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Abstract— Mobility is the most important component in mobile
ad-hoc networks (MANETs) and delay-tolerant networks (DTNs).
In this paper, we first investigate numerous GPS mobility traces
of human mobile nodes and observe super-diffusive behaviorin
all GPS traces, which is characterized by a ‘faster-than-linear’
growth rate of the mean square displacement (MSD) of a mobile
node. We then investigate a large amount of access point (AP)
based traces, and develop a theoretical framework built upon
continuous time random walk (CTRW) formalism, in which one
can identify the degree of diffusive behavior of mobile nodes even
under possibly heavy-tailed pause time distribution, as inthe case
of reality. We study existing synthetic models and trace based
models in term of the capability of producing various degrees
of diffusive behavior, and use a set of Ĺevy walk models due to
its simplicity and flexibility. In addition, we show that dif fusive
properties make a huge impact on contact-based metrics and
the performance of routing protocols in various scenarios and
that existing models such as random waypoint, random direction
model or Brownian motion lead to overly optimistic or pessimistic
results when diffusive properties are not properly captured. Our
work in this paper thus suggests that the diffusive behaviorof
mobile nodes should be correctly captured and taken into account
for the design and comparison study of network protocols.

Index Terms— Mobility models, trace-based models, super-
diffusion, mobile ad-hoc networks, routing protocols

I. I NTRODUCTION

Mobility is the most important factor in mobile ad-hoc net-
works (MANETs) and delay-tolerant networks (DTNs), and has
posed serious challenge to the analysis and design of protocols on
such networks. The mobility pattern directly impacts time-varying
contact/inter-contact dynamics among mobile nodes, whichin
turn affect the performance of any protocol built over these
mobility patterns [1]. Mobility models that fail to capturekey
characteristics in the movement pattern of mobile nodes will result
in misleading guidelines on the design of new protocols and their
performance evaluations and thus prevent us from making a right
decision on our choice.

To cope with the issue above, numerous approaches have been
put forth, ranging from various synthetic mobility modelings with
certain desired properties, to the numerical study of MANET
protocols using mobility traces obtained from real-world measure-
ments. Synthetic mobility models [2], such as random waypoint
models, random direction models, random walk or Brownian
motion on a square or a sphere, and their variations, have been
developed mainly for the purpose of simplicity and the ease of
analysis, but subsequently been criticized for their unrealistic
behaviors [3]. Another common approach is to rely on real
mobility traces [4] and use them as inputs to a simulator for

the study and comparison of protocols [3], [5]. This approach,
however, suffers from lack of the amount of available traceson
a fine time/space scale; most existing traces show only partial
or ‘filtered’ information about the real trajectories of mobile
nodes such as access point (AP) association information or
just contact duration with others, not the actual spatial-temporal
information of the mobile users on a fine scale. While [3], [5]
have tried to extract meaningful metrics and reconstruct detailed
mobility patterns out of those filtered traces using some heuristic
algorithms, such reconstructed traces are applicable onlyfor the
particular setting under consideration (e.g., the same campus) and
are highly sensitive on the choice of the reconstruction algorithm.

In this paper, we take a different approach from the above
two. We first investigate numerous GPS-based mobility traces
as well as AP-based traces to find out key characteristics in
movement patterns of mobile nodes. Unlike previous approaches
using mobility traces, we specifically focus on the locationof
mobile nodes and how it changes over time. We then find that
there is a common and distinctive characteristic observed in
all mobility traces,super-diffusive movement pattern, which is
characterized by a ‘faster-than-linear’ growth curve of the mean
square displacement (MSD), i.e.,E{‖Zt − Z0‖

2} ∼ O(tγ) with
γ > 1, whereZt ∈ R

2 is the position of the mobile node at timet.
The mean square displacement (MSD) – average square distance
traveled by a mobile node over time durationt – is non-parametric
and does not require anya priori specific mobility model for test,
and is robust against the noise/error in the coordinates of mobile
devices and the granularity of measurement time.

We then study existing synthetic models and trace based models
to find out whether these models can produce varying degrees of
super-diffusive behavior as observed from all GPS-based mobility
traces as well as AP-based traces, and show that each model
can generate only a limited range of diffusive properties or
cannot be conveniently used to produce different degrees of
diffusive property in practice. As a viable alternative, weuse a
set of Lévy walk models [6] as simple, easy-to-generate, yet still
versatile mobility models. The Lévy walk model is an isotropic
two-dimensional random walks, whose super-diffusive behavior
(super-linear growth in MSD) is easily controlled via a single
parameter – the exponent of its power-law step-length distribution.

