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Abstract—In this paper, we study the problem of minimizing
the spread of a viral epidemic when immunization takes a non-
negligible amount of time to take into effect. Specifically, our
problem is to determine which set of nodes to be vaccinated when
vaccines take a random amount of time in order to maximize the
total reward, which is the expected number of saved nodes. We
first provide a mathematical analysis for the reward function
of vaccinating an arbitrary number of nodes when there is a
single source of infection. While it is infeasible to obtain the
optimal solution analytically due to the combinatorial nature of
the problem, we establish that the problem is a monotone sub-
modular maximization problem and develop a greedy algorithm
that achieves a (1−1/e)-approximation. We further extend the
scenario to the ones with multiple infection sources and discuss
how the greedy algorithm can be applied systematically for the
multiple-source scenarios. We finally present extensive simulation
results to demonstrate the superiority of our greedy algorithm
over other baseline vaccination strategies.

I. INTRODUCTION

Epidemic models have been important mathematical tools
in analyzing the spread and control of epidemics with various
applications, ranging from infectious diseases to malware
propagation. Their importance has been evident in the COVID-
19 crisis. The spread of infectious diseases has been popularly
modeled via the compartment and metapopulation models [1],
[2], where each individual has equal chance to contact others
in the entire population or each subpopulation. On the other
hand, epidemic models on networks have been more actively
used to model malware propagation over networks [2]–[6]. The
Internet-connected devices are always exposed and vulnerable
to malware and worm attacks via not only their underlying
networks but also their users’ social networks.
Prior Work and Motivation: Most studies on epidemic mod-
els on networks have been concerned about the persistence and
extinction of the epidemics in their steady state. In other words,
their central question is under what conditions an epidemic
dies out quickly or lasts for a long period of time, or when
the desired steady state of extinction can be achieved. Ear-
lier studies established the epidemic threshold, below which
the epidemic dies out eventually over time, for susceptible-
infected-susceptible/removed (SIS/SIR) models and similar
variants [7]–[10]. It has then become the fundamental basis for
the development of countermeasures or vaccination policies by
manipulating the underlying network structure, e.g., removing
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k nodes or edges [11]–[13], or controlling epidemic param-
eters [4], [14] to achieve the ‘below-the-threshold’ condition
for the extinction of the epidemic.

While such a steady-state analysis has been crucial in epi-
demic modeling and control, it is also important to understand
the transient dynamics of epidemic spreading over a network.
In particular, when it comes to malware propagation, there is
a non-negligible amount of time for a patch or vaccine to
become available after the outbreak of an epidemic (virus
spread), during which only infections take place over the
network. It often remains unknown for a number of days
that such an attack has occurred, as is the case with ‘zero-
day’ attacks [15]. This observation has led to a recent study
on characterizing the transient dynamics of the susceptible-
infected (SI) model on a network [5].

Despite the abundant literature on epidemic modeling and
control, there is still an important yet overlooked component
in the development of vaccination policies. It is the presence
of another non-negligible amount of time for vaccines to come
into effect, even after the vaccines are available. While nodes
are vaccinated, they are not immediately immune, but they
are fully vaccinated after some amount of time. That is, the
nodes who are vaccinated yet in such an immunization process
are still vulnerable to infection. For example, the software
patching process often undergoes multiple rounds of software
installations with a possible failure in each round, which lead
to a non-negligible delay in the patching/vaccination pro-
cess [16]–[18]. In 2019, Google’s Project Zero [19] publishes
their tracking records for publicly known cases of detected
zero-day exploits, and the records indicate that it takes 15
days on average for vendors to patch a vulnerability that is
being used in active attacks. A recent study reveals that the
average time for companies to patch a vulnerability, or a CVE
(Common Vulnerability and Exposures), is 215 days [20]. In
addition, the two-dose vaccines against COVID-19 take two
weeks to fully kick in after the second dose [21].
Our Contributions: In this paper, we study the problem of
controlling the spread of a viral epidemic on a network when
vaccines take a non-negligible amount of time to take into
effect. Specifically, the problem is to determine which set of
nodes in a network to be vaccinated to maximize the total
reward, which is the expected number of saved nodes, when
vaccines take a (common) random amount of ‘immunization
time’ to take into effect. The epidemic spreading process
here is governed by the SI model, where there is no curing
process for infected nodes, while the healthy nodes who are
vaccinated and remain healthy for the immunization timeISBN 978-3-903176-57-7© 2023 IFIP



eventually become immune and non-infectious to others. In
other words, the vaccinated nodes can still be infected during
the immunization time.

We focus on the optimization problem under arbitrary tree
networks for rigorous mathematical analysis. It has a higher
reward to ‘save’ a node with more children and descendants,
which prevents infection from getting through, but such a node
can also be at higher risk of infection as it tends to be closer
to the source(s) of infection. In other words, the seemingly
important nodes if the vaccination takes effect immediately
may not be so important as it takes some non-negligible
amount of time for vaccines to be effective, in which case
they are more likely to end up getting infected before they
are fully immune. The characterization of the reward and the
risk of infection under a limited vaccine budget makes the
analysis non-trivial, as shall be shown in Sections III and
IV. In addition, it is worth noting that tree networks have
been similarly used in the literature for a relevant yet different
problem, which is to localize the source of a viral epidemic,
initially under the SI model with a single source [22], [23]
and then extended to other models and scenarios [24]–[26].

