloading B. Random Chunk-based Switching

Parallel downloading is one of the most noticeable way to In the random chunk-based switching scheme, the file of
reduce the download time [28], [16]. If the filg is divided interest is divided into many small chunks just as in the lfglra
into £ chunks of equal size, antl simultaneous connectionsdownload scheme. A user downloads chunks sequentially one
are used, the capacity for this download session becemes at a time. Whenever a user completes a chunk from its current
ca+. . .4cp, Whereg; is the service capacity af” connection. source peer, the user randomly selects a new source peer and
Intuitively, this parallel downloading seems to be optinmal connects to it to retrieve a new chunk. In this way, if the
all cases. But, it is worth noting that the download time fodownloader is currently stuck with a bad source peer, it will
parallel downloading is given bynax{ti,ts,...,t;} rather stay there for only the amount of time required for finishing
than F'/(c1 + c2 + ... + ¢x), wheret; is the download time one chunk. The download time for one chunk is independent of
of a chunk overi’" connection. This is because the chunkhat of the previous chunk. Intuitively, switching sourceeps
that takes the longest time to complete determines theeentiased on chunk can reduce the correlation in service cgpacit
download session. between chunks and hence reduce the average download time.
To illustrate that parallel downloading is better than &ngHowever, there is another factor that has negative impact on
download, we consider the following simple example. Assurmbe average download time, the spatial heterogeneity.
that there are only two source peers in the network, and, First, suppose that there is no temporal correlation iniserv
are the service capacities of the two source peers. Witlsat | capacity and Wald’s equation holds for each source peereA fil
of generality, we assume that < c,. If parallel downloading of size F' is divided intom chunks of equal size, and let be
is used for downloading a file of siz& from the network, the the download time for chunk Then, the total download time,



Tehunk 1S Tonhunk = Z;”:l t;. Since each chunk randomlyhas the same probability of being chosen, the average servic
chooses one ofV source peers (with equal probability), thecapacity of the network is given by (¢) = ﬁ vazl C;i.

expected download time will be In this setup, we can consider the following two schen(igs:
N permanent connectigand(ii) random periodic switchingFor
1 F F i - -
E{Topunie} = Z + Z /m = (18) fche_flrst case, the source se_lectlon func_:tlon does not ghange
= — G (@) in time ¢t. When the searching phase is over and a list of

available source peers is given, the downloader will choose
The result in (18) is identical to the download time given i@ne of them randomly with equal probability. In other words,
(6) where a user downloads the entire file from an initially/(+) = U whereU is a random variable uniformly distributed
randomly chosen source peer. In other words, the chunkdbasgger {1,2,..., N}. For example, if the downloader chooses
switching is still subject to the ‘curse’ of spatial heteeogity. (v € {1,2,..., N}) at time0, then it will stay with that source

While there is no benefit of the chunk-based switching frOlpﬂeerpermanentl)(U(t) = u) until the download completes.
the average download time point of view, it turns out thas thi
scheme still helps reduce the variance of the download time ———— Time (correlated)
under a relatively smaller number of users by diversifying t U(1)=1
risk with smaller chunks. _(Seg Figure 5(b) in SecFion V.) o)

In the chunk-based switching, if we get stuck in a source
peer with very low service capacity, downloading a fix amount
of bytes from that source peer may still take a long time.
We could avoid this long wait by making the size of each
chunk very small, but this then would cause too much overhead3
associated with switching to many source peers and infagrat Cn ()
those many chunks into a single file. Therefore, instead of _ _ o
waiting until we finish downloading a fixed amount of datéFSl\ll?i.tCSHinThe operation of source selection functiéft) for random periodic
(chunk or file), we may want to get out of that bad source 9
peer after some fixed amount of time. In other words, we
randomly switch based on time. In the subsequent sectionfor the random periodic switching, the downloader ran-
we will investigate the performance of this random switghindomly chooses a source peer at each time slot, independently
based on time and show that it outperforms all the previo@$ everything else. In other words, the source selectiore-fun
schemes in the presence of heterogeneity of service cigsacition U(t) forms ani.i.d. sequence of random variables, each
over space and temporal correlations of service capacity @fwhich is again uniformly distributed ovefl,2,...,N}.
each source peer. Figure 3 illustrates the operation of the source selection

function U (¢) for random periodic switching. In this figure,
source 1 is selected at time 1, sourgeis selected at time 2,

