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Markov Chain Monte Carlo (MCMC) has been the de facto technique for sampling and inference of large

graphs such as online social networks. At the heart of MCMC lies the ability to construct an ergodic Markov

chain that attains any given stationary distribution π , often in the form of random walks or crawling agents

on the graph. Most of the works around MCMC, however, presume that the graph is undirected or has re-

ciprocal edges, and become inapplicable when the graph is directed and non-reciprocal. Here we develop a

similar framework for directed graphs, which we call Non-Markovian Monte Carlo (NMMC), by establishing

a mapping to convert π into the quasi-stationary distribution of a carefully constructed transient Markov

chain on an extended state space. As applications, we demonstrate how to achieve any given distribution π

on a directed graph and estimate the eigenvector centrality using a set of non-Markovian, history-dependent

random walks on the same graph in a distributed manner. We also provide numerical results on various

real-world directed graphs to confirm our theoretical findings, and present several practical enhancements

to make our NMMC method ready for practical use in most directed graphs. To the best of our knowledge,

the proposed NMMC framework for directed graphs is the first of its kind, unlocking all the limitations set

by the standard MCMC methods for undirected graphs.
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1 INTRODUCTION

Markov Chain Monte Carlo (MCMC) is a general technique for sampling from an arbitrary prob-
ability distribution by constructing a Markov chain that achieves the target distribution as its
stationary distribution [47]. By definition, every MCMC method requires the so-called balance
condition, i.e., π (j) = ∑

i π (i)Pi j for all j , where Pi j is the transition probability from state i to j

and π = [π (1),π (2), . . . , π (n)] is the stationary distribution. Most popular MCMC methods such
as Metropolis-Hastings algorithm and Gibbs sampler, often referred to as Glauber dynamics, how-
ever, require a simple yet more restrictive condition, called detailed balance condition, i.e., π (i)Pi j =
π (j)Pji for all i, j [38, 47, 56]. The detailed balance condition is generally preserved under a pro-
posal and acceptance framework for state transitions. Assuming the current state i , a transition
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to state j is proposed with probability Qi j , which is the transition probability of an irreducible
(proposal) Markov chain, and then accepted with acceptance probability γi j . This two-step pro-
cess ensures the convergence to the desired stationary distribution π via achieving the detailed
balance condition, i.e., π (i)Qi jγi j =π (j)Q jiγji for all i, j

1. The detailed balance condition imposes
a serious restriction, named ‘reciprocity’ condition, that Qi j >0 if and only if Q ji >0 [26, 47].
The detailed balance condition is a local condition that eases the construction of a Markov chain

in MCMC methods, but is also criticized as a source of slow convergence to equilibrium and high
sampling variability because every transition should be balanced out with its reverse transition.
Thus, some recent advances in MCMC methods have been made to remove the requirement of
the detailed balance condition in order to accelerate the convergence speed or improve sampling
efficiency. A popular class of strategies is to transform a given reversible Markov chain to its related
nonreversible chain by using the idea of lifting [22, 24, 29, 62, 63, 68, 74], nonbacktracking [2, 25, 51],
or vorticity [12, 23, 41, 42, 57, 66]. The former two ideas are based on expanding the state space to
give rise to persistence of motion or directionality in state transitions. The other idea is that for
the transition matrix of a given reversible chain, which is symmetric with respect to π , a proper
antisymmetric matrix with π (or more matrices) is added to introduce a non-trivial probability flux
flowing over a cycle in one direction. They all, however, require the reciprocity condition, which
is carried over from the original reversible chain before the transformation.
On the other hand, MCMC also fits into the problem of sampling from a target probability dis-

tribution over a large, unknown graph, or a huge state space whose exploration can only be done
by traversing along the edges between nodes (states). The sampling problem with such limited ac-
cess to the space often arises when sampling and estimating structural properties of various types
of large networks, including peer-to-peer networks and online social networks, whose complete
information is generally unavailable in advance. MCMC has then been a key enabler to obtain a
sequence of samples by constructing an ergodic Markov chain or ‘random walk’ on a given graph,
whose equilibrium distribution equals the target distribution, with only a limited and local knowl-
edge of the graph structure [5, 32, 37, 44, 45, 58, 65, 76–79].
Most of the MCMC methods for constructing random walks on graphs, however, become in-

applicable to directed graphs, though many real-world networks can still only be represented by
directed graphs [28, 52, 53, 67]. The famous examples are Web graphs, online social networks hav-
ing follower-followee relationship, neuronal and metabolic networks, to name a few. The directed
graphs naturally violate the reciprocity condition, i.e., there is at least one directed edge (i, j) for
which Qi j > 0 but Q ji = 0 due to the absence of its reverse directed edge (j, i). The lack of reci-
procity condition simply prohibits us from using the usual MCMC methods and even obtaining a
closed-form expression of the stationary distribution of a given Markov chain on a directed graph.
Thus, the stationary distribution has been merely estimated based on the visit counts obtained by
running the Markov chain on a directed graph without knowing the explicit form of the distribu-
tion [6, 40, 61]. This is also the very reason why popular social-network-analysis metrics defined
on a directed graph such as PageRank and eigenvector centrality are generally computed and es-
timated by the power method, assuming that a global knowledge of the whole graph structure is
available a priori [53].

1While the proposal and acceptance framework is mostly used for theMetropolis-Hastings algorithm, (random scan) Gibbs

sampler also fits into the framework where the conditional distribution of the Gibbs sampler is considered as the proposal

distribution along with the acceptance probability of one. In this sense, the Gibbs sampler is a special case of theMetropolis-

Hastings algorithm. Furthermore, when it comes to binary spin systems, it is essentially the Barker’s method [8] that was

compared with the Metropolis algorithm under the proposal and acceptance framework in [38, 56].
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In this paper, we present a general algorithmic framework called Non-Markovian Monte Carlo
(NMMC) that constructs a set of non-Markovian random walks whose historical empirical distri-
bution converges to any desired probability distribution π over a directed, non-reciprocal graph,
using only local information on the graph structure. Themain idea is to establish a non-trivial map-
ping to convert the desired distribution into the so-called quasi-stationary distribution (QSD) of a
duly constructed transient Markov chain on an extended state space. We then leverage history-
dependent random walks or reinforced walks to estimate the QSD “on the fly”, which does not
require the entire topological information. This novel construction leads to a large degree of free-
dom and does not require the reciprocity condition that has been implicitly or explicitly assumed
in almost all MCMC methods, and thus makes our approach the only viable solution to directed
graphs. As a byproduct, our NMMC framework also allows us to estimate the eigenvector central-
ity of a given directed graph, one of the keymetrics used in ranking or identifying influential nodes
in epidemics or information spreading, by using the same set of history-dependent random-walk
crawling agents.
The rest of this paper is structured as follows. In Section 2, we collect several terms and defini-

tions on nonreversible Markov chains on directed graphs as well as on the eigenvector centrality
(EVC) of a directed graph, to be used throughout the paper. In Section 3, we provide necessary
background on the QSD, its key properties and characterizations, and then formally establish a
mapping to convert a given distribution π and the EVC of a graph into the QSD of a carefully con-
structed transient Markov chain. In Section 4, we first explain recent developments in the literature
to estimate the QSD and then build our NMMC method with theoretical guarantees to achieve a
givenπ and to estimate the EVC using random crawlers on directed graphs.We also discuss several
ways to improve the speed of convergence and the practicability including dynamically adjusted
algorithmic parameters based on run-time estimates on the fly. Section 5 presents our extensive
simulation results using a set of real-life directed graphs to numerically support our theoretical
findings. In Section 6, we thoroughly compare our NMMCmethod to the relevant literature, rang-
ing from the traditional MCMCmethods to the PageRank algorithm.We also present how to relax
(potentially impractical) assumptions with our NMMC method, which require the in-degree in-
formation and the strong connectedness of the underlying directed graph, and demonstrate the
feasibility of our NMMC method as a truly working solution to most directed graphs in practice.
We provide related prior studies around sampling of directed graphs in Section 7 and conclude
with a brief summary capturing our novel contributions in Section 8.

2 PRELIMINARIES

2.1 Nonreversible Markov Chains on Directed Graphs

Let G= (N, E) be a finite, aperiodic, strongly connected graph with a set of nodesN = {1, 2, . . . ,n}
and a set of directed edges E. The graphG is defined by an n×n adjacencymatrixA, with elements
Ai j = 1 if there is an edge from node i to j (directed), i.e., (i, j) ∈ E, and Ai j = 0 otherwise. Here A
is asymmetric, namely, there is at least one directed edge (i, j) for which Ai j = 1 but Aji = 0 (non-
reciprocal). Let d+i =

∑

j∈N Ai j be the out-degree of node i , i.e., the number of out-bound edges
emanating from i . Similarly, let d−i =

∑

j∈N Aji be the in-degree of node i (the number of edges
pointing to node i). We shall demonstrate how the ‘strong connectedness’ of the underlying graph
G can be relaxed in Section 6.4.
Consider an ergodic Markov chain on N with its transition matrix Q= [Qi j ] such that Qi j > 0

for every (i, j) ∈ E, or Ai j = 1, which is irreducible and aperiodic on N . The irreducibility of Q
is granted from the connectivity of the graph G, or the irreducibility of the adjacency matrix A,
in that for any i, j ∈ N , there exists a path following directed edges from i to j , i.e., there exists
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k > 0 with [Ak ]i j > 0. Similarly for the aperiodicity of Q. Then, since A is asymmetric, the ergodic
Markov chain is nonreversible without satisfying the reciprocity condition. Its unique stationary
distribution µ = [µ(1), µ(2), · · · , µ(n)], which satisfies µ(j) = ∑

i ∈N µ(i)Qi j for all j ∈ N , is also
simply unknown for a general graph G. For example, if we define a simple random walk on G, it
is an ergodic, nonreversible Markov chain on N with its transition matrix Qsrw

= [Qsrw
i j ] given by

Qsrw
i j =Ai j/d+i , whered+i >0 for all i . There is, however, no closed-form expression of the stationary

distribution µ for the simple random walk on a general directed graph.