The main contributions of this work are as follows:
• First, we formulate the problem of minimizing the spread

of a viral epidemic, i.e., maximizing the number of saved
nodes (total reward), under the immunization delay and
limited vaccination budget constraints.

• Second, we provide a mathematical analysis for the reward
function of vaccinating a given number of nodes for the
case of a single infection source. We then prove that the
optimization problem is a monotone submodular maximiza-
tion problem and develop a greedy algorithm that achieves
a (1−1/e)-approximation.

• Third, we discuss how this greedy algorithm can be applied
to the scenarios with multiple infection sources.

• Finally, we present extensive simulation results to demon-
strate the superiority of our greedy algorithm over baseline
vaccination strategies under a wide range of scenarios.

II. NOTATION AND PROBLEM FORMULATION

Consider a connected tree graph G=(V,E) with |V |=n.
Let s ∈ V be the source of a viral epidemic that starts at time
0, which is assumed to be the root node of the tree graph G.
The epidemic spread is governed by the SI model in that an
infected node can infect each of its neighbors (children) with
infection rate λ. In other words, an infection from node i to its
child j takes place after an exponential amount of time with
mean 1/λ. Let di be the depth of node i, and let Zi be the
time until node i is infected. Then, we see that Zj=

∑di

j=1 Xj ,
where Xi is an i.i.d. copy of the exponential random variable
with rate λ. Also, let Ai be the set of ancestors of node i,
including its parent, and let Ni be the set of descendants of
node i with |Ni|=ni.

Let k be the number of available vaccines, or the vaccination
budget. k vaccinated nodes take a random amount of immu-
nization time, denoted by τ , to be fully immune and no longer

TABLE I
NOTATIONS

λ Infection rate
τ Immunization time for vaccines to take into effect
k Vaccination budget
di Depth of node i

Ai Set of ancestors of node i

Ni Set of descendants of node i

ni Number of descendants of node i, i.e., ni = |Ni|
Xj i.i.d copy of the exponential random variable with λ

Zi Time until node i is infected, i.e., Zi =
∑di

j=1 Xj

Ii Indicator variable that node i is immune after vaccination
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Fig. 1. An example to illustrate the notations.

infectious to others, given that they remain healthy during
the immunization time. In other words, vaccinated nodes are
still vulnerable to infection and can be infected during the
immunization time. Then, we see that the probability that node
i, when vaccinated, eventually becomes immune is P{Zi>τ},
which can be obtained by conditioning on Zi (or τ ). That is,
we have

P{Zi > τ} = E [P{Zi > τ |Zi}] .

For example, if τ is exponentially distributed with rate µ, we
have

P{Zi > τ} = 1− E
[
e−µZi

]
= 1−

(
λ

λ+ µ

)di

,

where the expectation is with respect to Zi, and the second
equality is from the Laplace transform of Zi=

∑di

j=1 Xj . We
also define Ii to be an indicator variable that node i becomes
immune when it is vaccinated, which is given by

Ii := 1{Zi > τ},
with E[Ii]=P{Zi>τ}. We collect all the notations in Table I.
See Figure 1 for an illustration, where di=2, ni=4, and Zi=
X1+X2, which follows the so-called Erlang-2 distribution.

For a given budget k, let r(S) denote the expected total
reward, i.e., the expected number of saved nodes, by vaccinat-
ing a node set S, where |S|=k. Our problem is then to find
which k nodes in G to be vaccinated to maximize the expected
total reward under the immunization delay constraint, which
is formally given as the following optimization problem:

P : S⋆ = argmax
S⊆V : |S|=k

r(S).

The first step to solving this problem is to characterize r(S)
in a closed form. Consider k = 1. Let Ri be the reward of
vaccinating node i, which is the total number of saved nodes
when node i is vaccinated and immune after the immunization



time τ . Then, we see that Ri=niIi, and

E[Ri] = niE[Ii] = niP{Zi > τ}. (1)

In other words, if node i is immune after τ , it is no longer
infectious to its children, thus preventing the epidemic from
getting through its descendants (including the children). Here
the number of its descendants is ni. Thus, we have the ex-
pected total reward r({i})=E[Ri]. While it is straightforward
to characterize r(S) for k = 1 as we have shown, it quickly
becomes non-trivial as the value of k increases. It is because
the expected total reward for k>1 cannot be simply written as
the sum of the expected rewards of vaccinating each individual
node assuming that k=1.

III. MAIN RESULTS

In this section, we first characterize r(S) for k = 2. We
then obtain a general expression for r(S) for any k≥ 1. We
next establish that P is a monotone submodular maximization
problem and finally propose a (1−1/e)-approximation greedy
algorithm for solving P .