In particular, for AP-based traces, we show that there is a way
to extract diffusive property of mobile nodes in AP-based traces
where location informationZt of a mobile node is spatially quan-
tized (to coordinates of APs) and sporadically time-sampled only
when mobile nodes get inside the range of an AP. By capturing
the tail behavior of the pause time of mobile nodes and with
the help of continuous time random walk (CTRW) formalism,
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we set out to extract key characteristics of the mobility patterns
again from MSD measurements. Specifically, we analytically
show that under the class of CTRW models, a class of Lévy walk
models interspersed with power-law distributed pause timecan
easily capture diffusive behavior observed in various AP-based
real traces. Lastly, we provide numerical results that showhow
varying degrees of diffusive properties affect the characteristics of
several contact-based metrics and simulation results for network
performance evaluation via six different routing protocols. We
consider various scenarios by changing the resource constraints
and node density, or by adding pause time. We also show the
impact of diffusive property on network performance by using
different diffusive sets of real trace. In particular, we show
that existing models such as random waypoint models, random
direction models and Brownian motion models may lead to overly
optimistic or pessimistic results when diffusive properties are
not properly captured. Our results thus collectively implythat
correct diffusive behavior of mobile nodes should be taken into
account for the development of new protocols and comparison
with existing ones.

The rest of the paper is organized as follows. In Section II, we
provide preliminary background and related work. In Section III,
we investigate GPS mobility traces, and characterize the super-
diffusive behavior of mobile nodes in terms of MSD. Then,
we analyze existing mobility models in the context of their
diffusive properties, and introduce Lévy walk models as good
candidates for producing various degrees of diffusive behavior. In
Section IV, we investigate AP-based traces, and characterize the
diffusive properties when pause time is included. In Section V, we
introduce CTRW and generalized MSD for a class of isotropic
random walks with heavy-tailed pause time. In Section VI, we
provide simulation and numerical results to show the impact
of diffusive properties on contact-based metrics and network
performance in various scenarios. In Section VII, we discuss the
issue of other factors toward the super-diffusive propertyand how
to incorporate the observed property in traces into the set of Lévy
walk models. We then conclude in Section VIII.

II. PRELIMINARIES

In this section, we present background on the mean square
displacement – a metric to capture the rate at which mobile nodes
spread out, and the super-diffusion, and then give a brief summary
of various approaches to the mobility modeling in the literature.

A. Mean Square Displacement (MSD)

One way to characterize the movement of a mobile node is to
measure how far it is away from its current position after time
t. This ‘diffusive’ behavior or the rate at which the mobile node
spreads out can be described and quantified by so-called the mean
square displacement (MSD) [6], [7]. Specifically, if we define
Zt ∈ R

2 to be the position of the mobile node at timet, then the
MSD becomesM(t) , E{‖Zt −Z0‖

2}, (i.e., the second moment
of the displacement‖Zt−Z0‖ between the current position at time
t and the position at time0) and

√
M(t) gives typical amount of

displacement of the mobile node after timet. For example, for a
class of isotropic random walks with finite step-length1 variance,
the MSD will grow linearly witht, i.e.,M(t) ∼ t, provided that

1Step-length is defined as the distance that a walker moves before changing
its direction.
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Fig. 1. MSD computation and sample trajectories of two nodeswith different
diffusive properties. Two nodes moving with the same speed (1.34 m/s) are
simulated over the same duration (10000 sec).

the speed of the mobile node isO(1) (or constant).2 In general,
we haveM(t) ∼ O(tγ) for someγ > 0. The slope ofM(t) in
a log-log scale (γ) characterizes how fast a node spreads out in
a simple way. Figure 1(a) shows how MSD can be measured. In
this figure, as the mobile node starting from the origin follows the
trajectory shown in dashed line, we can collect the displacement
at each time instantti and investigate how MSD grows with time
t to uncover the diffusive property of mobile nodes.

B. Super-Diffusion

When the step-lengthL has infinite variance (σ2
L = ∞),

the mobile node tends to quickly spread out since longer step-
lengths are generated more often. This behavior is calledsuper-
diffusion [8], [9], while for σ2

L <∞ it is called normal diffusion.
The varying degrees of diffusive properties of mobile nodescan
be conveniently captured by the slope (γ) of M(t) in a log-log
scale (i.e.,M(t) ∼ tγ ). For example, we haveγ = 1 for a normal
diffusive case, whileγ > 1 for super-diffusive case (faster-than-
linear growth of the MSD). Figure 1(b) shows typical sample
trajectories of two mobile nodes with different diffusive properties
(different γ). While both nodes have the same speed (1.34 m/s)
and run over the same duration (10000 sec), the super-diffusive
node (γ = 1.5) spreads out from the origin much farther than the
normal-diffusive node (γ = 1.0). As Figure 1(b) illustrates, the
occasional long jumps are key characteristics of super-diffusive
movement patterns.