2.2 Eigenvector Centrality

In addition to sampling from a target probability distribution π on a directed graph, another metric
of interest to estimate on the directed graph is the so-called eigenvector centrality (EVC). Specif-
ically, the EVC of node i ∈N , say x(i), represents the notion of importance (centrality) of node i
and is proportional to the sum of the EVC values of nodes pointing to i , i.e.,

∑

i ∈N
x(i)Ai j = λx(j) for all j ∈ N ⇐⇒ xA = λx, (1)

with some positive constant λ > 0, where x is a row vector x = [x(1),x(2), · · · , x(n)]. Since the
adjacency matrix A is irreducible, the Perron-Frobenius theorem [50] asserts that there exists a
unique solution x to (1), which is the left leading eigenvector of A with all positive entries x(i)>0,
i = 1, 2, . . . ,n, corresponding to the largest eigenvalue λ = λ(A) > 0, i.e., the spectral radius of
A. Throughout this paper, we refer to this left leading eigenvector x as the EVC of A. Since βx

(β , 0) can also be a leading eigenvector for λ(A), we also assume that x is normalized such that
∑

i ∈N x(i)=1.
The EVC finds many important applications. It has been playing a crucial role in ranking nodes

in social network analysis and identifying influential nodes (users) in epidemics or information
spreading [18, 19, 28, 48, 53], and the reciprocal of its corresponding eigenvalue 1/λ(A) is known
to be the epidemic threshold of a general graph for SIR/SIS epidemic processes [20, 21, 27, 31, 72].
Again, we note that there is no closed-form expression of the EVC x. While the EVC has also been
used as a main kernel for the maximal entropy random walk in the statistical physics [17, 64], its
practical construction based only on local information still remains an open issue.
Even worse, unlike the stationary distribution µ of an ergodic Markov chain, e.g., the simple

random walk, satisfying µ=µQ with its (stochastic) transition matrix Q, the EVC x in (1) cannot
be made as a stationary distribution of an ergodic Markov chain (or a random walk) unless the
adjacency matrix A can be made stochastic by some constant multiple, i.e., d+i =d for all i . Even if
this is the case, the solution x to (1) defies any closed-form expression since the in-degrees d−i can
be all different, reducing to the same situation with an ergodic Markov chain on a directed graph
whose stationary distribution µ is unknown. Thus, the only viable approach to compute the EVC
x is again to rely on the power method for which the entire adjacencymatrixA needs to be known
a priori. To the best of our knowledge, it remains open or unknown as to how (or whether or not it
is possible) to build crawling algorithms using only local information towards estimating the EVC
x.

3 NMMC: MAPPING TO QSD

The main goal of our proposed NMMC framework is to achieve any arbitrary probability distribu-
tion π on a general directed graph G and also to estimate the EVC of its adjacency matrix A using
a set of random walks in a distributed manner without requiring the entire matrix A a priori. The
main enabler of our NMMC framework to tackle this challenge is to convert any given ergodic,
nonreversible Markov chain (e.g., simple random walk) on N with Q= [Qi j]i ,j∈N and unknown µ
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into a related suitable transient Markov chain on an augmented state spaceN+ :=N ∪ {0}, where
the node setN is a set of transient (non-absorbing) states and ‘0’ is an (artificially added) absorbing
state. This mapping is made based solely on local information in a way that the resulting quasi-

stationary distribution (QSD) becomes the target distribution π . Later in Section 4 we present how
to efficiently estimate the required QSD using a set of non-Markovian, history-dependent random
walks, which is yet another integral part of our NMMC framework. In what follows, we first collect
several definitions and basic equations we need for later use.

3.1 A Primer on QSD

Suppose that we have a discrete time transient Markov chain {Xt }t ≥0 on a finite state spaceN+ :=
N ∪ {0} with its transition matrix P = [Pi j ]i ,j∈N + , where N = {1, 2, · · · ,n} is the set of transient
(non-absorbing) states and ‘0’ is the absorbing state with P00 = 1, i.e., once the chain hits 0, it
remains there forever. We have Pi0 > 0 for at least one i ∈N to ensure that the chain is transient.
Clearly, P is a stochastic matrix on N+. We assume that this Markov chain is irreducible and
aperiodic on the set of non-absorbing states in the sense that P{Xt = j for some t ≥ 1 |X0 = i} > 0
and g.c.d.{t > 0 : Ptii > 0} = 1 for all i, j ∈ N , where Ptii = P{Xt = i |X0 = i} is a t-step transition

probability.2 Then, we have limt→∞ Xt = 0 almost surely (i.e., absorption is certain eventually). If

we restrict the stochastic matrix P only onN , the resulting n × n matrix P̃= [P̃i j ]i ,j∈N is naturally
a sub-stochastic matrix.
Consider the dynamics of the transient Markov chain {Xt } at any given time t by condition-

ing on the event that the chain is still surviving, i.e., the chain has not hit the absorbing site ‘0’
by time t . These conditional probabilities P{Xt ∈ · |Xt ∈ N} = P{Xt ∈ · |Xt , 0} are well-defined
time-evolving full probability measures fully supported on the set of non-absorbing statesN . Now,
we can consider the stationary probability measure with respect to these conditional probability
measures; in other words, the invariant distribution ν = [ν (1),ν (2), · · · ,ν (n)] under the Markov-
ian dynamics conditioned to survive. This stationary distribution ν is called the quasi-stationary
distribution (QSD) [10, 13, 35, 36, 49, 70, 71], satisfying

ν (j) = P{Xt = j | X0 ∼ ν ,Xt , 0} (2)

for all non-absorbing states j ∈N and for all time t ≥ 0, where X0 ∼ ν means that the initial state
X0 is drawn from the distribution ν .

Exactly in the same way as we approximate the stationary distribution of an ergodic Markov
chain from its long-term limiting behavior, we can take a similar line of approach to acquire the
desired QSD. Specifically, by taking the limit on the conditional distribution at time t in (2) starting
from an initial distribution µ0, we obtain

lim
t→∞
P{Xt = j | X0 ∼ µ0,Xt , 0} = ν ′(j) (3)

for all j ∈N . If there exists an initial distribution µ0 such that ν ′ := [ν ′(1),ν ′(2), · · · ,ν ′(n)] exists,
we call this limiting distribution a quasi limiting distribution (QLD). It then follows that under our
finite state space setting with irreducible and aperiodic assumptions, the QSD ν and the QLD ν

′

coincide, i.e., ν =ν ′, and they are uniquely determined for any initial distribution µ0 [71].
We can rewrite (2) with t =1 as, for any j ∈N ,

ν (j) = P{X1 = j | X0 ∼ ν }
P{X1 , 0 | X0 ∼ ν }

=

∑

i ∈N ν (i)Pi j
1 −∑i ∈N ν (i)Pi0

,

2Equivalently, this is often termed as N being an irreducible class [10, 70, 71].
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Fig. 1. Summary of our Non-MarkovianMonte Carlomethod:With any ergodic, nonreversibleMarkov chain

Q defined over the node set N of a directed graph G, we construct a transient Markov chain P on N+ =
N ∪ {0} such that its QSD becomes our desired distribution π and then leverage non-Markovian, history-

dependent random walks to estimate the desired QSD π .

which then reads as
∑

i ∈N
ν (i)Pi j = λν (j), (4)

where

λ = P{X1 , 0 | X0 ∼ ν } = 1 −
∑

i ∈N
ν (i)Pi0. (5)

In other words, since Pi j = P̃i j for i, j ∈ N , we can rewrite (4) as ν P̃ = λν , where P̃ is the sub-
stochastic matrix, which is a restriction onN from the original transition matrix P onN+. Then, by
the Perron-Frobenius theorem for irreducible, non-negative matrices (not necessarily stochastic) 3,

the QSD ν must be the uniquely determined left principal eigenvector of P̃ with ν (j) > 0 for all
j ∈N , corresponding to the maximal eigenvalue λ > 0. Note that 1 − λ = ∑

i ∈N ν (i)Pi0 > 0 is the
one-step absorption probability starting from the QSD ν .

3.2 Achieving π via QSD

We next show how to construct a transient Markov chain P= [Pi j ] on the augmented state space
N+ =N∪{0} with a virtual absorbing site ‘0’ added to the original state space N , such that the
resulting QSDν becomes any desired target probability distribution π = [π (1),π (2), · · · , π (n)]with
π (i)> 0 for i ∈N , i.e., ν =π . This mapping, as we shall show shortly, is always possible as long as
the underlying nonreversible Markov chainQ= [Qi j ] on the original state spaceN (or the directed
graph G) is ergodic. Note that letting µ= [µ(1), µ(2), · · · , µ(n)] be the stationary distribution of the
ergodic chain Q, satisfying µ = µQ, we do not require any knowledge on µ, i.e., µ is unknown in
our construction, as illustrated in Figure 1(a).
Adopting the proposal and acceptance framework as in usual MCMC methods, we first use

the transition probability Qi j as a proposal distribution from the current state (node) i to j (i, j ∈
N ). This proposed move is then ‘accepted’ with probability γi j , which will be determined shortly.
Unlike usual MCMC methods, however, with probability 1−γi j , this move is ‘rejected’, in which
case the chain gets absorbed to ‘0’ and stays there forever. We thus have Pi j = Qi jγi j for i, j ∈N ,

and Pi0 =
∑

j∈N Qi j (1 − γi j ) for each i ∈ N , with P00 = 1. Recall that P̃i j = Pi j for i, j ∈ N . See for
Figure 1(b) for an illustration.
Despite the similar structure, our proposed method is fundamentally different from the MCMC

methods, including the famous Metropolis-Hastings (MH) algorithm. The crucial difference is that

3The Perron-Frobenius theorem asserts that the leading (left) eigenvector of any irreducible, non-negative matrix corre-

sponding to its largest eigenvalue is the only one with every component being positive [50].
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our proposed chain Q is nonreversible on a directed graph without the reciprocity condition, and
goes to the absorbing site ‘0’ if rejected. In contrast, in the MH algorithm the proposed chain is on
a undirected graph (typically reversible), and if rejected, it simply stays at the current node and
tries again in the next time step.
The next step is to choose the acceptance probability γi j ∈ (0, 1] such that

∑

i ∈N
π (i)P̃i j =

∑

i ∈N
π (i)Qi jγi j = κπ (j) (6)

is satisfied for all j ∈N , i.e., π P̃=κπ for some κ > 0. Then, by the Perron-Frobenius theorem, the

distribution π is the unique left leading eigenvector of P̃ and thus coincides with the unique QSD
ν of the transient chain P, corresponding to the largest eigenvalue λ=κ. The key aspects here are
(i) how to choose γi j using only locally available information and (ii) how to efficiently estimate
or approximate the resulting QSD, or to obtain samples from the QSD in a distributed manner. In
what follows, we present the specific form ofγi j that maps any desired π on a given directed graph
to the QSD ν of the suitably constructed transient chain P. The case of (ii) using crawling walks
on a directed graph will be discussed later in Section 4.
For a given (proposed) ergodic, nonreversible chain Q, we define S j := {k ∈N | Qk j >0} for each

j ∈N . This is the set of states (nodes) from which the proposed chain Q can enter into state j in
one step with positive probability. For each S j , consider a probability distribution {αk j }k ∈Sj such
that αk j > 0 for all k ∈ S j and

∑

k ∈Sj αk j = 1. Note that the set S j is the support of the probability
distribution {α ·j }. We then have the following.