A. Reward Function for k=2

Fix S={i, j}. Let RS be the total reward when nodes i and
j, or the node set S, are chosen to be vaccinated. Note that
r(S)=E[RS ]. To characterize RS and r(S), we can consider
the following two general cases based on where the two nodes
are on a tree.
Case (1): Ni ∩ Nj = ∅. This is the case when the set of
descendants of i, Ni, does not intersect the set of j, Nj . Since
Ni and Nj are the saved nodes when i and j are immunized,
respectively, the rewards from immunizing i and j can be
computed separately. They are just ni and nj , respectively.
We say that i and j are collateral in this case. Thus, we have

RS = ni1{Ii = 1, Ij = 0}+ nj1{Ii = 0, Ij = 1}
+ (ni + nj)1{Ii = 1, Ij = 1}.

Taking expectations yields

r(S) = niP{Zi>τ,Zj<τ}+ njP{Zi<τ,Zj>τ}
+ (ni + nj)P{Zi > τ,Zj > τ}

= niP{Zi > τ}+ njP{Zj > τ}. (2)

Note that Zi and Zj may be correlated as the path from the
root to i and the path to j may share a common edge.
Case (2): Ni∩Nj ̸= ∅. This is the case when the intersection
between the set of descendants of i and the one of j is
no longer empty. Thus, the rewards from immunizing i and
j cannot be computed separately. We say that i and j are
immediate in this case. Note that i and j may not be immediate
neighbor of each other (or they may not have a parent-child
relationship). Without loss of generality, suppose that i is j’s
ancestor. Then, i’s descendants include all j’s descendants.
Also, letting d be the number of edges from i to j, we see
that Zj=Zi+

∑d
l=1 Xl. Thus, to compute r(S), we only need

to consider the following two cases, regarding whether i and
j are finally immune after vaccination: a) i is immune, and b)
i is infected, but j is immune. In the former case, j is also

immune since Zi>τ implies Zj>τ , i.e., Ii=1 implies Ij=1.
Therefore, we have

r(S) = niP{Ii = 1}+ njP{Ii = 0, Ij = 1}
= niP{Zi > τ}+ njP{Zi < τ < Zj}
= (ni − nj)P{Zi > τ}+ njP{Zj > τ}, (3)

which is from P{Zi<τ <Zj}=1−P{Zi>τ}−P{Zj<τ}.

B. General Form of Reward Function

We next generalize the expressions of the expected total
reward r(S) in (2) and (3) for k=2 to the cases with k≥1. We
show that r(S) is in the form of a sum, where each summand
is for each node i in S. This summand involves the probability
that node i is finally immune after the immunization time and
another term involving the reward of immunizing i, which is
the number of its descendants, ni. This second term, however,
excludes the portion of i’s descendants that are saved by other
nodes that are in S and i’s descendants. This allows us to
compute r(S) correctly without double counting. Specifically,
we have the following result:

Theorem 1. The expected total reward of vaccinating each
node in S is

r(S) =
∑
i∈S

∣∣∣Ni \ ∪
j∈Ni∩S

Nj

∣∣∣P{Zi > τ}. (4)

From the fact that ∪
j∈Ni∩S

Nj ⊂ Ni, we can further write (4)
as

r(S) =
∑
i∈S

(
ni −

∣∣∣ ∪
j∈Ni∩S

Nj

∣∣∣)P{Zi > τ}. (5)

Proof (Sketch). Fix S. We first use the nodes in S to construct
one or multiple trees by creating edges between nearest ‘im-
mediate’ node pairs in S, while keeping their depth ordering.
Since nodes between different trees are ‘collateral’, the reward
function for each tree can be calculated individually and added
together in the end. See Figure 2(a) for an example, in which
case there are two trees created, and the nodes in one tree are
collateral to the ones in the other tree.

+

(a) (b)
Fig. 2. Recursive structure.

We next characterize the reward function of a tree formed
by a subset of S, say S0. Due to the recursive structure of a
tree, S0 can be written as S0 := {c0, L, S′}, where S0 contains
root node c0 and all its ‘children’, which can be either leaf
nodes L = {l1, l2, · · · , lx} or subtrees S′ = {S1, S2, · · · , Sy}.
See Figure 2(b) for an illustration. Note that each subtree has
the same recursive structure as the one of S0.

We start with a simpler case with S′
0 := {c0, L}. We here

characterize the reward function in this case. Let El be a
collection of all possible combinations of the immunization
states of all nodes in L. Note that |El| = 2x. For node li,
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Fig. 3. An example for characterizing the reward from vaccinating an arbitrary
node set.

let Oli denote that the vaccination of li is successful, i.e.,
Oli := {Zli > τ}. Then, we have

r(S′
0) = nc0P{Zc0 > τ,Ol1 , Ol2 , · · · , Olx}

+
∑
A∈El

(
x∑

i=1

1Oli
· nli

)
P{Zc0 < τ,A}

= nc0P{Zc0 > τ}+
x∑

i=1

nli

 ∑
B∈El∩Oli

P{Zc0 < τ,B}


= nc0P{Zc0 > τ}+

x∑
i=1

nliP{Zc0 < τ,Oli}

= nc0P{Zc0 > τ}+
x∑

i=1

nli (P{Zli > τ} − P{Zc0 > τ})

=

(
nc0 −

x∑
i=1

nli

)
P{Zc0 > τ}+

x∑
i=1

nliP{Zli > τ}

=

∣∣∣∣Nc0 \ ∪
j∈Nc0∩S′

0

Nj

∣∣∣∣P{Zc0 > τ}+
x∑

i=1

|Nli |P{Zli > τ}.

where the fourth equality can be shown by using the same
argument as used to obtain (3). It is clear that the expression
of r(S′

0) satisfies (4).
We can then extend the above arguments to characterize the

reward function for the case of S0 := {c0, L, S′} and show
that r(S) is given in (4).