C. Related Work

In the literature, numerous synthetic mobility models havebeen
proposed to help network designers evaluate and compare proto-
cols on MANETs and DTNs. Examples include random waypoint
mobility model, random direction mobility model, random walk
mobility model and its many derivatives such as Brownian motion
model on a sphere, among others. (See [2] for a survey.) While
these models are easy to generate and provide a quick platform to
compare the performance of network protocols, they are mainly
for the sake of simplicity and ease of comparison. Recent empir-
ical results also indicate that current synthetic mobilitymodels
are not able to capture the characteristics of the real mobility
patterns [10], [11].

2This is similar to the case of 2-D Brownian motion with its variance
growing linearly witht.
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On the other hand, a large set of traces measured in various
environments [4], [12], [13] have been used to extract the key
characteristics of mobile nodes and construct realistic mobility
models [3], [5], [14], [15]. This collection of traces provides
useful information when many participants are involved fora
long observation period. In [3], [5], authors extract key features in
mobile traces of their own campus, and propose realistic mobility
models. [16] studied the time and space domain characteristics
based on device registrations of mobile users at APs. In their
extended work,Model T [14] included the space registration
patterns of mobile users, andModel T++ [15] incorporated both
the time and space registration patterns in their model. [17]
proposes a mobility model that features time variance and periodic
reappearance in mobile traces. In [18], social network theory is
employed to construct their community based mobility model
and tested with real traces. In our work, we find‘super-diffusive
movement patterns’in mobile traces as the key characteristic, and
study other models in the view of producing diffusive properties.

The mobility model has also been a central topic in other sci-
entific disciplines and various attempts to explain the movement
of living organisms in nature have been made [19], [20], [21].
In particular, the so-called Lévy walk model, whose defining
characteristics is its super-diffusive property, has beenadopted
for modeling the movement patterns of living organisms suchas
Microzooplankton [22], seabirds (albatross) [23], reindeer [24],
jackals [25], and monkeys [26], [27], as well as capturing their
foraging patterns [28], [29]. Quite recently, the super-diffusive
behavior of mobile nodes has also received attention in repre-
senting human mobility pattern via a limited number of GPS-
based traces [30], [31]. In contrast, in this paper, we investigate
the vast amount of AP-based traces [4], [12], [13] (for which
GPS-coordinate information is unavailable) through the CTRW
formalism with heavy-tailed nodes’ pause time [3], and find that
the super-diffusive behavior of nodes’ movement is auniversal
property in all the mobility traces under our study.

III. D IFFUSIVE BEHAVIOR IN GPS-BASED TRACES AND

SYNTHETIC MODELS

In this section, we examine various GPS traces with different
movement patterns and show all of them display the super-
diffusive behavior. We then study whether the existing synthetic
models can effectively capture the observed diffusive properties.

A. GPS Traces Validation

In this part, we investigate various GPS-based mobility traces
for human beings and divide them into several categories based
on the movement patterns – walking, running, inline skatingand
bicycling, in view of future applications such as MetroSense [32].

source duration sample # of nodes
Web-Walking [33] 19 hours 3–60sec 11
Web-Running [33] 27 hours 3–60sec 22

Web-Inline Skating [33] 42 hours 3–60sec 17
Web-Bicycling [33] 36 hours 3–60sec 13

UW-Walking [4] 2 hours 1 sec 1
NCSU-Walking [35] 3 weeks 1 sec 1

TABLE I

SUMMARY OF GPSTRACES

1) Available GPS Traces:Table I is the summary of GPS
traces of human beings under our consideration for their diffusive
properties. Below is the detail about the GPS traces sources.

www.gps-tour.info: [33] is GPS device users’ community web-
site where users share GPS traces. This website has an extensive
amount of data from about 50 countries for various activities. We
use this as our main source of GPS traces.

University of Washington: The GPS trace of University of
Washington (UW) was collected by one of the authors in [34]
for about two hours. This trace provides thex, y co-ordinates of
the mobile node every second even inside of buildings by using
Place Lab.

NCSU: NCSU GPS traces [35] were collected from the present
authors’ school campus, where one student carried a GPS device
(Garmin eTrex [36]) to collect GPS traces.

2) Extracting MSD from GPS traces:We investigate diffusive
behavior of mobile nodes from all the available GPS traces in
Table I. In order to decouple any effect of pause time from nodes’
diffusive behavior, we first removed all the pause time in theGPS
traces, and then computed MSD from the resulting traces.
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Fig. 2. MSD of human mobile nodes. In all cases, MSD increasesfaster
than linear (super-diffusive behavior).