C. Random Periodic Switching and so on.

In this section, we analyze a very simple, distributed al- Let us define an indicator function
gorithm and show that it effectively removes correlations i e {17 it U(t) = u

¢
A
i

=
=

urces (Independent)

the capacity fluctuation and the heterogeneity in spaces thu
greatly reducing the average download time. As the algworith

will be implemented at each downloading peer in a distributerhen, since’(¢) can take values only frofil, 2,..., N1, the

fashion, without loss of generality, we only focus on a singlactual available capacity at timtecan be written as
downloader throughout this section.

N
In our model, there ar@/ possible source peers for a fixed . .
downloader. LetC;(¢) (t = 0,1,2,... andi = 1,2,...,N) X(t) = Cow(®) = ;C“(t)‘r“(t)

denote the available capacity during time slaff source peer ) o
i. LetU(t) € {1,2,...,N} be a source selection function forfor both the permanent connection and the random periodic

the downloader. If/(¢) = i, this indicates that the downloadeSWitching strategies. Since each downloader chooses aesour
selects path and the available capacity it receivesGs(r) Peer independently of the available capacity{?) is also
during the time slot. We assume that eacf(t) is stationary independent fromC',(t), and so isf,(f). Note that, from

in ¢t and C;(t) of different source peers = 1,2,...,N E{I.(t)} = 1/N for anyu, we have

0, otherwise.

are independeritWe however allow that they have different N
distributions, i.e. E{C;(t)} = ¢; are different for different E{X()} = ZE{Cu(t)Iu(t)}
(heterogeneity). For any given the available capacity’;(t) u=1

is correlated over timé. As before, when each connection

N N
Cy
= E{C.OE{LM} =) =A@, 9)
4We note that different paths (overlay) may share the same linthea u=1 u=1

network core, but still, the bottleneck is typically at thedeof network, . h ilabl ity f h ote
e.g., access network type, or CPU workload, etc. Thus, tdependence |-€-» (€ average available capacity for the two sourcese

assumption here is reasonable. strategies are the same.



In order to analyze how the two different strategies affect Finally, sett’ = ¢+7. Then, from (22) and since the variance
the correlation inX (¢), we consider the correlation coefficientof X (¢) remains the same for both strategies as in (23), we
of X (t) defined as haver,,(7) = rper(7)/N and this completes the proof.m

Cov{X(t), X(t +7)} From Proposition 1, we see 'that undgr the'random periodic
r(r) = switching strategy, the correlation &f(¢) is NV times smaller
Var{X ()}
Then, we have the following result.

than that of permanent connection strategy. For example,
when each downloader has about 10 available source peers
Proposition 1: Let 7., (7) andr,.,(7) denote the correla- (N = 10), the correlation coefficient of the newly obtained
tion coefficient of X'(¢) under the permanent connection andapacity process under our random periodic switching is no
the random periodic switching, respectively. Then, we havemore than0.1 regardless of the correlations present in the

1

Tran(T) = Nrper(T), Vi>1.

|

among different source peers, we have, for any v,

E{Cu(t) : Cv(t/)} = E{Cu(t)}E{Cv(tl)} =0. (20)
Then, the covariance oX (¢t) becomes
Cov{X(t), Xt}
N N
=K {Z Ou<t)Iu(t) : Z Cv (tl>Iv(t/)}
-2 3 awannon)
=2 D E{C.C(NE{LWMLE)}. (2D
From (20), we can rewrite (21) as
N
> E{Cu(t)Cult)}E{Lu (D Lu()}. (22)

First, consider the case of= t’. Then, it follows that

E{L (O} = B{L()} =
Hence from (22) witht = ¢/, the variance ofX (¢) is given by
N
Var{X ()} = % S E{C.(H)C ()}
1 u;l
=5 uz::l Var{C,(t)}, (23)

regardless of the strategies foi(t).