Consider an example network with S = {a, b, c, d, e} in
Figure 3. We can see that the reward by saving a, or the reward
term for a in (5), does not include the descendants of nodes b
and c, i.e., Nb and Nc, respectively, to avoid double counting.
Note that the descendants of node e, Ne, are already excluded
as they are a subset of Nc. In addition, it is straightforward to
see that r(S) in (5) reduces to the expressions in (2) and (3)
for k=2 and also to the one in (1) for k=1.

While we can obtain a closed-form expression of r(S) in
(5) for any k≥1, it is infeasible to obtain the optimal solution
to P analytically. Since r(S) depends on the underlying
topology and the relationships among the nodes in S, we
need to evaluate r(S) for all possible choices of S. However,
it is quickly infeasible to explore the search space since(
n
k

)
=Θ(nk) easily becomes a prohibitively large number even

for a moderate k.

C. Submodularity of Reward Function

We next turn our attention to the characteristics of the set
function r in (5). We below show that r is non-negative, mono-
tone, and submodular, which implies that P is a monotone

submodular maximization problem. While it is straightforward
to see that r is non-negative, it is non-trivial to show its
monotonicity and submodularity.
Theorem 2. r is a monotone submodular function.
Proof (Sketch). Part I. We here show that r(S) is monotone.
Letting S⊆V and u∈V \S, we need to show that the marginal
gain is non-negative, i.e., ∆(S, u) := r(S ∪ {u})− r(S) ≥ 0,
for all S and u. Observe that

∆(S, u) =
∑

i∈S∪{u}

(
ni −

∣∣∣ ∪
j∈Ni∩(S∪{u})

Nj

∣∣∣)P{Zi > τ}

−
∑
i∈S

(
ni −

∣∣∣ ∪
j∈Ni∩S

Nj

∣∣∣)P{Zi > τ}

=

(
nu −

∣∣∣ ∪
j∈(Nu∩S)∪(Nu∩{u})

Nj

∣∣∣)P{Zu > τ}

−
∑
i∈S

(∣∣∣ ∪
j∈(Ni∩S)∪(Ni∩{u})

Nj

∣∣∣− ∣∣∣ ∪
j∈Ni∩S

Nj

∣∣∣)P{Zi>τ}.

(6)

(i) S ∩ Au = ∅: We have Ni ∩ {u} = ∅ for all i ∈ S, which
implies that u is not i’s descendant. Then, we have∣∣∣ ∪

j∈(Ni∩S)∪(Ni∩{u})
Nj

∣∣∣ = ∣∣∣ ∪
j∈(Ni∩S)∪∅

Nj

∣∣∣ = ∣∣∣ ∪
j∈Ni∩S

Nj

∣∣∣.
Since Nu ∩ {u} = ∅, and from (6), we finally have

∆(S, u) =

(
nu −

∣∣∣ ∪
j∈Nu∩S

Nj

∣∣∣)P{Zu > τ} > 0. (7)

(ii) S ∩Au ̸= ∅: If Ni ∩ {u} = ∅ for all i ∈ S, then we have
∆(S, u) > 0, as shown above. We thus here focus on the case
when Ni∩{u} ≠ ∅, in which case Ni∩{u} = {u}. Note that
u is i’s descendant, and i is u’s ancestor, i.e., i ∈ Au. We can
then show that

∆(S, u) =

(
nu −

∣∣∣ ∪
j∈Nu∩S

Nj

∣∣∣)P{Zu > τ}

−
∑

i∈S∩Au

(
nu −

∣∣∣Nu ∩ ∪
j∈Ni∩S

Nj

∣∣∣)P{Zi > τ}. (8)

Let v be u’s ‘closest’ ancestor in S, i.e., there is no node in
S that is the ancestor of u and the descendant of v. We now
consider the following two cases for the second term in (8).
(ii-a) Case when there exists node i ∈ S∩Au such that i ̸= v:
Observe that Nv ⊆ ∪

j∈Ni∩S
Nj . Since Nu ⊆ Nv , we have

Nu ⊆ ∪
j∈Ni∩S

Nj , which implies that Nu ∩ ∪
j∈Ni∩S

Nj = Nu.

Thus, the second term in (8) becomes zero. It follows from
(7) that ∆(S, u) > 0.
(ii-b) Case when S ∩Au = {v}: Observe that

Nu ∩ ∪
j∈Nv∩S

Nj = Nu ∩ ∪
j∈({u}∪Nu∪(Nv\{u}\Nu))∩S

Nj

= Nu ∩
(

∪
j∈Nu∩S

Nj ∪ ∪
j∈(Nv\{u}\Nu)∩S

Nj

)
=

(
Nu ∩ ∪

j∈Nu∩S
Nj

)
∪
(
Nu ∩ ∪

j∈(Nv\{u}\Nu)∩S
Nj

)
= Nu ∩ ∪

j∈Nu∩S
Nj , (9)



where the last equality holds due to the fact that Nu ∩
∪

j∈(Nv\{u}\Nu)∩S
Nj = ∅, since u and j are collateral for

all j ∈ Nv \ {u} \Nu. Then, from (9), we can show the
following: If Nu ∩ S = ∅, then we have

∆(S, u) = nu

(
P{Zu > τ} − P{Zv > τ}

)
.