Figure 2 shows the MSD of mobile nodes with different
movement patterns from GPS traces on a log-log scale. In all
cases, MSD increases faster than linear withγ > 1, which implies
the super-diffusive behavior of mobile nodes. Different values
of γ conveniently captures the degree of diffusive behavior. For
instance, mobile nodes with inline skate (γ = 1.88) tend to spread
out quickly and show almost ballistic movements during certain
time range, while walking mobile nodes (γ = 1.48) tend to spread
out a little slower than mobile nodes with inline skate, but still
faster than the normal diffusion withγ = 1 (the case of Brownian
motion). Regardless of movement patterns, MSD grows faster
than linear (γ > 1) in all cases.

B. Diffusive Behavior in Synthetic Models

In this part, we first study diffusive behavior in current synthetic
mobility models via their MSD and show that most of them
are not suitable for capturing varying degrees of super-diffusive
pattern. We then propose to use a set of Lévy walk models as a
simple alternative to current synthetic models.
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Fig. 3. Mean Square Displacement (MSD) of the existing synthetic mobility models (a)–(c) and the Lévy walk models on a log-log scale.

1) Correlated Random Walks:Among existing synthetic mo-
bility models, we first consider several correlated random walk
models to see if they can capture super-diffusive behavior.Since
a mobile node in a correlated random walk tends to move along
the same (or similar) direction for a while before changing its
direction, these models might be good candidates for capturing
super-diffusive behavior. Here, we consider the followingset
of correlated random walk models currently used in MANET
simulations.

Correlated Random Walk on Grid (CRWG): A two-
dimensional correlated random walk model on grid is proposed in
[37] as a generalization of Manhattan mobility model [1]. Inthis
model, a mobile node takes a step to the same direction as the
previous one with probabilityp and opposite direction (moving
backward) with probabilityq, while the probability of turning
right or left is r satisfyingp+q+2r= 1. By assigning different
values ofp, q, we can control the degree of tendency for a mobile
node to follow the same direction.

Gauss-Markov Mobility Model: A Gauss-Markov mobility
model [2] first assigns an initial speed and direction of a mobile
node. After moving for a fixed amount of timet, the mobile
node updates its speed and direction based on the previous
speed and direction (much like an auto-regressive recursion),
where the speed and turning angle follow Gaussian distributions.
Specifically, the direction (turning angle) of thenth step θn is
updated as

θn = ρθn−1 + (1 − ρ)θ̄ +
√

(1 − ρ2)θxn−1
, (1)

whereθxn

d
=N (0, σ2) arei.i.d. zero mean Gaussian with variance

σ2, ρ ∈ [0, 1] is the correlation coefficient, and̄θ is the preferred
direction (angle). Step-lengthln also follows a similar recursion.
We here consider a modified version of this Gauss-Markov model
for fair comparison with other models in a way that after every
t second, we update its step-length (instead of its speed) with
its speed (1.34 m/s) and the preferred step-length (10m) kept the
same all the time.

This Gauss-Markov model in (1) offers a great deal of flexi-
bility by controlling the shape of distribution (σ) and correlation
structure (ρ). For instance, whenρ ≈ 1 andσ2 is small, the turning
angles (θi in Figure 4) remain almost the same, thus the mobile
node will follow a straight line for a very long time, while for
ρ ≈ 0 and largeσ the angle distribution approaches to a Gaussian
with meanθ̄ and a large varianceσ, but independent over time,

thus is close to that of an isotropic random walk.

2) MSD of Correlated Random Walks:Figure 3(a) shows the
MSD of correlated random walks on grid (CRWG) using different
model parameters on a log-log scale. For correlated random walks
on grid (CRWG), we generate two sets of trajectories using
parameters(p, q, r) = (0.5, 0, 0.25) and (p, q, r) = (0.9, 0, 0.05),
respectively. The case ofp = 0.9 reflects stronger correlations in
the angles before changing the direction either to right or left,
which can make the long jumps. Figure 3(a) shows that larger
correlation coefficient with long steps only cause the MSD to
move up, without affecting the linear growth of the MSD.

Figure 3(b) shows the MSD of Gauss-Markov mobility models
with different degrees of correlations (ρ) and varianceσ2 of
turning angleθn. For σ = 2, 4, a mobile node tends to deviate
from its preferred angle with varying degree of step-lengths,
which all contribute to the linear growth rate of the MSD even
when there exists considerable amount of correlationsρ = 0.95.
On the other hand, as can be seen for the case ofσ = 1, Gauss-
Markov model is likely to generate ‘ballistic’ trajectory (γ = 2)
where the marginal angle distribution is ‘pointed’ with small
σ (the mobile node has favorite direction and remembers this
forever), and the MSD now grows much faster than linear. In all
cases we see thatσ plays a dominant role in shaping the angle
distribution than the amount of correlationρ, since the effect of
smallσ persists in the turning angle (the mobile node remembers
its preferred angle forever) while the effect of correlations will be
smoothed out over longer period as already seen in Figure 3(a).