Theorem 3.1. For any choice of {αk j }k ∈Sj on each S j , j ∈N , if we set

γi j ∝
π (j)
π (i) ·

αi j

Qi j
, (7)

such that γi j ≤ 1 for any pair (i, j) with Qi j > 0, then the target distribution π becomes the QSD ν of

the transient chain P, where Pi j =Qi jγi j .

Proof. Let π be the given target distribution onN . Fix j ∈N . Choose any arbitrary probability
distribution {αk j }k ∈Sj on the support S j . By definition of S j , we observe that for any i < S j , i.e.,
Qi j = 0, the choice of γi j is irrelevant since the proposed move from i to j will never take place.

We can rewrite γi j in (7) as γi j =
1
c
· π (j)αi j
π (i )Qi j

with some suitable scaling constant c > 1 such that

γi j ≤ 1. Now, observe that

∑

i ∈N
π (i)Pi j =

∑

i ∈Sj
π (i)Qi jγi j =

∑

i ∈Sj

1

c
π (j)αi j =

1

c
π (j), (8)

where the last equality is from
∑

k ∈Sj αk j =1. Since this holds for all j ∈N and P̃i j =Pi j for i, j ∈N ,

we have π P̃= (1/c)π with 1/c >0. In view of the Perron-Frobenius theorem, π is the only positive

eigenvector of P̃ and is the leading left eigenvector, corresponding to the maximal eigenvalue 1/c .
On the other hand, as explained in Section 3.1, from the Perron-Frobenius theorem we have

the existence of a unique QSD ν of the transient chain P that verifies ν P̃ = λν , with λ in (5).
Therefore, the unique QSD ν must coincide with our desired probability distribution π , with λ =

1/c ∈ (0, 1). �

As a special case, we can set αk j = 1/|S j | = [
∑

k ∈N 1{Qk j>0}]−1 for all k ∈ S j , and then have the
following expression for γi j .
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Corollary 3.2. Consider

γi j ∝
π (j)
π (i) ·

[

Qi j |S j |
]−1
=: bi j , (9)

such that γi j ≤ 1 for each (i, j) with Qi j > 0. Then, the QSD ν of P becomes identical to the target

distribution π .

While the probability distribution {α ·j } on the support S j can be made arbitrary as shown in
Theorem 3.1, we consider γi j in (9) throughout the rest of the paper for its simplicity. Note that
the acceptance probability γi j in (9) requires π (j)/π (i), which is essentially the desired target dis-
tribution up to multiplicative constants, the proposal probability Qi j (clearly known), and |S j | (the
number of possible transitions into node j). These are all local information around i, j when the
chain attempts to make a move from i to j .
As a special case, we consider Q=Qsrw, the transition matrix of the simple random walk on a

given directed graph G. In this case, Qi j = Ai j/d+i and |S j | = d−j , the in-degree of node j . This is

the only required local information, not exact knowledge (identities) of the nodes whose outgo-
ing edges point to each node. Such in-degree can be obtained without much difficulty in online
social networks having follower-followee relationship such as Google++, Twitter, and Instagram,
since the in-degree is usually available as part of a user profile, which is simply the number of
followers [73]. It is worth noting that the social networks are often much more stringent on re-
trieving the IDs of inlinks and outlinks of each user than looking up user profiles [73]. We shall
even demonstrate in Section 6.3 that an online estimation of the in-degree of each node would
suffice for our proposed NMMC method, even if such in-degree information may not be available.
Thanks to Theorem 3.1 and Corollary 3.2, without knowing the stationary distribution µ of the

simple random walk, which is unknown in general, we can achieve any desired distribution π by
estimating the QSD of the transient chain P= [Pi j ] on N+ with Pi j =γi jQi j =γi jAi j/d+i , where

γi j ∝ bi j =
π (j)
π (i) ·

d+i
d−j
, (10)

with some scaling constant c such that bi j/c ≤ 1 for all (i, j) ∈ E. Then, if we want to achieve
the uniform distribution π on G, i.e., π (i) = 1/n for all i ∈ N , then c ≥ max(i ,j)∈E d

+

i /d−j . Since
d−j ≥ 1 for any j ∈ N (since the graph is irreducible), one easy choice would be c = maxi ∈N d+i ,
i.e., the maximum out-degree of the graph. When such a global constant is known in advance, our
Theorem 3.1, or Corollary 3.2, applies as is. In case that such constant is not available, later in
Section 4.2, we will demonstrate that a real-time (dynamic) estimation of the global constant can
also be safely used.

3.3 Mapping EVC to QSD

In addition to achieving any desired distribution π as a QSD, we demonstrate that we can go
one step further to estimate the EVC x of the adjacency matrix A of a given directed graph G
in a similar fashion. As explained in Section 2.2, by definition, the EVC x is the (normalized) left
leading eigenvector of the adjacency matrix A with the corresponding maximal eigenvalue λ(A).
Then, by simply adjusting γi j using local information, we can equate the resulting QSD with the
EVC x of A, as shown next.

Corollary 3.3. If we set γi j =Ai j/(cQi j ) for any (i, j) pair with Qi j > 0, where c is some suitable

scaling constant such that γi j ≤ 1, then the QSD ν of the transient P with elements Pi j =Qi jγi j =Ai j/c
for i, j ∈N , becomes the EVC x of the adjacency matrix A.
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Proof. Using γi j =Ai j/(cQi j ), and from (4) with Pi j replaced by P̃i j , we observe that
∑

i ∈N
ν (i)Ai j = (λc) · ν (j) ⇐⇒ νA = (λc)ν , (11)

with λ given in (5), i.e., the resulting QSD ν is the left eigenvector of the adjacency matrix A with
ν (i)> 0, corresponding to the positive eigenvalue λc . The assertion then follows from the Perron-
Frobenius theorem. �

Corollary 3.3 says that the well known EVC x of the adjacency matrix A of a given directed
graph G can now be mapped to the unique QSD ν of a transient Markov chain P driven by a
general nonreversible chain Q using only local information for γi j , and that the corresponding
largest eigenvalue λ(A) = λc becomes the inverse of the epidemic threshold of the given graph
(See Section 2.2.) For example, when the simple random walk is used, i.e., Qi j =Q

srw
i j =Ai j/d+i , we

see that γi j =d
+

i /c , where c=maxi ∈N d+i can be set as the maximum out-degree of the graph.
So far, we have shown how to map any desired distribution π and the EVC x on a directed graph

onto the QSD of some transient Markov chain P, which is obtained from any ergodic, nonreversible
chainQ, with the simple random walk as an example. Now, the question is how to efficiently simu-
late or estimate the given QSD, or to obtain samples from the given QSD, via the same underlying
nonreversible chainQ used for graph exploration. In the next section, we present several methods
to simulate or estimate the QSD and complete our NMMC method using a set of non-Markovian
random walks (or crawling agents) to accomplish the goal.

4 NMMC: QSD ESTIMATION

4.1 Non-Markovian Random Walks to Approximate QSD

We are often interested in calculating the expectation of a function f : N→R defined on the state
space N with respect to a desired distribution π , i.e., Eπ { f } =

∑

i ∈N f (i)π (i), by constructing an
ergodic Markov chain {Xt } that has the desired π as its equilibrium distribution. This is one of
the main applications of the MCMC methods. By the ergodic theorem, we have

lim
t→∞

1

t

t
∑

k=1

f (Xk ) = Eπ { f } a.s., (12)

for any initial distribution for X0. Thus, one can directly utilize this defining relationship by sim-
ulating the ergodic chain {Xt } for a long time and taking the time average in order to estimate or
approximate Eπ { f }.
In case of the QSD ν of a transient Markov chain {Xt } onN+=N ∪{0}, we would also consider

the long-time averages to estimate Eπ { f } driven by the desired QSD ν =π (or the QSD π itself)
in view of

lim
t→∞
E { f (Xt ) | X0 ∼ µ0,Xt , 0} = Eπ { f }, (13)

which is from (3) and the identity between QSD and QLD in the limit for any initial distribution
µ0. Unfortunately, however, this does not help much. In order to rely on the regularity inherent
in the limiting relationship in (13), we would have to generate many trajectories for {Xt } for a
long time, only to find out that most of them get absorbed or trapped to the absorbing site ‘0’ since
P{Xt ,0} goes to zero exponentially fast, and we are left with very few trajectories that survive for
a long time and possibly contribute to useful samples for the estimation. In short, this brute-force
approach simply would not work for numerical estimation of the QSD in general.
In the mathematics literature, one practical approach in approximating the QSD is based on

a historical urn-based process or a reinforced random walk on the state space. Although such a
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10 Chul-Ho Lee, Min Kang, and Do Young Eun

process loses the Markovian property due to the dependency on its own history or trajectory for
the next move, using the past trajectory of the process is amenable to practical implementation.
First, observe that from (4) and (5), the QSD ν of the transient chain P satisfies

ν (j) =
∑

i ∈N
ν (i)

[

Pi j + Pi0ν (j)
]

, j ∈ N . (14)

This can be interpreted as an ergodic Markov chain on the state spaceN with its transition matrix
Pν = [Pνi j ] given by

Pνi j := Pi j + Pi0ν (j) = P̃i j + Pi0ν (j), i, j ∈ N . (15)

That is to say, assuming that ν is known, the process evolves according to Pi j = P̃i j until it gets
absorbed, uponwhich it instantaneously ‘redistributes’ to a new node inN according toν . LetΦ(ν )
be the invariant (stationary) distribution of this ergodic Markov chain with its transition matrix
Pν = [Pνi j ], indexed with ν . Then, we can see that the QSD ν in (14) becomes precisely the fixed

point of the mapping from ν to Φ(ν ). In other words, ν is the QSD for P if and only if Φ(ν )=ν . The
construction of such an ergodic chain is, however, practically infeasible in estimating the target
QSD ν = π , since lack of the entire topological information prohibits direct access into the state
space N according to π , or π is simply unknown, e.g., for EVC of A.
The above observation nonetheless motivated one of the earliest efforts in approximating the

QSD of a given transient chain by Aldous et al. [1] to replaceν (unknown) in (14) with the (known)
empirical distribution of the history of the original process.4 To be precise, we define its historical
empirical distribution µ̂t by time t of the underlying stochastic process {Zt }t ≥0 as

µ̂t =
1

t+1

t
∑

k=0

δZk , (16)

with µ̂t = [µ̂t (1), · · · , µ̂t (n)], where µ̂t (i) is simply given by

µ̂t (i) =
1

t+1

t
∑

k=0

δZk (i) =
1

t+1

t
∑

k=0

1{Zk=i },

which records the relative visit frequency of {Zk } to the state i ∈N over the first t+1 time steps.
Note that µ̂t (i) is random while

∑

i ∈N µ̂t (i)=1 for each t , i.e., µ̂t is in fact a probability distribution
(vector) onN for each t .