Also, if Nu ∩ S ̸= ∅, then we have

∆(S, u)=

(
nu−

∣∣∣ ∪
j∈Nu∩S

Nj

∣∣∣)(P{Zu>τ} − P{Zv>τ}
)
.

(10)
Since nu ≥

∣∣∣ ∪
j∈Nu

Nj

∣∣∣+ 1, we have nu −
∣∣∣ ∪
j∈Nu∩S

Nj

∣∣∣ > 0.

Also, since v is u’s ancestor, we have Zv < Zu almost surely,
thereby leading to P{Zu > τ} > P{Zv > τ}. Thus, we have
∆(S, u) > 0.

Therefore, from (i) and (ii), it follows that ∆(S, u) > 0.

Part II. We next show that r(S) is submodular. Fix S1 ⊆ S2 ⊆
V and u ∈ V \S2. We need to show that ∆(S1, u) ≥ ∆(S2, u).
To this end, we need to consider the following three cases:

(i) S1 ∩ Au ̸= ∅ and S2 ∩ Au ̸= ∅: Let v1 be u’s closest
ancestor in S1, and let v2 be u’s closest ancestor in S2. By
following a similar argument as used to derive (10), we can
show that

∆(S1, u)=

(
nu−

∣∣∣ ∪
j∈Nu∩S1

Nj

∣∣∣)(P{Zu > τ}−P{Zv1 > τ}
)
.

Similarly for ∆(S2, u). We can see that dv1 ≤ dv2 due to the
possible closer ancestor of u than v1 from S2\S1. Since v1 and
v2 are both u’s ancestors, they are immediate. Thus, we have
Zv1 < Zv2 almost surely, thus implying that P{Zv2 > τ} >
P{Zv1 > τ}. In addition, since ∪

j∈Nu∩S2

Nj = { ∪
j∈Nu∩S1

Nj}∪
{ ∪
j∈Nu∩{S2\S1}

Nj}, we have ∪
j∈Nu∩S1

Nj ⊆ ∪
j∈Nu∩S2

Nj . Thus,

we have nu−
∣∣∣ ∪
j∈Nu∩S1

Nj

∣∣∣ ≥ nu−
∣∣∣ ∪
j∈Nu∩S2

Nj

∣∣∣. As a result,

∆(S1, u) ≥ ∆(S2, u).

(ii) S1 ∩Au = ∅ and S2 ∩Au = ∅: We can show that

∆(S1, u) =

(
nu −

∣∣∣ ∪
j∈Nu∩S1

Nj

∣∣∣)P{Zu > τ}.

Similarly for ∆(S2, u). By using a similar argument as the
one for case (i), we have ∆(S1, u) ≥ ∆(S2, u).

(iii) S1 ∩Au = ∅ and S2 ∩Au ̸= ∅: We can show that

∆(S1, u) =

(
nu −

∣∣∣ ∪
j∈Nu∩S1

Nj

∣∣∣)P{Zu > τ},

∆(S2, u)=

(
nu−

∣∣∣ ∪
j∈Nu∩S2

Nj

∣∣∣)(P{Zu>τ}−P{Zv2 >τ}
)
.

By using a similar argument as the one for case (i), we have
∆(S1, u) > ∆(S2, u). Therefore, we complete the proof of
∆(S1, u) ≥ ∆(S2, u).

D. Greedy Algorithm

Thanks to the nice properties of r, we are able to develop
a greedy algorithm for solving P , which is summarized
in Algorithm 1. For any given budget k, it is, in essence,

Algorithm 1: Greedy Algorithm
Input : V , budget k
Output: S

1 S ← ∅
2 while |S| ≤ k do
3 for u ∈ V \ S do
4 if S ∩Au = ∅ then

5 ∆(S, u) =

(
nu −

∣∣∣ ∪
j∈Nu∩S

Nj

∣∣∣)P{Zu > τ}

6 else
7 v ← argmax

v∈S∩Au

dv

8 ∆(S, u) =

(
nu −

∣∣∣ ∪
j∈Nu∩S

Nj

∣∣∣)(
P{Zu > τ}

− P{Zv > τ}
)

9 u∗ ← argmax
u∈V \S

∆(S, u)

10 S ← S ∪ {u∗}

to find node u∗ that maximizes the marginal gain ∆(S, u)
every iteration until the size of the resulting set S becomes
k. Therefore, this algorithm naturally achieves a (1−1/e)-
approximation performance guarantee. While we refer to the
proof of Theorem 2 for more details, we note that ∆(S, u)
has two possible expressions, which are given in Line 9 and
Line 12 in Algorithm 1, respectively. An expression is chosen
depending on whether the (growing) set S and the set of
ancestors of u, Au, have a non-empty intersection or not. Note
that, in addition to the set Ai, the depth of node i, di, is also
needed in Algorithm 1.