To sum up, in order to capture the super-diffusive behavior with
correlated walk models, one would have to tweak the distribution
and correlations of the angles very carefully. As Figures 3(a) and
3(b) show, however, this approach would typically result ineither
γ ≈ 1 or γ ≈ 2, thereby making it unwieldy or practically
infeasible to generate various mobility patterns with different
degrees of diffusive behavior.

3) MSD of mobility models with boundary (RWP and RD):The
MSD of RWP (Random Waypoint) and RD (Random Direction)
model as shown in Figure 3(c) illustrate the unique diffusive
properties of these models. In both models, a node tends to
spread out quickly from its initial position with the start of
simulation. This gives rise to super-diffusive movement patterns
due to ‘ballistic’ trajectories over a short period, duringwhich
the slope of MSD is almostγ ≈ 2. By the time at which most
nodes ‘feel’ the boundary of simulation, nodes tend to change
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their directions and come back. Note that the timescale overwhich
the node diffuses is much shorter than other models in Figure3.
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Fig. 4. Isotropic random walk with step-lengthLi and turning angleθi. {Li}
arei.i.d. with probability densityfL(l), and{θi} arei.i.d. with unif[0, 2π].

4) Lévy Walk model:A Lévy walk model is defined as follows.
Suppose that a mobile node first chooses a step-lengthL and
then moves that distance with some constant speed at an angle
θ drawn uniformly and randomly from[0, 2π] as illustrated in
Figure 4. When it finishes that step-length, it repeats the process,
independently of the past. When the first or the second moment
of the step-lengthL becomes infinite, the model is called aLévy
walk [6]. For a Lévy walk model, the step-length density is
characterized by

fL(l) ∼ l−µ, 1 < µ < 3,

where µ > 1 is required for any valid probability density
function. Under a Lévy walk mobility model, a mobile node
occasionally moves along a very long straight line with non-
negligible probability, interspersed with successive short steps
with random orientation. Unlike other mobility models thatwould
require subtle choice of several parameters to control diffusive
properties, Lévy walk models can directly control the degree
of super-diffusive properties by adjusting the exponent ofstep-
lengthsµ (single parameter) as shown in Figure 3(d).

IV. D IFFUSIVE BEHAVIOR IN AP-BASED TRACES

In addition to the GPS traces in Section III-A, there exist
a large amount of mobility traces [4], [12], [13] with many
mobile nodes recorded over much longer duration. These traces
have been valuable resources and widely used in many studies
of MANETs [5], [10], [38]. Unfortunately, however, they only
provide ‘filtered’ information on the location of mobile nodes (AP
association information [4], [12], [13] or duration of contact/inter-
contact with other mobile nodes [4]) without exact movement
patterns of mobile nodes. This prevents us from directly applying
the same techniques used in Sections III-A to find diffusive be-
havior in mobile nodes. In addition, the long (heavy-tailed) pause
time of mobile nodes in AP-based traces further complicatesour
understanding of their correct diffusive behavior purely from the
movement components. In this section, we closely investigate AP-
based traces in light of the MSD of mobile nodes and their pause
times inside APs. Later in Section V, we will apply the CTRW
formalism to make statistical inference about the true diffusive
properties of mobile nodes in these traces.

A. Available AP-Based Traces

To verify diffusive properties in AP-based traces, we use two
sets of data, University of California at San Diego (UCSD)
traces [12] and Dartmouth College traces [4], for which AP-
coordinates are available and they are most widely used in
literatures. The summary of AP-based traces is given in Table II.

source UCSD [12] Dartmouth [4]
duration 1 month (2004.9∼10) 6 months (2004.1∼6)

# of nodes 275 13871
# of APs 196 506
sample every 20 sec depending on devices
place campus campus
area 1200m× 1400m 600m× 700m

device PDA various

TABLE II

SUMMARY OF AP-BASED TRACES

To extract the data set that can well represent the mobility of
nodes from the huge amount of traces in Table II, we preprocessed
the raw data. First, we used only weekday traces as the quantity
of weekday traces is guaranteed to be large, and the mobility
pattern during weekday is more consistent. Then, we considered
the traces only after 9AM each day, as most mobile nodes start
doing activities over this period. In order to rule out short-lived
nodes leaving the network quickly, we only considered mobile
nodes whose traces are at least 3 hours long.

B. MSD with Pause Time in AP-Based Traces

While AP-based traces do not have exact coordinates of mobile
nodes, they still contain some information on how quickly mobile
nodes spread out. Recall that for each mobile node and for each
AP with known coordinates(xi, yi), we know when the mobile
node enters this AP (say,tj). By tracking this information of
time instants and coordinates in an increasing order oftj , we can
compute the distance a mobile node has traveled from its starting
point for certain time duration. In other words, we can obtain
sample values of the MSD and consequently its slope (γ) on a
log-log scale.
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Fig. 5. Illustration of properties/limitations of AP-based traces. Location
of mobile nodes are mapped to AP-coordinates whenever they are associated
with APs and unknown otherwise. A is the location where a mobile node
pauses.