Now, consider the case af # t'. Under the permanent
connection strategy, sincg,(t) = I,,(t') all the time, we get

E{L,(t)L.(t)} = %

original capacity fluctuation. So, by using our random pdiio
switching, we can always make the capacity processy
lightly correlated or almost independent. From Figure 2, we

Proof: Since the average capacity for both strategié?e that the average download time for a lightly correlated

remains the same (see (19)), without loss of generality, W
can assume that’,(¢) for any source peet has zero mean
by subtractingE{C,,(¢)} if necessary. From the independenc

Locess is very close to that given by Wald’s equation. hisst
reasonable to assume that Wald’s equation holds for théigh

gorrelated procesX (t) under our random periodic switching

strategy. Specifically, if we defin€&,,,, as the download time
for a file of size F' under the random periodic switching, we
have

Tran
F=E { Z CU(t)(t)} = E{Tran}E{CU(t) (t)}

t=1

— B{Tan YE{E {Ciyy(t) | U(1)}}

1 N
= B{Trun} i D E{CL(0)}

1 N

=E{Tran} 3 uzl cu = E{Tran }A(@). (24)

We then have the following comparison result between the
permanent connection and periodic switching.

Proposition 2: Suppose that the proce€s(t) for eachu is
associated (i.e., it is correlated over timelLet T},., and7}.,,
be the download time for the permanent connection and for
the random periodic switching, respectively. Then, we have

E{Tper} > E{Tran }

O
Proof: Assume that the file size i§". Since C,(t) is
associated, from Theorem 1, we have

F

E{TpeT‘U = U} > Wa (25)
for any given source peer. Observe now that
E{Tper} = E{]E{Tper | U}} >E {]E{CUF(tHU}} (26)
F F
Z BECOOIU]  B{Co®) @7
F
= ﬁ = E{Tran}7 (28)

where (26) is from (25), (27) is from Jensen’s inequality and

On the other hand, for the random periodic switching, we ha{a® convexity of a functiorf(z) = 1/« for z > 0, and (28)

E{L(0L()} = E{LOYE(LE)} = 5

sincel,(t) and I, (t') for ¢ # ¢’ are independent.

is from (24). This completes the proof. [ ]
Proposition 2 shows that our random periodic switching

strategy will always reduce the average download time com-

pared to the permanent strategy and that the average davnloa



time under the random periodic switching is given By(¢) capacity. To the best of our knowledge, we are the first to
(see (27)). Note that this was made possible since the randpaint out that the random periodic switching gives us the
periodic switching removes the negative impact of both treverage download time df/A(c), while all the other schemes
heterogeneity and the correlations. In addition, our allgor considered so far yield larger average download time.
is extremely simple and does not require any informatioruabo Our study leads us to believe that the random switching
the system. decision should be based on time rather than ‘bytes’ because
we are interested in the download time, not the average
capacity itself. Indeed, any algorithm based on bytes oreaifix
amount of data will suffer theurse of bad source peen

So far, we have analyzed the performance of three diffehat it has to wait until that amount of data is completely
ent schemes that utilize the spatial diversity of the nekworeceived from the ‘bad’ source peer. On the other hand, when
to improve per-user performance in terms of the averagee decision is based on time, we don’t need to wait that long
download time. We have considered (i) parallel downloadings we can jump out of that source peer after a fixed amount
(i) random chunk-based switching, and (iii) random peigod of time (one period).
switching. The parallel downloading may perform well if the
capacity of each possible source peer is known so as to &loca V. NUMERICAL RESULTS

larger chunks to faster connections and smaller chunks toI : : . .
. ) ; . n this section we provide numerical results to support our
slower connections. But this method is not practical as one

o . . analysis and compare the performance of the four schemes
cannot know a priori the service capacity of all source pee

s X i .
In addition, the service capacity is stochastically fluting: ®r file download under various network configurations. In

all the time, and our analysis show that the performance gl?y case, in our configuration, different source peers have

. - different average service capacities, and the servicecigpa
parallel downloading depends much upon the heterogenélty0? each sourcegpeer is correlgted in time. We consider ‘gspingl

the service capacities in different source peers if the kkun ; : ;
- downloading peer as well as multiple downloading peers to
are equal in size.