Consider the natural filtration {Ft }t ≥0 associated with the historical process {Zt }, i.e., Ft :=
σ {Zk | k ≤ t}. We then have

P{Zt+1 = j | Ft } =
∑

i ∈N
P
µ̂t
i j · 1{Zt=i }

for any given j ∈ N , where P
µ̂t
i j is from (15) with ν replaced by µ̂t . That is to say, given the

full history Ft of the process {Zt } up to time t , the process will choose its next state Zt+1 by
the original transition matrix P if not getting absorbed. When it hits the absorbing state ‘0’, it will

4In the literature, there are some study on Fleming-Viot (FV) processes and the evolution of the associated spatial empirical

measures converging to the QSD [3, 33–36, 49]. It is essentially to replace the unknown ν in (14) by the ‘spatial’ occupancy

measure of a large number of particles undergoing identical dynamics withmutual interaction upon particle absorption. To

be more precise, in our graph setting, it can be described as follows. There are K particles or agents, each of which moves

according to P of the transient Markov chain on N+. When any of the particles gets absorbed by ‘0’, it is instantaneously

relocated to one of the remaining particles, chosen uniformly at random, on N. Then, the empirical measure of the positions

of the particles converges to the QSD as both the number of particles K and time t go to infinity. The number of particles

required under the FV method, however, should be much larger than the size of the graph (i.e., K ≫ n), making the FV

method impractical to our scenario. Thus, we do not consider the FV method in this paper.
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Non-Markovian Monte Carlo on Directed Graphs 11

instantaneously jump to another state inN with probability determined by the historical empirical
distribution µ̂t =

1
t+1

∑t
k=0 δZk , observed by the current time instant t and thus readily available to

us.
Thismethod has then been recently generalized in [10, 11] by utilizing the stochastic approxima-

tion theory and its induced differential equations developed for reinforced random walks [9, 55],
allowing different forms of the historical empirical distribution µ̂t that substitutes ν in (15). Specif-
ically, the distribution µ̂t is generalized as

µ̂t =

∑t
k=0wkδZk
∑t

k=0wk

=

t
∑

k=0

ηt (k)δZk , (17)

with

ηt (k) :=
wk

∑t
k′=0wk′

, k = 0, 1, 2, . . . , t . (18)

Here, µ̂t (i) indicates the visit frequency to node i by {Zk } up to time t , each of which is weighted
by ηt (k). This makes the redistribution dynamics of the process {Zt } different, while the other
remains the same as above. When the process hits the absorbing state at time t +1, it relocates
directly to one of the previously-visited nodes according to µ̂t in (17). This can also be interpreted
as choosingZt+1 :=Zk with probability ηt (k) in (18), k=0, 1, . . . , t . Settingwk =1, orηt (k)=1/(t+1),
for all k in (17) reduces to (16).
The resulting process {Zt } is clearly non-Markovian and history-dependent. It is shown in [10,

11] that for a large class of non-decreasing weight functionswk , or sequences {ηt (t)}t ≥0,

lim
t→∞

µ̂t = ν a.s., and lim
t→∞
E{µ̂t } = ν , (19)

for any arbitrary initial state Z0 with µ̂0=δZ0 . Note that the allowed weight functionwk includes,

for example, wk = 1 (constant), wk =k
a (polynomial), and 2k

b

(sub-exponential), where a > 1 and
b ∈(0, 1). These weight functions make the sequence {ηt (t)}t ≥0 non-increasing in t and satisfy the
required conditions in [10, 11].We adopt this history-based process with reinforcement to estimate
the desired QSD ν =π as an integral part of our NMMC method.
The basic operation of our NMMC method to achieve any desired distribution π on a directed

graph G or to estimate the EVC x of the adjacency matrix A can be summarized as follows. Under
our NMMCmethod, a set of non-Markovian random-walk agents are launched to crawl the graph,
and each of them independently moves over G by choosing the next node Zt+1 at the current node
Zt = i according to the transition probability Pi j = Qi jγi j , before it gets absorbed and relocated.
In other words, a move from node i to j is proposed with probability Qi j following a directed
edge (i, j) on G. This move is then accepted with probability γi j as given in Theorem 3.1 and
Corollary 3.2 for achieving π (or Corollary 3.3 for estimating the EVC x). Otherwise, it is rejected
in which case the agent is instantaneously relocated (or redistributed) to one of the previously-
visited nodes according to the historical empirical distribution µ̂t in (17). Figure 1 illustrates the
overall operation of our NMMC method.
We note that the history-dependent/reinforced random walks are quite relevant and amenable

to practical implementation on most popular online social networks, since the crawler (e.g., a
simple random walk) continues to collect the ID (e.g., URL) of each node visited as it explores the
graph and can always relocate/redistribute to one of the previously-visited nodes, while keeping
track of which nodes have been visited up until now. The historical empirical distribution governs
not only the dynamics of each crawling agent, but it also enables us to estimate the target QSD
ν =π . Therefore, our NMMC method provides the same benefit and fruitful denouement that we
cherished from the standard MCMC methods that are rooted in the ergodic theorem in (12).
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Algorithm 1 Non-Markovian Monte Carlo (at time t ≥ 1)

Input: Q, ν , µ̂0, andwk

1: i ← Zt−1 // the node at time t−1
2: Select node j with probability Qi j

3: Generate u ∼ U (0, 1)
4: if u ≤ γi j then

5: Zt ← j // the proposed move is accepted
6: else

7: /* the agent is relocated according to µ̂t */
8: Select node k with probability µ̂t (k)
9: Zt ← k

10: end if

11: /* update the historical empirical distribution µ̂t */
12: µ̂t ← [1 − ηt (t)] µ̂t−1 + ηt (t)δZt

4.2 Performance Enhancements

So far, we have demonstrated how any ergodic (inherently nonreversible) Markov chain Q with
unknown µ can be used to achieve a given desired distribution π on a directed graph G and
to estimate the EVC x of the adjacency matrix A. It is essentially achieved by combining our
mapping π or x to the QSD ν of a related transient Markov chain and the recent development
in the mathematics literature as to estimating the QSD via a set of non-Markov chain, history-
dependent random walks.
As shall be seen later in Section 5, the direct application of the non-Markovian random walks

with historical empirical distribution µ̂t may not be satisfactory due to a possible imbalance be-
tween their diffusion and redistribution, both of which are the necessary integral components. In
this section, we present several ways to make the crawling walks achieve a right balance between
their diffusion and redistribution, which translates into speeding up the convergence of µ̂t to the
desired QSD ν =π (or ν =x).

Initial empirical measure µ̂0. We next revisit the historical empirical distribution µ̂t in (17).
LettingWt :=

∑t
k=0wk for a given positive weight sequence, {wk }k≥0, we observe that (17) can be

written as, for t ≥ 1,

Wt µ̂t =Wt−1µ̂t−1 +wtδZt , (20)

which then leads to

µ̂t =
Wt−1
Wt

µ̂t−1 +
wt

Wt
δZt =

(

1 − wt

Wt

)

µ̂t−1 +
wt

Wt
δZt

= [1 − ηt (t)] µ̂t−1 + ηt (t)δZt , (21)

from the identities Wt =Wt−1+wt and ηt (t) = wt /Wt . This implies that the historical empirical
distribution µ̂t can be computed recursively based on (21). Although the convergence of µ̂t to the
QSD ν was shown for any arbitrary initial state Z0 with µ̂0=δZ0 in [10, 11], its proof based on the
stochastic approximation theory and the induced differential equations in fact does not require the
initial distribution µ̂0 in (21) to be in the form of δZ0 , where µ̂0 has a value of 1 at the element Z0

and zero at all other elements, but can be made arbitrary as long as µ̂0 is a probability distribution
(vector) onN .

This freedom on the choice of µ̂0 gives us a great degree of flexibility. Clearly, the choice of
µ̂0 affects the whole evolution of the process {Zt } for all time t via redistribution mechanism,
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Algorithm 2 Dynamic Non-Markovian Monte Carlo

1: /* This pseudocode only replaces lines 3–10 of Algorithm 1 */
2: Generate u1,u2 ∼ U (0, 1)
3: if u1 ≤ p and ct−1 < bi j then

4: ct ← bi j // ct is updated by bi j
5: else

6: ct ← ct−1 // ct−1 is kept
7: end if

8: if u2 ≤ min{1,bi j/ct } then
9: Zt ← j // the proposed move is accepted
10: else

11: Select node k with probability µ̂t (k)
12: Zt ← k // the agent is redistributed
13: end if

and thus can be made to our advantage. For example, a judicious choice of µ̂0 can translate into
a situation where a crawling agent {Zt } can start with an ‘already-established’ history to some
degree or more generally, with any arbitrary (normalized) visit counts assigned to a subset of nodes
on the graph to begin with. Thus, our proposed NMMCmethod can be generalized with arbitrary
µ̂0 and its overall procedure is now summarized in Algorithm 1. Here the proposed chain Q, the
initial empirical measure µ̂0, and the (unnormalized) weight function wk should be specified as
inputs into Algorithm 1. Note that the initial position of a crawling agent Z0 is randomly chosen
according to µ̂0.

Dynamic and adaptive choice of parameters.Our proposed NMMCmethod is mathematically
guaranteed but its speed of convergence depends on the form of the acceptance probability γi j ,
alongwithQi j and the target QSD, which interweaves diffusion and redistribution – two seemingly
opposite (yet integral) components of the method. As we have seen from Section 3, the specific
form ofγi j is different depending on the choice ofQ= [Qi j ] andwhat to estimate via the target QSD,
i.e., the target distribution π or the EVC x of the adjacency matrix A. It is particularly desirable to
maintain some reasonable values of γi j over almost every (i, j) ∈ E, or more precisely, transition
pair (i, j) with Qi j > 0, so as to strike the right balance between diffusion and redistribution to
achieve faster convergence.
We take a closer look at the acceptance probability γi j as a function of Qi j and the target QSD.