In addition to the MSD samples, AP-based traces also contain
some information about the pause time of each mobile node.
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As shown in Figure 5, a collection of intervals during which
a node is associated with some AP (e.g.,[t1, t2], [t3, t4], . . .),
tells us how long the node stays inside the range of an AP.
This interval is often called a session time [3]. Note that one
session time interval consists of actual amount of pause time
(point A in AP2 in Figure 5) and the amount of time during
which the mobile node keeps moving within the range of AP,
i.e., Tsession = Tpause + Tmove. AP-based trace data reveal that
the session time can be very long and range up to several hours[3]
(e.g., students stay inside a classroom or library). Thus, it is
reasonable to assume that pause time accounts for the majority
of the session time interval, as long as the radius of ‘AP-disk’ is
not so large.3
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Fig. 7. Dartmouth Traces: (a) CCDF of session time; (b) MSD ona log-
log scale. Session time and diffusive behaviors are similarto those of UCSD
traces in Figure 6.

Figure 6(a) shows that the CCDF of the session time in UCSD
trace data follows a power-law with exponent around−0.38. The
session time in Figure 6(a) is collected during the same period
as in Figure 6(b). In these figures, we only consider session time
samples up to 10 hours long, since the session time longer than
10 hours would be from devices that remain on but are not used
for a long time. Note that the amount of sojourn time inside an
AP due to movement (Tmove) has the same order as the first

3A survey in [39] shows that the ratio between total moving time and total
pause time (stationary time) of students in campus is about 0.12, implying
that they spend on pause about 8 times more than on movement.

hitting time of a 2-D random walker to the perimeter of AP-
disk starting from inside, whose distribution is known to beat
most exponential [40]. This implies that the tail of the pause
time probability density functionφ(t) also follows a power-law
φ(t) ∼ t−β with β ≈ 1.38.

Figure 6(b) shows the sample values of the MSDM(t) over
time t in a log-log scale using traces from 9AM. (All the
inset figures are from 11AM.) During the time duration from
2000 to 10000 seconds (for about 2.5 hours), MSD of mobile
nodes increases withγ ≈ 0.65. As expected, the existence of
heavy-tailed pause time makes the MSD grow much slower
compared with the case of GPS traces in Section III-A.4 Unlike
the GPS traces, however, it is impossible to extract the pause time
component from the AP-based traces as mobile nodes do move
around inside APs, whose component is subsumed into the session
time as a whole. Nevertheless, later in Section V, we will show
that there is a way to infer the true diffusive behavior of mobile
nodes from their movement components only and that it is again
super-diffusive as is the case for GPS traces in Section III-A.

Here we point out that the super-diffusive behavior captured
by the super-linear growth ofM(t) should be addressed only
on a relevant time scale, not necessarily over all timet. For
example, mobile nodes in school (students) spread out for a
while and eventually tend to come back to their starting points
(e.g., dormitory, library or classroom). Indeed, Figure 2 shows
that the typical timescale for the super-diffusive behavior is up
to O(103) seconds, beyond which the mobile nodes display no
further diffusive behavior or strong tendency to come back.Note
that this timescale of several thousands of seconds iswithout the
pause time, so with possibly very long pause time (e.g., several
hours), the timescale for the diffusive behavior with pausetime
would have been prolonged. In both UCSD and Dartmouth traces,
similar diffusive properties are observed in almost identical time
scale2000 ≤ t < 10000 as shown in Figures 6(b) and 7(b). Note
that the time scale2000 ≤ t < 10000 can represent the overall
diffusive property well since both movement diffusive property
and pause time are fairly considered in this time scale regardless
of the type of mobile devices. We also point out that the diffusive
property over time scalet < 2000 andt ≥ 10000 is sensitive to the

4When MSD grows slower than linear (γ < 1) as shown in Figure 6(b), it
is called ‘sub-diffusive’[19].
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types of devices and user characteristics of traces. For example,
PDA users are likely to start to move after they turn on the device,
while laptop users5 tend to stay where they are right after they
turn on the devices, which explains the different diffusiveproperty
for t < 2000. Beyond10000 seconds, MSD tends to decrease or
fluctuate around some value in both traces, which is due to the
geographical constraints and/or the tendency of coming back to
the starting point. However, note that the tendency of coming back
to the same location that they have left in the morning for UCSD
trace is stronger than Dartmouth trace, (All the users in UCSD
traces are freshmen and most of them live in a dormitory.) which
corresponds to the different diffusive property overt ≥ 10000.