Many P2P applications nowadays use chunk-based ﬁ:}govy competl_non among the downloading peers for limited
Service capacity of each source peer.

transfer with equal chunk size. As mentioned earlier, the
benefit of chunk-based switching is to speed up the conversio
from downloading peers to uploading peers and thus indjrect Single Downloader with Heterogeneous Service Capacitie
affect the average download time. But, in terms of reducing We first show the impact of both heterogeneity and corre-
the average download time directly, it does not help muclations in service capacities on the average download time
Random chunk-based switching may reduce the correlationien there is a single user (downloader) in the network.
in the service capacity, but it still cannot eliminate théeef There areN = 4 source peers in the network, each offering
of spatial heterogeneity in different source peers. different average service capacities. Lgtbe the average

In current practice, the chunk based transfer and the paraliervice capacity of source peeandc = (¢, co,¢3,¢4). The
download are often combined. Taking BitTorrent and Overnaterage service capacity of the whole network is tHéd) =
for examples, a file is first divided into 256KB and 9.5MB(c; + ¢ + ¢3 + ¢4) /4. We change the heterogeneity in service
chunks of equal size, respectively, and then different kiuncapacity by changing each, while keepingA(¢) = 200kbps
are downloaded from different source peers simultaneousiye same. We measure the degree of heterogeneity in term of
However, we separate the analysis of the two strategiesdte- |/ Var{c}/A(c), the normalized standard deviation. Table
show how each is different in combating spatial heterodgnei shows the different settings used in our simulation in this
and temporal correlations. Please note that we are nogttgin subsection.
compare the performance of parallel downloading with chunk : 5 5 . . . . 5
based transfer since they can be easHy_comblned to yieldrbet o185 170 [ 140 [ 110 80 | 50 | 35 | 20
performance. Rather, we are comparing the performance of— 795 {190 [ 180 | 170 | 160 | 150 | 145 | 140
the two strategies with our random periodic scheme. Fuyrther [ c3 | 205 | 210 | 220 | 230 | 240 | 250 | 255 | 260
we will present the performance comparison of the combined | ¢4 | 215 | 230 | 260 | 290 | 320 | 350 | 365 | 380

. T : : 5 | 005| 011] 0.22 | 0.33 | 0.45 | 0.56 | 0.61 | 0.67

strategy with the random periodic scheme in Section V-B.

The idea of time-based switching scheme is in fact not new, TABLE |
. . . VERAGE SERVICE CAPACITY OF EACH SOURCE PEER UNDER DIFFERENT
Such strategy has been implemented in BitTorrent [21] bu CONFIGURATIONS.
with some other purpose in mind. In BitTorrent application,
by using its optimistic choking/unchoking algorithm, a pee
changes one of its servicing neighbors with the lowest up-To demonstrate the impact of correlation in each fixed
load capacity every 10 seconds in hope to find some pesmirce peer, we use a class of AR-1 random processes to
offering higher service capacity. However, the idea of et model the stochastic fluctuation in the service capacitys It
ing source peer periodically in the BitTorrent’s optimisti reasonable to assume that if the average service capacity is
choking/unchoking algorithm is to discover new potentidarge, the service capacity is more likely to fluctuate over a
sources rather than to explicitly remove the negative impaegider range. For instance, for a high-speed source peer(e.g
of temporal correlations and spatial heterogeneity iniserv 1Mbps), the actual service capacity of the end-to-end sessi

D. Discussion
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may drop down to somewhere around 50kbps and stay 54
there for a while due to network congestion or limited CPU
resources at the source peer. In this regard, we assume tf
the amount of fluctuation i (¢) is proportional to its mean
value ¢;. Specifically, for source peer we sete;(t) in (16)

to be uniformly distributed ovefc; — 6, ¢; + 6;] wheref; is
chosen such tha{/Var{C;(t)}/E{C;(t)} remains the same
for all i.