Corollary 1. Our greedy algorithm in Algorithm 1 achieves
a (1−1/e)-approximation to the optimal solution of P .

Proof. This result follows from Theorem 2 and [27].

IV. DISCUSSIONS ON MULTIPLE-SOURCE SCENARIOS

In this section, we discuss how our greedy algorithm can be
applied to the scenarios with multiple infection sources. We
observe that with a proper transformation of the underlying
tree structure, the cases with multiple sources can boil down
to three fundamental cases.

Before going into the details of each fundamental case, we
consider the scenario where the infection source is not the
root node of a tree. In this case, we can easily transform the
tree into another one having the source of infection as the
root while updating the parameters based on the structure of
the transformed one. See Figure 4 for an illustration on this
transformation. Thus, our discussion below is done based on
the (transformed) tree whose root is a source of infection in
addition to other sources.

A. Disconnected Trees with Different Sources

We first consider the case where there are two disconnected
trees, each of whose root is the source of infection for each
tree. The propagation of infection over each tree is also
governed by the SI model with the same infection rate λ. Let
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Gi=(Vi, Ei), i=1, 2, denote each disconnected tree. We can
then write the expected total reward r(S) as follows:

r(S) = rG1
(S1) + rG2

(S2) = rG1
(S) + rG2

(S), (11)

where S=S1 ∪ S2, S1⊆V1, and S2⊆V2. From Theorem 2,
we know that rG1(S1) is submodular. Since a sum of two
submodular functions is also submodular, r(S) in (11) is a
submodular function. Similarly for the monotonicity. Thus, we
can use Algorithm 1 as follows.

In the first iteration, we run Algorithm 1 on G1 and
G2 independently to find candidate nodes u∗

1 and u∗
2 along

with their corresponding maximum marginal gains ∆(S1, u
∗
1)

and ∆(S2, u
∗
2), respectively. We then compare the values

of ∆(S1, u
∗
1) and ∆(S2, u

∗
2), and add u∗ that leads to a

larger gain into the node set S for vaccination. We next run
Algorithm 1 on the tree where u∗ comes from, to find a new
candidate node. We compare this new candidate node with
the one with a smaller gain in the previous iteration. Again,
the candidate node that gives a larger marginal gain in this
iteration is added into S. We repeat the above process until
the size of S reaches k.

This argument can be readily extended to the cases with
three or more disconnected trees having their roots as the
infection sources. In other words, we just need to run Algo-
rithm 1 on each tree individually to update a candidate node
and select the one for S that leads to the largest marginal gain
across the trees in each iteration. This process is repeated until
the size of S equals k.

B. Connected Multiple Sources

The next fundamental case is when there are multiple
initially infected nodes and they form a (sub)tree. This case
would correspond to the following scenario: The spread of a
viral epidemic starts from the root, and it lasts for a certain
amount of time, so there are multiple infected nodes. Since
then, k vaccines are available. In other words, the ‘vaccine
intervention’ takes place after some initial delay (until vaccines
are available). Note that there still exists the immunization
time τ after which the vaccines come into effect.

Observe that the epidemic continues to spread over the tree
from ‘frontier’ infected nodes, which are the leaf nodes of a
tree made by the initially infected nodes. Let G′ be the tree
by the initially infected nodes (multiple infection sources). We
first remove all the edges in G′ from the original tree G, which
are the edges among the initially infected nodes. Then, G can
be split into a set of trees in each of which the root is a source
of infection while other nodes, if any, are healthy nodes. We
provide an example in Figure 5, where the highlighted edges

Fig. 5. Infected nodes (sources) form a tree.

+ + +

Fig. 6. Distant infection sources.

in G′ are removed, leading to three (sub)trees G1, G2, and
G3. Hence, this second case now boils down to the case in
Section IV-A, in which there are multiple disconnected trees,
each of whose root is the (only) source of infection for each
tree. We can then apply our greedy algorithm in Algorithm 1
as explained above.

C. Distant Multiple Sources

The last fundamental case is when there are multiple sources
in a tree that are possibly distant from each other while one
of them is the root of the tree. In this case, we divide the
tree into multiple subtrees as follows. First, for each source
of infection, we extract a subtree whose root can be the
source while the other nodes are healthy. This process leads to
multiple disconnected trees, each of whose root is the source
of infection for each tree. During the process, we also replicate
the source nodes, i.e., they remain in the tree after the removal
of each subtree. Once it is done, the remaining nodes of the
tree form a subtree or multiple ones, where healthy nodes
can now be infected by multiple sources. See Figure 6 for
an illustration. While we can handle the former case with
the disconnected trees in the same way as we explained in
Section IV-A, we below propose an heuristic approach for the
latter case.