In AP-based traces, since the exact coordinates of mobile nodes
at each timet is unavailable inside APs, we have simply assumed
that the coordinate of an AP represents that of all mobile nodes
within the communication range of APs. To justify this assump-
tion, we did a simple experiment. First, we set the communication
ranger of one AP to25m, which is reasonable considering the
real wireless network. Then, we newly set the coordinate of each
mobile nodes inside an AP to another randomly (and uniformly)
chosen location inside the AP-circle of radiusr. Figure 6(c) shows
the MSDM(t) over timet after we randomize the locations of
mobile nodes inside APs. Observe that the MSD exponents are
largely unaffected by this randomization when compared with the
original (non-randomized) version in Figure 6(b). To explain this
behavior, letZt be the original coordinate of a mobile node at
time t andNt be a stationary zero-mean random process in 2-D
(independent ofZt) with E{‖Nt‖

2} = σ2
N <∞, representing the

‘noise’ in the coordinates of mobile nodes in our randomization
procedure. Then, the ‘estimated’ location at timet becomes
Z̃t , Zt +Nt, whose MSD is in the form of

M̃(t) = E{‖Zt +Nt‖
2} = E{‖Zt‖

2} + σ2
N = M(t) + σ2

N .

Since we are only interested in the growth rate of the estimated
MSD (slope ofM̃(t) on a log-log scale), the effect of ‘random
quantization’ of the coordinates is ruled out in estimatingthe
diffusive behavior of the original, but unknownZt. This implies
that our estimate of the diffusive property through MSD is robust
against other types of noises such as frequent association changes
between APs, which is known as aping-pong transition[41].

V. CONTINUOUSTIME RANDOM WALK (CTRW)

In Section IV, we showed diffusive properties of AP-based
traces as is, with the pause time added. In this section, we
introduce and utilize the general framework of CTRW [42], [43],
[44] in order to uncover the true diffusive behavior of mobile
nodes in AP-based traces without pause time. Specifically, we
consider a class of isotropic random walks as depicted in Figure 4,
but now we allow a mobile node to pause for a random amount of
time with some probabilityp, independently of all others, at each
turning point. Then, we present a set of equations to computethe
MSD for this generalized CTRW (with heavy-tailed pause time)
and identify under what conditions we can recover the observed
the MSD growth rate of AP-based traces (as seen in Figures 6 and
7). Lastly, we confirm through theoretical and numerical results
that a class of Lévy walk models interspersed with power-law

5Many different types of mobile devices contribute to Dartmouth trace.
Even though laptop is not the only type of device in this trace, we use laptop
users as an example to point out that users in Dartmouth traceare less mobile
in general than the PDA users in UCSD trace over time scalet < 2000.

pause time can effectively capture the diffusive behavior observed
in the ‘filtered’ AP-based traces.

TABLE III

NOTATIONS AND DEFINITIONS USED INSECTION V

Notation Definition

M(t) mean square displacement (MSD)
P (~r, t) joint probability density for a node to be located at~r ∈ R

2

if started from the origin att = 0
fL(l) probability density of a step-length
ψ(t) probability density for the time duration of a single step
f(~r|t) conditional probability density that a node makes a

displacement of~r in a single step for a given time durationt
h(~r, t) joint probability density that a node makes a displacement

of ~r in a single step and this takesexactlyt seconds
(h(~r, t) = f(~r|t)ψ(t))

H(~r, t) probability that a node makes a displacement of~r in time t
within a single step and it takesat leastt seconds to
complete a single step (H(~r, t) = f(~r|t)

∫
∞

t
ψ(τ)dτ )

φ(t) probability density of a pause time between successive steps
Φ(t) probability that a node has not moved until timet

(Φ(t) =
∫
∞

t
φ(τ)dτ )

µ step-length exponent
β pause-time exponent
γ MSD exponent

To set the stage, letP (~r, t) be the joint probability density for a
node to be located at~r ∈ R

2 if started from the origin att = 0. We
define byh(~r, t) the joint probability density that a node makes a
displacement of~r in a single step and this takesexactlyt seconds.
We further define byφ(t) the probability density of a pause time
between successive steps. In particular,h(~r, t) can be written as
h(~r, t) = f(~r|t)ψ(t), whereψ(t) is the probability density for
the time duration of a single step andf(~r|t) is the conditional
probability density that a node makes a displacement of~r in a
single step for a given time durationt. For example, if the node
moves around with constant speedv all the time, thenf(~r|t) is
in the form of δ(‖~r‖ − vt) since the node can travel exactlyvt
meters duringt seconds, whereδ(·) is the Dirac delta function.

Moreover, based onh(~r, t) andψ(t), we further defineH(~r, t)

and Φ(t). H(~r, t) denotes the probability that a node makes a
displacement of~r in time t within a single step and it takesat
least t seconds to complete a single step (i.e., the probability
that a node makes a displacement of~r for time t and it does
not necessarily stop to initiate a new step or to stay at timet).
Thus, H(~r, t) can be written asf(~r|t)

∫
∞

t ψ(τ )dτ . In addition,
Φ(t) denotes the probability that a node has not moved until time
t, which is given

∫
∞

t φ(τ )dτ . For reference, all the notations and
definitions used in this Section are summarized in Table III.