In our simulation, the length of each time slot (one periad) i
chosen to be 5 minutes. We set the file size to 150MB, which i
the typical size of some small video clips or multimedia files
As the average service capacity (of the network) is 200kbps 005 01 015 02 025 03 035

-©-Permanent (p=0.5)
-©-Permanent (p=0.95)
-8 Chunk-based (p=0.5)
-E- Chunk-based (p=0.95)
200} | —+ Periodic (p=0.5)
-+-Periodic (p=0.95)

- Parallel (p=0.5)
-A-Parallel (p=0.95)

2501

1501

Average Download Time (min)

0.4
we set the chunk-size for chunk-based switching to be 7.5ME Degree of Heterogeneity (3)

(= 200kbps x 5 minutes). The purpose of simulating the (a) Low degree of heterogeneit§:< § < 0.4
chunk-based switching is to show the impact of switching 350 ‘ ‘

based on “data size”, hence we choose 7.5MB to allow fai -©-Permanent (p=0.5) 0

300L| © Permanent (p=0.95)
—-B-Chunk-based (p=0.5)
2500 ‘0 Chunk-based (p=0.95)
—+Periodic (p=0.5)
| |+ Periodic (p=0.95)
- Parallel (p=0.5)

A Parallel (p=0.95)

comparison with the random periodic switching with 5 minute
period. We will show the performance of using smaller chunk
size later in Section V-B.

We consider all three download strategies discussed so f
in comparison with permanent connection. For permanen
connection, the user initially chooses one of four source:
randomly and stays there until the download completes. Fa
chunk-based switching, the user switches to a new randoml
selected source peer whenever a chunk is completed. Althoug 500
we simulate the system as a discrete time system, the us

Average Download Time (min)

0.4 0.45 0.5 0.55 0.6 0.65

is allowed to switch to a new source peer anytime within a Degree of Heterogeneity (5)
time slot whenever it finishes the current chunk. For pdralle (b) High degree of heterogeneit§:4 < § < 0.7

download, the file is divided into 4 equal-sized pieces amd th
downloading peer connects to all 4 source peer and downldz
each piece from each source peer simultaneously. Finally,
periodic switching, a user switches to a new randomly chosen
source peer every 5 minute to further download the remaining
parts of the file. ter than single link downloading because (i) it utilizes mor
Figures 4 (a)_(b) show the average download time vs. tF‘r@n one link at the same time and (||) if the connection is
degree of heterogeneity in the average service capacitjes RoOr, parallel downloading reduces the amount of datarggetti
when there is a single downloader in the network. Dashed lin@rough that bad source peer. Since there is only a single use
are for strong correlationg (= 0.95) and solid lines representit utilizes all the service capacity the network can provide
the case of light correlationsp(= 0.5). In Figure 4(a), (c1 +c2 +cs + ca). In this case, the average download time
when the degree of heterogeneity is small, all three siligke- should be 150MBk; + ¢z +c3 +c4) = 150MB/800kbps~ 25
download strategies (permanent, chunk-based, periodagru Minutes. We see from Figure 4(a) that parallel downloading
light correlations perform the same. This is well expecteéfh actually achieve the performance close to our expentati
since the service capacities of all source peers are almwen the service capacities of different source peers asecl
1.2.d. over space and time, (e} Switching doesn’'t make aﬁ? 7.9.d. Stl”, parallel dOWﬂloading is prone to the negative
difference and the average download time becogd(c) = effect of correlations.
150MB/200kbps = 100 minutes, as commonly used in practice.As the degree of heterogeneity increases, the average down-
On the other hand, when there exists strong correlatiortsein foad time sharply increases for all the schemes except the
service capacity, the download time is longer for all sgae periodic switching. Figure 4 (b) shows this whéis between
except the periodic switching. For example, whes 0.1, the 0.4 and 0.7 (see Table 1). All but periodic switching suffiem
correlation alone can cause more than 20% of increase in the negative effect of heterogeneity. When both heterogenei
average download time. Thus, when the network is more likaxd correlation are highj (= 0.65 and p = 0.95), permanent
homogeneous (i.e., small, the temporal correlation in the connection takes about 350 minutes to complete the download
service capacity of each source peer becomes a major fadthis time is about 250 minutes, or 4 hours more than using
that renders the average download time longer. However, fheriodic switching! It is expected that that the performeané
average download time remains the same under the randpanallel downloading degrades fast when there is a largesdeg
periodic switching. of heterogeneity. It is more likely that one of the parallel
Figure 4 (a) also shows the performance of parallel downennections is ‘poor’ with very small capacity. Thus, even
loading. Intuitively, parallel downloading should perfobet- though the size of chunk (37.5MB) is smaller than the whole