Suppose that we have a tree G′ with m multiple sources
that we cannot further divide into smaller subtrees in the way
as mentioned above. This is the case with the last subtree in
Figure 6, where m=2. Let Vs :={s1, s2, ..., sm} be the set of
m infection sources. For source si, we then build a separate
single rooted tree, say G′

si , having the source as its root while
other sources are removed. See Figure 6 (the last process) for
an illustration. We assume that the propagation of infection
takes place over each tree independently, and a susceptible
node is infected as long as it is infected in one of the trees.
Using this assumption and inspired by the expression of r(S)
in (5), we define the following new reward function:

r′(S) :=
∑
i∈S

|N ′
i \ ∪

j∈N ′
i∩S

N ′
j |
∏
s∈Vs

P(Zs
i > τ), (12)

where N ′
i := ∩

s∈Vs

Ns
i , with Ns

i being the set of descendants of

node i in G′
s (with root s), and Zs

i is the time until node i is
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Fig. 7. Impact of the expected immunization time E[τ ] under random binary trees with different sizes.

infected in G′
s. Then, we can here use our greedy algorithm

in Algorithm 1, but with r′(S) in (12) instead of r(S) in (5).

V. NUMERICAL SIMULATIONS

In this section, we present extensive simulation results to
demonstrate the efficacy of our greedy algorithm compared
to four baseline vaccination strategies. We focus on general
random trees, over each of which an epidemic starts from
its root node. Specially, we evaluate the performance of
the vaccination policies under random trees with different
distributions on the number of children per node and random
binary trees.

A. Simulation Setup

We first explain how we generate random trees and random
binary trees. We use the standard Galton-Watson branching
process to generate a rooted random tree. Given a root node as
the starting point, we connect η children to the root, where η is
an independent random variable with a probability distribution
P{η = i}. Assuming that the root has a child or multiple
children, we independently connect η children to each child
of the root. We repeat this process recursively to grow the tree
until its size reaches a preset value. If the size of a generated
tree does not reach the preset value, we discard the tree and
restart the above process to regenerate a new one. For general
random trees, we consider that η has a Poisson or uniform
distribution with mean E[η]>0. For random binary trees, we
consider the following distribution for η: P{η = 0} = 1/6,
P{η=1}=1/6, and P{η=2}=4/6.

The simulation parameters are set up as follows. We set the
infection rate λ=1, which means that the expected infection
time 1/λ from a node to its child is a unit of time. We consider
that the immunization time τ is exponentially distributed with
rate µ. We choose the values of µ such that the expected
immunization time E[τ ]=1/µ ranges from two units of time
to ten units of time. We also vary the value of the vaccination
budget k from 1 to 10. The size of each tree, which is either
a random tree or a random binary tree, ranges from n=102

to n=104. For each size, we generate ten trees and simulate
the epidemic spreading process 103 times on each tree. All
reported results are based on the average value over 103 runs.
To see the impact of each parameter on the performance of
vaccination strategies properly, when we vary the value of a
parameter, we set the values of all the other parameters to
be the same in the simulations. We use the following default
settings, unless otherwise specified: The tree size is n=103,
the expected immunization time is E[τ ]=10 units of time, the

vaccination budget k=5, and the expected number of children
of each node in random trees is E[η]=3.

We next explain the baseline vaccination strategies. For
the case of random binary trees, we consider three baseline
policies to select a set of k nodes to be vaccinated. It is clear
that the number of descendants of a node plays an important
role in contributing to the expected total reward, as can be
seen from (5) and our greedy algorithm. We thus consider
a baseline policy named ‘top-k descendants’ to select the
top k nodes that have the largest numbers of descendants
for vaccination. Another baseline policy is to select the top
k nodes that are nearest neighbors (NNs) to the source of
infection, which is equivalent to selecting the top k nodes
with the lowest depth from the root. We name this policy as
‘top-k NNs’. We also consider a baseline policy named ‘top-
k frontiers’ that takes both the immunization time τ and the
number of descendants into account. It selects the top k nodes
that have the largest numbers of descendants for vaccination
among the nodes which are E[τ ] or more layers away from the
source of infection (the root). For the case of random trees,
we consider one more baseline policy besides the above three
policies, namely ‘top-k children’. The intuition is to select
the top k nodes with the largest numbers of children as a
(parent) node in a random tree can have an unlimited number
of children, and they all can be saved upon the immunization
of that parent node.

B. Simulation Results
We first provide the simulation results for the case of

random binary trees. We evaluate the performance of our
greedy algorithm and three baseline methods by examining
the impacts of the expected immunization time E[τ ], the
vaccination budget k, and the tree size n on the total number
of saved nodes in the end.

We present the fraction of saved nodes (to the tree size) by
each vaccination policy with varying expected immunization
time in Figure 7. We here report the results when the tree sizes
are 100, 500, and 1000. While the fraction of saved nodes
increases regardless of vaccination strategies as the expected
immunization time E[τ ] decreases, our greedy algorithm out-
performs the baseline strategies for all test cases. As shown in
Figure 7, the (average) improvements of our greedy algorithm
over top-k descendants, top-k NNs, and top-k frontiers are up
to 35.6%, 81.4%, and 983%, respectively, which are achieved
when E[τ ]=10 and n=100. In particular, the top-k frontiers
achieves poor performance when E[τ ]=10, because the nodes
whose depths are close to E[τ ] may not have enough descen-
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Fig. 8. Impact of the vaccination budget k under random binary trees with different sizes.
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Fig. 9. Fraction of saved nodes when the size of a random binary tree changes.
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Fig. 10. Fraction of saved nodes with varying expected immunization time
E[τ ] under random trees.

dants and thus contribute little to the final reward. In addition,
we report in Figure 8 the fraction of saved nodes when we
change the vaccination budget from k=1 to k=10, while the
expected immunization time remains the same as E[τ ] = 10.
The tree sizes are 100, 500, and 1000. Again, our greedy
algorithm shows superior performance to the other baseline
strategies. We further evaluate the performance of vaccination
policies in the fraction of saved nodes when the tree size varies
from n= 102 to n= 104. We report the results in Figure 9,
where the vertical line on the top of each bar indicates the
95% confidence interval. Our greedy algorithm again exhibits
superior performance to other policies, regardless of the tree
size, with an improvement up to 325%.