Recall that from Theorem 3.1 and Corollary 3.2, it is given by γi j = bi j/c in (9) for achieving (or
sampling from) a given distribution π on the directed graph G, and the corresponding normalizing
constant c can be obtained based on c=maxi ,j bi j (the smallest possible value for c). Similarly, for
estimating the EVC x of the adjacency matrix A, it can be chosen as c = maxi ,j 1/Qi j for γi j =
Ai j/(cQi j ) from Corollary 3.2. The global constant c over the graph, however, may not be available
in advance or could take a long time to estimate, although its real-time (dynamic) estimation can
be incorporated as shall be explained shortly. Furthermore, the resulting values of γi j may vary
over (i, j) ∈ E and they can also be small for some (i, j) pairs. Such small acceptance probabilities
in turn make the agent get absorbed to ‘0’ and redistributed to the already visited nodes. The
redistribution mechanism is of course an important and necessary component of our algorithm
to shape up the historical empirical distribution µ̂t toward the target QSD. But, if it is too strong
(very small γi j ), the agent may virtually get stuck on a small set of visited nodes before diffusing
out to a potentially vast unvisited portion of the graph (state space) for exploration.
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To remedy this possibly slow diffusion problem, we observe that the target QSD ν = π when
achieving any desired distribution π is completely controllable to our benefit. To be precise, if it is
of primary concern to estimate Eπ { f }=

∑

i ∈N f (i)π (i) for a given sampling function f : N→R,
which is often the case for ‘undirected’ graph sampling [5, 32, 37, 44, 58, 65], the target distribution
can be controlled together with a so-called importance sampling method in MCMC [47]. With an
alternative sampling distribution π

′, it is to estimate

Eπ ′

{

f
π

π ′

}

=

∑

i ∈N
f (i) π (i)

π ′(i)π
′(i) = Eπ { f }. (22)

Thus, we can choose the target distribution π along with Q so that it translates into more bal-
anced γi j . As shall be demonstrated later in Section 5, with Q = Qsrw, setting the target π to be
proportional to node in-degrees, i.e., π (i) ∝ d−i , i ∈ N , turns out to be very effective in achieving
fast convergence speed. This improvement is somewhat expected since the simple random walk
would visit high in-degree nodes more frequently, which helps the historical empirical distribution
µ̂ get closer to this target π quickly.
To further alleviate the slow diffusion problem and also enable online estimation of the normal-

izing constant c , we allow c to be time-varying, say ct , so that it can be learned through graph
exploration by the crawling agent. For ease of exposition, we focus on achieving the desired π

over the graph, but everything can easily be carried over to estimating the EVC x of A. We set the
acceptance probability γi j (t) := bi j/ct , which is updated in a way that ct := bi j at every time t if
ct−1 <bi j for a pair of the current node i and its neighbor j as a potential next node, and ct :=ct−1
if otherwise. In other words, the agent keeps track of the maximum ct over all the values of bi j for
node pairs that have been discovered up to time t . Note that c0=1 initially.
We can take one step further to foster the initial diffusion speed to a greater extent, by inten-

tionally slowing down the growth of ct for higher values ofγi j (t) (being closer to one). Specifically,
with probability p > 0, we perform the aforementioned update of ct , while with probability 1−p,
the time-varying normalizing constant ct = ct−1 is kept the same even if ct−1 <bi j , in which case
the proposed move to j is always accepted. The entire procedure of ‘dynamic’ NMMC method is
summarized in Algorithm 2, which replaces the lines 3–10 of Algorithm 1. Note that the resulting
acceptance probability becomes γi j (t)=min{1,bi j/ct } as seen from Algorithm 2.
While the NMMC method with time-varying ct is seemingly heuristic, it is in fact well sup-

ported by Theorem 3.1 and our observation on the initial empirical measure µ̂0, i.e., the theoretical
guarantee remains intact. To see this, we define a stopping time as t∗ :=min{t ≥ 0 | ct = c}. Since
the graph is finite, this t∗ is almost surely finite for p > 0. We would run the NMMC method with
ct until t

∗, and then reset the time clock to zero at t∗ and treat the historical empirical distribu-
tion µ̂t ∗ to be newly set as µ̂0. It then follows from our observation pertaining to µ̂0, along with
Theorem 3.1, that the historical empirical measure µ̂t converges to the given target QSD ν = π .
In addition to the theoretical guarantees, we next demonstrate that our NMMC method with a
suitable choice of the ct -updating probability p indeed greatly improves the speed of convergence
to the target QSD ν =π by effectively combating the slow-diffusion problem triggered by overly
frequent redistribution to already-visited sites.

5 SIMULATION RESULTS

In this section, we present simulation results to support our theoretical findings. To this end, we
consider four real-world network datasets available in the SNAP repository [46] as test-case di-
rected graphs, whose statistics are summarized in Table 1. The numbers of nodes and edges in
the largest strongly connected component (LSCC) of each graph are given in the fourth and fifth
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(a) π = u; static case
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(b) π = u; p = 1
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(c) π = u; p = 0.1
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(e) π (i) ∝ d−i ; p = 0.01; linear scale
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(f) π (i) ∝ d−i ;p = 0.01; log-log scale
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(g) EVC x; p = 0.01; linear scale
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(h) EVC x; p = 0.01; log-log scale

Fig. 2. The TVD results obtained under the Gnutella graph.

columns respectively. Note that self-loops, if present, e.g., in the original dataset of Slashdot graph,
are removed for our simulations.

# nodes # edges # nodes (LSCC) # edges (LSCC)

Gnutella 8,846 31,839 3,234 13,453

Slashdot 82,168 948,464 71,307 912,381

Wiki-Talk 2,394,385 5,021,410 111,881 1,477,893

Amazon 400,727 3,200,440 380,167 3,069,889

Table 1. Statistics of the datasets

The primary focus here is, through numerical simulations, to confirm that the historical empiri-
cal distribution µ̂t by our NMMCmethod in Algorithms 1 and 2 (the original one and its dynamic
extension) converges to the target QSDν =π (orν =x) and to evaluate the speed of convergence of
µ̂t toν . As a performancemetric, we use the total variation distance (TVD)5 between the historical

5Note that our purpose here is completely different from the typical use of TVD for characterizing the speed of convergence

of an ergodic, reversible Markov chain on a finite state-space, say Q, to its stationary distribution, say µ . To be precise, for

any initial µ0, ‖µ0Qt − µ ‖TV ≤ κρ t for some constant κ , where ρ is the second largest eigenvalue modulus of Q with

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article . Publication date: January 2019.



16 Chul-Ho Lee, Min Kang, and Do Young Eun

empirical distribution µ̂t and the target QSD ν , which is given by

‖µ̂t − ν ‖TV , max
E⊆N
|µ̂t (E) − ν (E)| =

1

2

∑

i ∈N
|µ̂t (i) − ν (i)|. (23)

The inputs of Algorithms 1 and 2 are chosen as follows. The initial position Z0 of each agent
is randomly determined, with the initial empirical measure µ̂0 = δZ0 . For the target QSD ν to be
mapped and estimated, we consider (i) uniform distribution, i.e., π (j) = 1/n, (ii) in-degree distri-
bution, i.e., π (j) ∝ d−j , and (iii) the EVC x of the adjacency matrix A. We also consider Q = Qsrw,

where Qi j =Ai j/d+i for i, j ∈N . We use the LSCC of each graph for simulations of all these cases.
In order to understand how different choices of unnormalized weight functions wk would affect

the speed of convergence, we vary weight functions as wk = 1,k
1
,k3,k5,k10, 2

√
k , with increasing

tendency to relocate to recently-visited nodes upon redistribution. For each simulation we use a
set of independent crawling agents, which are independently moving over the graph. While each
agent maintains its own historical empirical distribution µ̂t for redistribution in case of individ-
ual absorption, all the historical empirical distributions are combined and normalized as a unified
distribution for the convergence test.
We first present simulation results for Gnutella graph. We use 100 independent crawling agents

for all the results. Figure 2(a) shows the TVD results when achieving a uniform distribution u

under the NMMC method in Algorithm 1, where the global constant c is known a priori. Recall
that for achieving π =u, the acceptance probability γi j in (9) becomes γi j =bi j/c with bi j =d

+

i /d−j
and c = maxi ,j bi j . This global constant c can be as large as c = maxi d

+

i and this was the case
in this simulation. Figure 2(a) shows that µ̂t is getting closer to the target QSD ν = π for all
considered weight functions wk . In addition, Figure 2(a) exhibits that heavier emphasis on latter
visited sites leads to faster convergence of µ̂t to π . We would expect that it is attributed to higher
weights of being relocated toward more recently-visited nodes that gives rise to faster diffusion on
G and quicker exploration of the graph. Nonetheless, the overall performance may be considered
unsatisfactory as the resulting TVD values are still high. This means that the redistributions still
take place too often, resulting in an imbalance between diffusion and redistribution.
In Figure 2(b)–(d), we present the TVD results for estimating the same uniform u under the

dynamic NMMC method in Algorithm 2 while varying the value of the ct -updating probability
p from 1 to 0.01. It turns out that, with the choice of p = 0.01, the TVD is reduced by more than
0.1 at every time step when compared to that of p = 1. To achieve the same precision in terms
of the TVD, the number of time steps t required for p = 1 would be much larger than that of
p = 0.01 by at least an order of magnitude. Observing a clear decreasing trend with p, one may
think that p = 0 would be the best. However, when p = 0, ct is never updated over t as seen from
our Algorithm 2, i.e., ct =c0=1 for all t . Still, it is possible that γi j (t)=min{1,bi j/ct }=min{1,bi j }
is less than one, meaning that a proposed move is not always accepted. Nonetheless, since ct never
approaches the true value of c when p = 0, there is no theoretical guarantee for the convergence
either. Accordingly, the resulting TVD does not decrease as shown in Figure 3(a), where wk = 1
is considered. Furthermore, in view of faster diffusion with smaller p leading to a better speed of
convergence, we can take another extreme case by simply running the simple random walk all the
time, which always diffuses without any redistribution mechanism. It turns out that the resulting
TVD again does not decrease as shown in Figure 3(b). The observations so far collectively indicate

ρ < 1 [15]. This exponential convergence speed is for the ‘marginal’ distribution µ0Q
t at time t to µ as t increases. In

contrast, we are interested in the convergence of the historical empirical distribution µ̂t , which encompasses the entire

history of the underlying process with proper time weights.
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(a) p = 0 vs. p = 0.01
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(b) Qsrw with no redistribution

Fig. 3. Failure of convergence µ̂t to π = u when using two possible extreme methods that put too much

weight on diffusion of the underlying crawling agent.

an importance of having a right balance between diffusion and redistribution to shape up the
historical empirical distribution µ̂t toward the target QSD and to achieve faster convergence.