el 4. Average download time vs. degree of heterogeneiteuddferent
ownload strategies and different degree of correlations.
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file (hence reducing the risk of staying with the bad sour@ peparallel connections to 5 for all the combined strategies. W
for too long), this is still not as good as the idea of averggirvary the chunk size to see its impact on the average download
capacities all the time, as used in the periodic switching. Wime in conjunction with parallel download. Further, theerss
note that temporal correlations still negatively affectadh are allowed to request the same chunk from different source
these three schemes. However, it should be pointed out thatrs when the number of untransferred chunks is less than
the random periodic switching performs the saregardless the number of active parallel connections. For example, if a
of heterogeneity and correlationand in fact it outperforms user is three chunks away from completing the entire file,
all the other schemes when the network is heterogeneous vgthe can request all three chunks from all currently comect
a wide range of service capacities as in the current networkource peers. Although making the same chunk requests to
different source peers will reduce the download time fot tha
specified chunk, this is at the expense of some waste of the
system resource. Note that we do not allow users to make
In this section, we consider the performance of differemluplicate requests to all connected source peers for every
download strategies under a multi-user environment. In ogdihunk, as this will waste too much resource. This notion of
multi-user setting, we set the number of source peers ritaking requests to different source peers for the same chunk
N = 100. The source peers are divided into 4 groups arwhen a user's download is nearly complete has been already
each source peer within the same group will have the sameplemented in BitTorrent called the “end-game” mode [29].
average service capacity. In reality, the service capauity The second strategy is the random chunk-based switchig wit
each source peer may vary a lot, much greater than theingle connection. The chunks size is chosen to be 7.5MB,
ones that are presented in Table I. We choose the serwgich is identical to what we used in the previous section to
capacity of the four groups as 1Mbps, 500Kbps, 100Kbpallow fair comparison with the periodic switching. Finaltie
and 50Kbps, representing typical capacities of LAN, cabléhird strategy is the random periodic switching. The swiiigh
DSL, and modem connections, respectively. In contrastéo tperiod is still 5 minute, but we reduce the length of the gyste
setting in the previous section, each group now may consiishe slot to 1 min. In this case, there will be capacity vaoias
of different number of source peers to reflect a more realistvithin each switching period.
distribution of service capacity. We choose the number @hea Figure 5(a) shows the average download time for the strate-
group as 10, 5, 65, 20, respectively. This is to reflect thgies considered so far. The reference line is given by the file
situation in real world that only few source peers have vesize divided by the average per-user service capacityt, Fies
high service capacity while most others have the capacity ¢dn clearly see that the periodic switching performs a Ittebe
typical DSL (100Kbps) lines or slower modems. The averagkan the chunk-based switching. We have a reduction of 40%
service capacity of the network is th&{C'} = 1M - 0.1 + in average download time by using periodic switching. Next,
500K -0.05+ 100K -0.65+ 50K -0.2 = 200Kbps. The degree the combined strategies are shown to outperform the chunk-
of heterogeneityd) in our setting iy = 0.99. The fluctuation based switching. Note that when the level of competition is
in the service capacity is represented by AR-1 process wldw, the combined strategy outperforms both the chunkdase
correlation coefficient of each source peer set to 0.9. We waimd the periodic switching schemes. This is well expected
to see the performance of different strategies under thadinpbecause parallelism increases the service capacity each us
of spatial heterogeneity and temporal correlation. can achieve in an under-utilized network. As the level of
In our simulation, service capacity of a source peer ompetition increases, however, the random periodic &iitc
equally divided among all the users connected to that soureadily starts to outperform the combined strategy.Furthe
peer. The effect of dividing capacity among users gives itsis interesting to see that chunk based transfer (7.5 MB
an idea of how different strategies will perform when usefger chunk) even outperform parallel downloading usingdarg
compete for limited resources in the network. To represecitunks (30MB per chunk) when the competition in the system
the level of competition, we use tltownloader-sourceatio, is heavy. This is due to the fact that the average downloael tim
i.e. the ratio between the number of users (downloadingspeefior parallel downloading is still determined by the slowest
to the number of source peers. Since the service capacity dink. In a system where there are already many downloading
source peer is equally among the users the source peer sempesrs, parallelism actually increase the level of comipetit
we can expect that the service capacity of the system islgquaven more, hence the service capacity of a slow source peer
divided among all users as well. Hence, taeerage per- is further divided among its downloading peers.
user service capacitgan be calculated as the average systemAnother noticeable trend in Figure 5(a) is that the per-
service capacity divided by the downloader-source rat@. Fformance of the combined strategy gets better with smaller
example, if the number of users is 200, then the downloadetiunk size. Recall that the users can download the same chunk
source ratio 2. The average per-user service capacityhveill t when there are only several chunks left before the completio
be 200Kbps/2 = 100Kbps. of the entire file, so the last few chunks will be transferred
We simulate three strategies. First one is ttmmbined over the fastest source peer. This method may reduce the
strategy of parallel download and the chunk-based transfeegative impact of spatial heterogeneity a little, but a th
Since we know from [28], [16] that keeping only a smalprice of wasting some of the system resource transferring
number of parallel active connections is better than maiduplicate chunks. The larger the chunk size, the more waste
taining connections to all source peers, we set the numberabfrecourses in sending the duplicate chunks. In addition, a
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is very hard for a user to predict what kind of service s/he
will receive. It would be better to have small variations lire t
download time so that the performance is more predictable
and fair. We can clearly see that the periodic switchingdgel
the smallest variation in download time comparing with othe
strategies we have considered so far.