We next turn our attention to the performance evaluation
of our greedy algorithm and four baseline policies for the
case of random trees. We examine the impacts of the expected
immunization time E[τ ], the vaccination budget k, the average
number of children E[η], and the tree size n on the total
number of finally saved nodes for each vaccination strategy.
As mentioned before, we consider the uniform and Poisson
distributions for the number of children η per node.

In Figure 10, we present the simulation results to see the
impact of the expected immunization time E[τ ] on the total
number of saved nodes. The results manifest the superiority
of our greedy algorithm over all four baseline policies. We
also see that the performance of each vaccination strategy
improves as the expected immunization time E[τ ] decreases.
Figure 11 shows the impact of the budget k on the performance
of vaccination policies, while Figure 12 indicates how the
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Fig. 11. Fraction of saved nodes with different values of the budget k under
random trees.
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Fig. 12. Average fraction of saved nodes with different choices of E[η] under
random trees.

average number of children E[η] affects the performance of
each policy. The results again confirm the superiority of our
algorithm over the baseline policies. It is also worth noting that
the performance of each policy deteriorates as E[η] increases,
and the performance gap between our greedy algorithm, top-
k descendants, and top-k NNs decreases with increasing the
value of E[η]. We observe that when E[η] increases, the height
of each resulting tree becomes smaller (the tree becomes
‘wider’) as the tree size remains fixed. Therefore, with the
same vaccination budget k=5, the set of nodes for vaccination
by each policy becomes overlapped with the ones from other
policies.

We finally show in Figure 13 how the tree size affects
the performance of vaccination policies. Our greedy algorithm
again turns out to be substantially better than the baseline poli-
cies. We also observe that our algorithm, top-k descendants,
and top-k NNs show more or less consistent performance over
different tree sizes. The top-k frontiers achieves the worst
performance since the small height of random trees limits the
number of saved nodes by the policy. While top-k children
achieves the second worst performance, its performance gets
worse when the tree size increases under random trees with
η having a Poisson distribution. For large trees, the top-k
nodes with the largest numbers of children could be too far
from the root node, implying that they could have only few
descendants despite their many (direct) children. Thus, the
benefit of vaccinating them could be quite limited as the
number of saved nodes by them would be mostly limited to
their children.
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Fig. 13. Average fraction of saved nodes with varying sizes of random trees.

In summary, the “top-k children” policy often exhibits bad
performance as it is a source-agnostic strategy. As explained
before, it often ends up choosing a set of nodes for vaccination,
which are either infected during the immunization time or
have a limited benefit in saving (non-direct) descendants,
despite the large numbers of their children. The “top-k NNs”
policy is a source-aware strategy, but it is most effective in
controlling the propagation of infection at an early stage as
it chooses the nodes that are k nearest neighbors of the root.
Thus, it leads to poor performance when the immunization
time/delay is longer. Despite the fact that “top-k frontiers”
is a heuristic policy that seeks for the largest reward from
vaccination while taking the expected immunization time into
account, it does not consider the underlying structure of the
tree network and fails to capture the essence of the epidemic
propagation on the network, thereby leading to unsatisfactory
performance. In particular, it exhibits poor performance on
random graphs with relatively large average node degrees, and
its performance varies significantly over different values of the
expected immunization time.

In addition, the “top-k descendants” policy often achieves
better performance than the other baseline policies as the set
of nodes chosen for vaccination can save their all descendants
as long as they are immune after the immunization time.
However, it fails to capture the risk of infection of each node
during the immunization time. It is also not able to take into
account the overlaps between the sets of descendants of the
target nodes for vaccination, which would be better avoided.
In contrast, our greedy algorithm is able to capture both the
reward after immunization and the risk of infection during the
immunization time. The reward is also computed by taking
into account the overlaps between the sets of descendants of
the target nodes for vaccination. Hence, it achieves the superior
performance over the other policies.

VI. CONCLUSION

We have studied the problem of controlling the spread of a
viral epidemic in an arbitrary tree network with a limited vac-
cination budget when vaccines take a non-negligible amount
of time to come into effect. We were able to show that the
problem is a monotone submodular maximization problem and
developed a (1− 1/e)-approximation greedy algorithm. We
further presented its extension to the scenarios with multiple
infection sources. Extensive simulation results under a wide
range of scenarios demonstrated the superior performance
of our greedy algorithm over other baseline strategies. We
believe that our work provides a first step toward the design
of vaccination strategies under realistic delay constraints.
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