We further take a closer look into the cases with wk = k
α and wk = 2

√
k . While the case with

wk =2
√
k is the best with no dynamic update of c as seen from Figure 2(a), it becomes worse than

the case with wk = kα when using the dynamic NMMC method with ct -updating probability p

as shown in Figure 2(b)–(c). The case with wk = 2
√
k when combined with the dynamic updates

of ct places over-emphasis on diffusion, which causes more harm than help. This again signifies
the importance of striking the right balance between diffusion and redistribution of the reinforced
walk Zt toward faster convergence, although the presence of such a crossover would depend on
the choice of the directed graph G, target QSD ν and the proposal chain Q. Furthermore, we have
observed that the case withwk =k

α is always better with the use of ct -updating probability p than

the case with wk = 2
√
k , when achieving the in-degree distribution, i.e., π (j) ∝ d−j , and the EVC

x of the adjacency matrix A. We omit the results for brevity and exclude the case with wk = 2
√
k

for the subsequent numerical evaluations. Note that the acceptance probability γi j in (9) becomes
γi j =d

+

i /(cd−i ) with c=maxi d
+

i /d−i for the former, and γi j =d
+

i /c with c=maxi d
+

i for the latter.
We instead report the results under the (unnormalized) weight function wk =k

α with different
values of α and p=0.01 for all three cases of the target QSD in Figure 2(d)–(h). For achieving π =u,
the case with α = 1 exhibits the fastest decaying rate in its TVD curve initially, but later becomes
slower than the other cases. Similar tendency with α = 1 is observed for achieving π (j) ∝d−j and

estimating the EVC x, as shown in Figure 2(e)-(h). On the other hand, we see that the case with
α = 10 eventually becomes the best with the fastest decaying rate, as we can see from the inset
figure of Figure 2(d). We also observe that the eventual winner is the case with α =5 for achieving
π (j) ∝ d−j , while the case with α = 3 eventually appears to be the best for estimating the EVC x.

This set of simulation results indicate that target QSD ν clearly affects the extent of diffusion to
achieve the right balance between diffusion and redistribution.
In addition, we observe that TVD values decay to zero polynomially fast, as evidenced in Fig-

ure 2(f), Figure 2(h), and the inset figure of Figure 2(d), all drawn on a log-log scale. We have also
observed such a polynomial decaying behavior for the other choices of parameters. This behavior
can be explained as follows.
Suppose that we have a trajectory of an ergodic Markov chain, say {Xt }t ≥0, with its stationary

distribution π . For a function f : N → R, letting St :=
∑t

k=1 f (Xk ), St/t converges to Eπ { f }
almost surely as seen from (12) as t grows. In addition, the standard Central Limit Theorem (CLT)
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(a) π = u; p = 0.01
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(b) π (i) ∝ d−i ; p = 0.01
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(c) EVC x; p = 0.01

Fig. 4. The TVD results obtained under Slashdot graph.

for ergodic Markov chains says that for any bounded function f and any initial distribution onX0,

√
t (St /t − Eπ { f })

d−→ N (0,σ 2), as t →∞, (24)

where N (0,σ 2) is a Gaussian random variable with zero mean and variance σ 2. The (asymptotic)
variance σ 2 is given by [5, 44, 47]

σ 2
= lim

t→∞
1

t
Var (St ) = Varπ { f } + 2

∞
∑

k=1

Covπ (f (X0), f (Xk )) ,

where the first term in RHS is the marginal variance of f with respect to π and the second term
in RHS is the lag-k autocovariance of the stationary sequence { f (Xt )}. From (24), we see that the
fluctuations of St /t around the mean value Eπ { f } are roughly within the interval of length of

order σ/
√
t . Even when Xt ’s are i .i .d . over t , each having distribution π (i.e., perfect independent

samples all the time), the asymptotic order of convergence from St /t to Eπ { f } still remains the

same asO(1/
√
t), while σ 2 reduces to Varπ { f }.

What we have in this paper is the convergence of µ̂t ∈Ω to the target ν ∈Ω almost surely and
the typical size of the fluctuations of the difference µ̂t −ν , where Ω= {ν ∈ [0, 1]n |

∑n
i=1 ν (i)=1} is

the set of all probability distributions on N . If the underlying process on N were to be a Markov

chain, by resorting to similar CLT, we would obtain similar O(1/
√
t ) convergence speed where

the typical size of the fluctuations is now characterized by that of a n-dimensional multivariate
Gaussian random vector with some n × n covariance matrix. However, the underlying process Zt
in our framework is history-dependent and thus non-Markovian, so we would not expect anything

faster than O(1/
√
t) for its error as seen from Markovian or i .i .d . cases. Nonetheless, the figures

drawn on a log-log scale in our setting demonstrate that the error decays still polynomially fast
O(t−β ). These observations are further supported by the mathematical results in [10], which apply
to the static NMMCmethod. Specifically, Corollary 1.3 in [10] implies that if one considers a class
of polynomial weight functionswk =k

α , α ≥ 0, then the difference µ̂t −ν in the l1 norm is bounded
above byCt−θ almost surely for some (random) constantC >0, where θ ≤ 1

2 .
6 In addition, Theorem

1.4 in [10] shows that the CLT from µ̂t to ν holds with respect to a rescaled time ηt (t)−1∼ t , as it
would hold for Markovian or i .i .d . cases.

We now turn our attention to the simulation results under Slashdot and Wiki-Talk graphs. As
the graphs are much bigger than the Gnutella graph, we properly increase the number of agents

6In other words, for every possible sample path ω of the underlying stochastic process {Zt } by the crawler, there exists

some random constant C(ω) such that the difference µ̂t − ν in the l1 norm is bounded above by C(ω)t−θ almost surely.

Note also that θ depends on the extremal value of the spectral functional, which requires the knowledge of the entire

spectrum of the underlying graph structure. We refer to [10] for more details.
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(a) π = u; p = 0.01
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(b) π (i) ∝ d−i ; p = 0.01
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(c) EVC x; p = 0.01

Fig. 5. The TVD results (on a log-log scale) obtained under Wiki-Talk graph.

from 100 to 2000. We observe the similar trends as in the Gnutella graph and only present the
TVD results for the cases with wk =k

α (α =0, 1, 3, 5, 10) when using the dynamic NMMC method
with ct -updating probability p=0.01 in Figures 4 and 5, which consistently outperforms the other
choices of p = 1, 0.1 for all three cases of the target QSD. We still observe a polynomial decrease
in the convergence speed of µ̂t , which is asymptotically linear on a log-log scale. We see that the
case with α = 3 or α = 5 exhibits the fastest decaying rate in its TVD curve for achieving π = u

under both Slashdot andWiki-Talk graphs and for estimating the EVC x under Slashdot graph. On
the other hand, the case with α = 1 becomes the best with the fastest decaying rate for the other
cases. This again shows that to strike a balance between diffusion and redistribution, the extent
of diffusion, which can be controlled by the choice of α , should be properly chosen based on the
underlying graph structure and the target QSD. We also note that the convergence becomes much
faster when the target QSD is set to be the EVC x of A or the in-degree distribution, i.e., π (j)∝d−j ,
as compared to the case of the uniform distribution π =u.
We finally report the TVD results of the dynamic NMMC method with ct -updating probability

p=0.01 under Amazon graph for the cases withwk =k
α (α =0, 1, 3, 5, 10) when achieving π (i) ∝ d−i .

Since the size of the LSCC of the Amazon graph is over ×100 bigger than that of the Gnutella graph,
we use 104 agents. We again observe the polynomial decay in the convergence speed of µ̂t . We
also see that the case withwk =1 orwk =k leads to the fastest decaying rate. This suggests that too
strong a bias in weights toward more recently-visited nodes can have an adversary effect, leading
to an imbalance between diffusion and redistribution.
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Fig. 6. The TVD results (on a log-log scale) for achieving π (i) ∝ d−i with p = 0.01 under Amazon graph.

6 DISCUSSION AND PRACTICAL CONSIDERATIONS

In this section, we thoroughly discuss the comparison between our NMMC method and the rel-
evant literature, ranging from the MCMC methods to the PageRank algorithm. We also address
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practical issues with our NMMC method and demonstrate that our NMMC method is readily ap-
plicable to most direct graphs in practice.

6.1 MCMC vs. NMMC

We first discuss the key differences between the popular MCMC method and our NMMC method
for sampling from a given probability distribution π on a graph G. In essence, the MCMCmethod
is about how to build a Markov chain P on a given state space (e.g., graph) such that it attains any
desired stationary distribution π , i.e., π = πP on the same space [47, 60]. TheMetropolis-Hastings
(MH) algorithm, undeniably the most famous one in the MCMC literature, can be described as
follows. For a given target distribution π to achieve on a graph, consider an underlying Markov
chain Xt on this graph with its transition matrix Q = [Qi j ]. At the current state Xt = i , the chain
proposes to move to Xt+1 = j with probability Qi j , which is then accepted with probability

γi j = min

{

1,
π (j)Q ji

π (i)Qi j

}

,

and rejected with probability 1 − γi j in which case the chain stays at the same state, i.e., Xt+1 = i .
Clearly, it then immediately follows that

π (i)γi jQi j = π (j)γjiQ ji , (25)

for all i, j ∈ N , i.e., the resulting stochastic matrix P = [Pi j ] with Pi j = γi jQi j for i , j and Pii =