In summary, the periodic switching not only gives down-
loaders the minimal average download time in most network
configurations and introduces less overhead, but it is fahr w
more predictable performance as well.
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VI. CONCLUSION

5 6

2 3 4‘1
# of Downloaders / # of Uploaders In this paper we have focused on the average download
(a) Average download time time of each user in a P2P network. With the devastating

usage of network resources by P2P applications in the durren
Internet, it is highly desirable to improve the network effi-
ciency by reducing each user’s download time. In contrast to
the commonly-held practice focusing on the notion of averag
capacity, we have shown that both the spatial heterogeneity
and the temporal correlations in the service capacity can

—e— Periodic (Single) ] significantly increase the average download time of thesuser
o o parae gm‘iﬁzf‘ﬂ)“) | in the network, even when the average capacity of the network

—&—Parallel (0.3MB/chunk) remains the same. We have compared several ‘byte-based’
0.25 Chunk (Single) 1

(file size based) schemes widely used in practice, including
chunk-based file transfer, parallel downloading, as well as
their combination, and have shown that all those byte-based

Normalized Std. of Download Time (Min)
o
w
ol

01— 2 3 7 5 6 schemes are not so effective in reducing the two negative
# of Downloaders / # of Uploaders factors that increase the average download time. From our
(b) Standard deviation / average download time study, it becomes apparent that all P2P algorithms regardin
Fig. 5. Performance comparison of different strategies udiftarent levels the download time should focus directly on ‘time’ ratherrtha
of competition. on ‘bytes’, and the notion of average service capacity alsne

not sufficient to describe each user’s average performance i
a P2P network.
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