1 − ∑k,i Pik becomes reversible with respect to π , thus satisfying the original equation π = πP.
This method has proven to be extremely versatile and powerful, using only local information to
find γi j with any transition matrix Qi j on the given state space. From an algebraic point of view,
this amounts to constructing a reversible stochastic matrix P such that its leading left-eigenvector
matches a given π . As mentioned in Section 1, again, the most important yet implicit assumption
in (25) is that Q ji > 0 whenever Qi j > 0, i.e., nodes i and j have reciprocal relationship. If not, i.e.,
there exists a directed edge from i to j but not vice versa, we would have Q ji = 0 even if Qi j > 0,
for which the MH algorithm no longer applies. What we have established in this paper is to show
how we can remove the requirements of (i) being stochastic and (ii) reciprocity in the underlying
process.
One may ask what if our NMMC method is applied to an ‘undirected’ graph and/or how it

would be compared to the MH algorithm under the undirected graph for graph sampling. We
again emphasize that our NMMC method is the first of its kind, applicable to directed graphs or
in general when the proposed move is non-reciprocal. Our NMMC method is not meant to be
compared with the MH algorithm, as the MH cannot even be applied to directed graphs and our
algorithm is not an improvement over the MH algorithm.
Nonetheless, for the sake of completeness, we provide simulation results of the MH algorithm

and our NMMC method when applied to an undirected graph. To this end, we use the undirected
version of the Gnutella graph (its strongly connected component). For the MH algorithm, we con-
sider the following two popular random-walk versions, since it still depends on the choice of Q.
One is to use Qi j =1/dmax if (i, j) ∈ E and Qi j =0 if (i, j)<E and i , j , with Qii =1 − di/dmax, where
di is the degree of node i and dmax is the maximum degree of the undirected graph [6, 14]. We
call this version MH-MAX. The other is to use the simple random walk for Q, where Qi j =1/di if
(i, j) ∈ E andQi j =0, otherwise [32, 44, 65]. We call this version MH-SRW. Note that the transition
matrix of the simple random walk is still used as the proposed chain Q under our NMMCmethod,

but the resulting acceptance probability in (10) is now given by γi j ∝ π (j)
π (i )

di
dj
, since the underlying

graph is undirected.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article . Publication date: January 2019.



Non-Markovian Monte Carlo on Directed Graphs 21

10
2

10
3

10
4

Time (t)

0.02

0.1

0.2

0.4

0.8
1

T
o
ta

l 
V

a
ri
a
ti
o
n
 D

is
ta

n
c
e

MH-SRW

MH-MAX

(a) TVD; MH

10
2

10
3

10
4

Time (t)

0.1

0.2

0.4

0.8

1

T
o

ta
l 
V

a
ri
a

ti
o

n
 D

is
ta

n
c
e

(b) TVD; NMMC
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Fig. 7. The TVD and NRMSE results (on a log-log scale) of (a) MH-SRW and MH-MAX and (b) NMMC

method withwk =k
α (α =3, 5, 10) and p=0.01 when applied to an ‘undirectified’ version of Gnutella graph.

We here consider π = u and use 100 random walks. Letting {Xt } be the trajectory by the MH-
MAX (or MH-SRW), we consider x̂(i) := 1

t

∑t
k=1 1{Xk=i } to estimate π (i) = 1/n. For performance

metrics, we use the TVD and also the normalized root mean square error (NRMSE), which is de-

fined as
√

E{(x̂(i)−1/n)2}/(1/n) for each i . We report the average of the NRMSE over all i ∈ N .
Figure 7 shows the TVD and NRMSE results (on a log-log scale) of MH-MAX, MH-SRW, and our
NMMC method with wk = k

α (α = 1, 3, 5, 10) and p = 0.01. We see that all the TVD and NRMSE
values decay to zero polynomially fast as we discussed in Section 5.

6.2 PageRank vs. NMMC

Our NMMC method may be reminiscent of the famous PageRank algorithm and its associated
‘random surfer’ model due to the seemingly common nature of following successive outgoing
links at random and occasionally performing a random jump to a node in the graph. They are,
however, fundamentally different, as explained below.
The random surfer model was introduced in the seminal work by Brin and Page [16, 54] in order

to interpret the PageRank vector as the stationary distribution, say π
∗ , of an ‘imaginary’ random

walk (or random surfer) on a Web graph. Namely, a random surfer keeps clicking successive out-
going links uniformly at random and occasionally gets bored of following links then jumps or
teleports to a random page (by entering a new destination in the browser’s URL line). In the long
run, the proportion of the time the random surfer spends on a given page becomes the PageRank
score of the page. We again emphasize that the random surfer model was just a random-walk “in-
terpretation" of the PageRank algorithm, not an actual algorithmic operation implementable by
actual crawlers on the graph. The rationale behind such a random-walk interpretation is to enable
one to resort to the results of random walks on a graph, or the theory of Markov chains, in order
to understand the properties of the PageRank algorithm such as convergence properties as in the
seminal work [16, 54] and follow-up studies [39, 43].
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(a) π = u; p = 0.1
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(b) π = u; p = 0.01

Fig. 8. The TVD results (on a log-log scale) obtained under Gnutella graph for the NMMC method with an

online estimate of the in-degree of each node i ∈N .

However, we are not concerned with speeding up the PageRank algorithm nor devising an effi-
cient numerical method for computing π∗ . We are rather focused on a somewhat reverse problem,
which is to obtain samples from a desired probability distribution π over a directed graph with-
out requiring the global knowledge of the graph structure. It is also worth noting that unlike the
operation of a random surfer/walk in the random surfer model that is to teleport to any random
node (even including not-yet-visited ones), our NMMC method is only limited to making a ran-
dom jump (as a process of redistribution) to one of already-visited nodes, which can be readily
implemented in practice without acquiring the global knowledge. We do not assume a full access
to the state space, which would be necessary to realize a teleportation in the random surfer model
if one wishes to jump to any arbitrary page (associated with its own URL) in a Web graph, and
would be equivalent to assuming that one can draw i .i .d . samples directly from the space.

6.3 Online In-degree Estimation

We validate the feasibility of our NMMC method with an online estimate of the in-degree of each
node, which is possibly latent information. As explained in 3.2, the in-degree information is often
readily available as part of a user profile in online social networks such as Google++, Twitter, and
Instagram. However, in other types of directed graphs like Web graphs, the in-degree information
may not be available but needs to be discovered. To make our NMMC method applicable to the
latter, we use a simple way of estimating the in-degree of node i . Each crawling agent, in the
stage of proposing a movement from i to j , can discover the presence of an incoming edge from
i into j . Whenever a new incoming edge is discovered, the agent increments the value of the in-

degree of j , say d̂−j , with d̂
−
j :=1 initially. All the agents share the estimate of the in-degree of each

node. We report the resulting performance of our NMMCmethod in Figure 8 and observe that our
NMMC method performs well even with the simple online in-degree estimation. This manifests
the robustness and versatility of our NMMC method in practice.

6.4 Going Beyond Strongly Connected Directed Graphs

We have assumed that the underlying graph G is strongly connected so far. While this assumption
has been made mainly for ease of exposition, it may not hold in practice. We thus discuss how we
can relax this assumption so that our NMMCmethod becomes ready for practical use.We first note
that the key assumption for the NMMC method is essentially the irreducibility of the ‘proposed’
Markov chain Q on transient states N , as explained in Section 3. This may not be equivalent to
assuming that the underlying directed graph be strongly connected for sampling from an arbitrary
probability distribution π . It is worth noting that for the estimation of the EVC x of the directed

Proc. ACM Meas. Anal. Comput. Syst., Vol. 1, No. 1, Article . Publication date: January 2019.



Non-Markovian Monte Carlo on Directed Graphs 23

10
2

10
3

10
4

Time (t)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

o
ta

l 
V

a
ri
a

ti
o

n
 D

is
ta

n
c
e

(a) π = u; p = 0.1

10
2

10
3

10
4

Time (t)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
o

ta
l 
V

a
ri
a

ti
o

n
 D

is
ta

n
c
e

(b) π = u; p = 0.01

Fig. 9. The TVD results (on a log-log scale) of our NMMCmethod on the set of nodesNS , which are reachable
from any node in the LSCC of Gnutella graph.

graph, the underlying graph needs to be strongly connected by definition, or to properly define the
eigenvector centrality as a valid measure [50]. In this case, the assumption of strongly connected
graphs is not a limitation at all. Thus, we below focus only on achieving π .
If the directed graph G is not strongly connected, the support of π would need to be on the set

of all the nodes, say NS , that are “reachable" by traversing directional edges when starting from
an initial node, or a set of initial nodes, say S , that are reachable among themselves. Note that the
“unreachable" nodesN \NS are simply invisible and can safely be ignored. The technical changes
are then how to deal with (i) ‘dangling’ nodes, which are the nodes with no forward links, and (ii)
a set of nodes that are reachable but without outgoing edges to the other nodes in NS . Note that
these two problems were resolved in the PageRank algorithm by adopting the teleportation to any
node in the graph, yet to numerically compute the (unknown) PageRank scores. While such global
teleportation is infeasible for sampling in practice, its personalized PageRank version is practically
implementable and can be adopted into our NMMC method.7

Fix the set of initial nodes S . The state space N then reduces to NS . For the proposed chain Q

onNS , we consider the following transition matrix: For i, j ∈ NS ,

Qi j = (1 − p)
1

|S | + p
1

|S | 1{d+i =0} + p
Ai j

d+i
1{d+i >0}, (26)

for some constantp ∈(0, 1). At each node i , with probability p, the agent follows one of its outgoing
edges (if exists) uniformly at random, and jumps to one of the nodes in S uniformlywith probability
1−p. If node i is a dangling node with no outgoing edges (d+i =0), then the agent always jumps to
a random node in S . It is not difficult to see the irreducibility of Q on NS for our NMMC method.
Then, the acceptance probability γi j in (9) can properly be obtained. In Figure 9, we present the
TVD results for estimating the uniform u on NS using the dynamic NMMC method with Q in
(26), whereNS is the set of nodes that are reachable from any node in the LSCC of Gnutella graph
and |NS | = 8, 566. We here use 300 independent crawling agents starting from 300 fixed, distinct
nodes S and p = 0.95. Figure 9 demonstrates the feasibility of our NMMC method even when the
underlying graph is not strongly connected.

6.5 �ery Cost vs. Performance for Graph Sampling

So far, all the simulation results have been shown with respect to the number of time steps, since
they have the primary purpose of numerically validating the convergence of our NMMC method

7The personalized PageRank scores are still unknown and need to be computed by the PageRank algorithm (or the power

method), as long as the PageRank scores themselves are concerned.
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(b) π (i) ∝ d−i ; p = 0.01
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(c) EVC x; p = 0.01

Fig. 10. The TVD results obtained under Gnutella graph as the query cost varies.
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(c) EVC x; p = 0.01

Fig. 11. The TVD results obtained under Slashdot graph with varying degrees of the query cost.

and evaluating its convergence speed. Recall that the ergodic theorem in (12) and the CLT in (24)
hold for ergodic Markov chains with respect to the number of time steps. Nonetheless, when it
comes to graph sampling via crawling, ‘query cost’ becomes practically important. In general,
crawling real-world networks is done through public yet restrictive API interfaces provided by
the networks or their Web interfaces (by following URLs and hyperlink structures). Such external
access is often rate-limited due to security concerns, privacy protection, infrastructure burden and
commercial purposes [73, 77]. For example, Twitter allows only 15 API requests to retrieve IDs of
a user’s followers or IDs of the friends that the specific user is following every 15 minutes [69].
From a practical point of view, it would be informative to see the performance of our NMMC

method with respect to the query cost in terms of the API calls (or HTTP requests) required. We
below present the performance of NMMC method with respect to the query cost under Gnutella
and Slashdot graphs. To this end, we adopt the definition of the query cost commonly used in
the literature [32, 59, 78, 79], which is the number of unique queries required. In other words,
API calls are spent only when visiting a node (or querying its page/profile) for the first time, and
revisiting the same node since then (duplicate queries) can be done immediately by retrieving the
nodal information from local cachewithout consuming the query rate limit. This indicates that the
redistribution mechanism of our NMMCmethod is achieved at no additional cost as long as query
cost is concerned. Thus, the ‘due’ redistributions are only advantageous to shape up the historical
empirical distribution µ̂t toward the target QSD. The local cache can also be easily shared among
multiple crawling agents.
In Figures 10 and 11, we present the TVD results of the dynamic NMMC method with kα (α =

0, 1, 3, 5, 10) and p=0.01 under Gnutella and Slashdot graphs, respectively, as the query cost varies.
Here, the query cost is defined as the number of unique queries normalized by the graph size
(LSCC size) and given in percentage. The same numbers of agents are used as before for Figures 2
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(c) EVC x; p = 0.01

Fig. 12. The normalized number of unique queries used by the dynamic NMMC method on Gnutella graph.

and 4, respectively. We see that the choice of wk = k exhibits the overall fastest decaying rate in
its TVD curve for all three cases of the target QSD under both Gnutella and Slashdot graphs. This
also indicates that higher redistribution weights toward more recently-visited nodes is no longer
beneficial in improving the convergence speed when the query cost is concerned.
In a similar vein, we showed the TVD results of our NMMC method until 104 time steps in Fig-

ure 2, which is greater than the LSCC size of the Gnutella graph. Considering 100 agents used, one
might expect that the entire graph is already visited by that time. However, it has not been the case,
since there are a lot of redistributions that are counted toward the number of time steps, but not
toward the number of unique queries. The multiple agents can also visit the already-visited nodes
many times, which is again not counted toward the number of unique queries. This is confirmed
in Figure 12, which shows the number of unique queries, which is normalized by the LSCC size,
for all three cases of the target QSD on the Gnutella graph using the dynamic NMMCmethod with
kα (α =0, 1, 3, 5, 10) and p=0.01.

6.6 Comparison with the Latest Approach for Graph Sampling

Lastly, we provide a comparison with the latest approach in [59] for sampling directed graphs.
Among only a few studies available in the literature on sampling from directed graphs, which shall
be explained later in Section 7, the latest practical solution is the one in [59], which is called Di-
rected Unbiased RandomWalk (DURW) algorithm.While our NMMCmethod is capable of achiev-
ing any distribution π on a directed graph and estimating its EVC x, which is much more than just
achieving ‘uniform’ samples from the directed graph, the comparison of our NMMCmethod to the
DURW algorithm would be interesting in the context of uniform graph sampling and is provided
below. We here focus on estimating π =u.
The DURW algorithm has two main parts. The first part is to transform the underlying directed

graph to an undirected graph. At each newly visited node, it keeps outgoing edges only to ‘not-
yet-visited’ nodes and converts them as undirected edges. This edge-pruning idea was originally
proposed in [6]. Upon the transformed, undirected graph, the second part is to use (i) a weighted
random walk with random jumps to everywhere in the graph and (ii) the importance sampling.
Specifically, the weighted randomwalk at node i chooses one of its neighbors uniformly at random,

with probability di
di+w

, and jumps (or teleports) to any random one in the graph, with probability
w

di+w
, wherew is the weight parameter for choosing a random jump and di is the degree of i . While

the former operation consumes a unit cost if a new node is sampled, the latter consumes the cost
c > 1. For a directed social network, assuming that its user-ID space is accessible, the cost c of a
random jump is the number of API calls required on average to find a valid ID for sampling. It
clearly depends on how sparse the user-ID space may be, which is unknown and uncontrollable.
Note that the random jumps may not be feasible at all in practice, e.g., for sampling Web graphs.
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Fig. 13. The TVD and NRMSE results of our dynamic NMMC method and the DURW algorithm under

Gnutella graph.

In addition, letting π
′ be the stationary distribution of the weighted random walk with random

jumps, one can see that π ′(i) is proportional to di +w . The importance sampling is then applied
to correct the bias from the non-uniform π

′. Thus, letting {Xt } be the trajectory by the DURW

algorithm, it is to use the ratio estimator x̂(i) :=
∑t
k=1 1{Xk=i }/π

′(Xk )
∑t
k=1 1/π ′(Xk )

to estimate π = u. Note that,

instead of π ′, its unnormalized version can be used in practice. We refer to [59] for more details.
Figure 13 shows the TVD andNRMSE results of ourNMMCmethodwithwk =k

α (α =0, 1, 3, 5, 10)
andp=0.01, and theDURWalgorithmwith various choices ofw and c under Gnutella graph,which
are from [59]. For example, the choice of w =0.1 behaves more like the pure simple random walk,
while the larger values ofw put more weights on random jumps. In addition, c=10 means 10 API
calls spent on average to sample a valid ID (or to teleport to a random node). Similarly for c = 77.
In addition, we here consider a single random crawler. It is because in the DURW algorithm, each
crawler has to build its own state space (or the transformed, undirected graph) as it explores the
graph, which is clearly time-varying and depends on its sample path, hence the state space can
never be shared with other crawlers. The query cost is again defined as the number of unique
queries normalized by the graph size (LSCC size) and given in percentage. We report the average
of the NRMSE over all i ∈N .
We see that our NMMCmethod generally performs better than the DURWalgorithm. A possible

explanation would be that the way to transform the underlying directed graph to an undirected
graph makes the transformed one ‘tree-like’. Thus, traversing the transformed graph could get
slower. While random jumps can speed up the graph traversal, the high cost of each random jump
eventually outweighs the benefit of moving to everywhere in the graph. We also observe that
carefully choosing the value ofw with given (yet unknown) cost c , the DURW algorithm would be
comparable to our NMMC method. In other words, the DURW algorithm requires a good choice
of w a priori against unknown c , before running the random crawler to explore a directed graph
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by ‘undirectifying’ directed edges on the fly. In contrast, our NMMC method performs well for a
wide range of values of α forwk =k

α .
We finally emphasize that while we take (directed) graph sampling as a primary application of

our NMMC method in this paper, the NMMC method can potentially find much broader scope of
applications beyond the graph sampling as we have witnessed the widespread applications of the
MH algorithm in many disciplines. The potential broader impact stems from the versatile appli-
cability of the NMMC method for generating any arbitrary probability distribution over the state
spaces violating the reciprocity condition, where the MH algorithm and other standard MCMC
methods are no longer applicable.

7 RELATED WORK

There have been a few studies on achieving uniform samples from directed graphs, ranging from
traditional Web graphs [6, 40, 61] to recent online social networks [30, 59, 75]. The key underlying
methods have been mainly (explicitly or implicitly) the MH algorithm and importance sampling
for Markov chains as in (22). The ‘non-uniform’ random walks, along with the importance sam-
pling, are typically the simple random walks and (personalized) PageRank walks [40, 61]. Unfortu-
nately, however, their stationary distributions are simply unknown, and the only viable approach
in [40, 61] has been to empirically “estimate" the stationary distribution (e.g., based on the visit
counts obtained by running a separate random walk), which is still known to suffer from the bias
toward the nodes with high in-degree [7]. Another simple way to get around the difficulty is to
just convert every directed edge to an undirected one (excluding the duplicate ones) [30, 61, 75],
which technically has noting to do with sampling from directed graphs.

A more practical method was proposed in [6] to construct an undirected graph on-the-fly from
a target directed graph for sampling, only considering the inbound links for each node discovered
before the node is visited for the first time, and then to apply, in essence, the MH algorithm with
Qi j = 1/maxk d

+

k
over the transformed undirected graph to obtain uniform samples. In short, the

edge conversion is done with edge pruning. This idea has been adopted later in [59] for a weighted
random walk with ‘random jumps’ (to anywhere in the undirected graph), equipped with the
importance sampling due to its non-uniform stationary distribution (on the undirected graph). In
contrast to all these,without knowing the stationary distributions or requiring any transformation
of the directed graph to another undirected version, our NMMC method is able to sample from
any target distribution over the directed graph with theoretical guarantees. We recently came
to know the work by Avrachenkov et al. [4] in which they briefly mention that their proposed
reinforcement learning-based sampling technique can potentially be applied to strongly connected
directed graphs, but without any theoretical and practical demonstrations. We here emphasize
that our NMMC method is even capable of sampling from a given distribution π over the set
of reachable nodes NS of the directed graph, even if the graph is not strongly connected, not to
mention the capability of estimating the EVC x of the (strongly connected) directed graph.

8 CONCLUSION

In this paper, we have shown how to go beyond the limitation set by the current MCMC methods
when state spaces violate the reciprocity condition and the global knowledge is unavailable. Unlike
the most studies in the literature that aim to improve a given MCMC algorithm or to propose a
better one within the same framework, our approach is fundamentally different and unique, in
that it works directly over any nonreversible proposed chain such as simple random walks on
directed graphs without sacrificing their distributed nature in the implementation. Our NMMC
framework builds upon our careful mapping from the proposed chain to the target distribution
on a set of transient states, and entails the machinery of the quasi-stationary distribution of a
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suitably constructed transient chain and the induced randomwalks with reinforcement to relocate
to positions from their past history, which are amenable to distributed implementation using only
locally available information. We have also devised a number of ways to improve the overall speed
of convergence and to enhance the practicability, by utilizing online estimates of in-degree and
the required global constant and by relaxing the assumption of the strong connectedness of the
underlying directed graph, to make our NMMCmethod readily applicable to most directed graphs
in reality.
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