We are interested in computingP (~r, t) as this provides com-
plete information on where the node will be located at any given
time t. The desiredP (~r, t) can be obtained by summing over
all the possible events. Note that a displacement of~r in time t
can be made by either a single step or multiple steps. Thus, by
conditioning upon first step taken,P (~r, t) can be decomposed
into the following four (disjoint) cases:

(i) The node reaches~r in time t within its first step without
pause during[0, t].

(ii) The node reaches~r at some earlier timeτ ∈ (0, t) in its
first step and stays there for a remaining timet − τ with
probability p.

(iii) The node reaches~ρ 6= ~r at some earlier timeτ ∈ (0, t) in
its first step, takes no pause time with probability1−p, and
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then continues to move from~ρ to reach~r for a remaining
time t− τ .

(iv) The node reaches~ρ 6= ~r at some earlier timeτ ′ ∈ (0, t) in its
first step, takes pause time ofτ − τ ′ > 0 with probability
p, and then continues to move from~ρ to reach~r for a
remaining timet− τ .

Note that for cases (iii) and (iv), the node makes displacement of
~r − ~ρ during t − τ , which in turn consists of another several
steps and pauses. Combining all the cases above, we arrive
to the following recursive equation analogous to the backward
equation of Chapman-Kolmogorov equation in the theory of
Markov processes:

P (~r, t) = H(~r, t) +

∫ t

0
dτh(~r, τ ) p Φ(t−τ )

+

∫∫

R2

d2~ρ

∫ t

0
dτh(~ρ, τ )(1−p)P (~r−~ρ, t−τ )

+

∫∫

R2

d2~ρ

∫ t

0
dτ

∫ τ

0
dτ ′h(~ρ, τ ′)pφ(τ−τ ′)P (~r−~ρ, t−τ ), (2)

whereH(~r, t) = f(~r|t)
∫
∞

t ψ(τ )dτ andΦ(t) =
∫
∞

t φ(τ )dτ .

Note that as we are interested in the location~r of the node at
any given timet, the node would be located at~r at timet during
the movement of a single step or pause time, not necessarily to
be the end of a single step or pause time. Thus, for the first and
second terms,H(~r, t) and Φ(t) are used instead ofh(~r, t) and
φ(t), respectively.

As MSD is the second moment of the displacement‖Zt −

Z0‖ between the current position at timet and the position at
time 0 as defined before, Fourier transform (i.e., characteristic
function) could be a convenient way to derive MSD. We define
by P (~ω, ·) the Fourier transform (~r → ~ω) of P (~r, ·), i.e.,P (~ω, ·) =∫∫

R2 P (~r, ·)ei~ω~rd2~r. Thus, MSD can be easily computed by taking
the second derivative ofP (~ω, t) and by evaluating it at~ω = ~0,
i.e.,

M(t) = −
∂2P (~ω, t)

∂~ω2

∣∣∣
~ω=~0

. (3)

Similarly, we take Laplace transform with respect tot (t → s)
and defineP̂ (·, s) =

∫
∞

0 P (·, t)e−stdt. Note that we useF and
F̂ to denote Fourier and Laplace transform ofF with respect
to (~r → ~ω) and (t → s), respectively. In particular,̂F is
used to denote Fourier-Laplace transform ofF over appropriate
arguments. Note that Fourier and Laplace transforms exhibit the
following convolution property:

∫∫

R2

[∫∫

R2

f(~ρ, ·)g(~r−~ρ, ·)d2~ρ

]
ei~ω~rd2~r = f(~ω, ·)g(~ω, ·),

and
∫

∞

0

[∫ t

0
f(·, τ )g(·, t− τ )dτ

]
e−stdt = f̂(·, s)ĝ(·, s),

wheref andg are well-defined functions.
Therefore, by taking Fourier-Laplace transform of (2) and

exploiting the efficiency of the convolutional property, weobtain

P̂ (~ω, s) =

∫
∞

0

[∫∫

R2

P (~r, t)ei~ω~rd2~r

]
e−stdt

= Ĥ(~ω, s) + pĥ(~ω, s)Φ̂(s) + (1 − p)ĥ(~ω, s)P̂ (~ω, s)

+ pĥ(~ω, s)φ̂(s)P̂ (~ω, s). (4)

Then, P̂ (~ω, s) becomes

P̂ (~ω, s) =
Ĥ(~ω, s) + pĥ(~ω, s)Φ̂(s)

1 − ĥ(~ω, s)[pφ̂(s) + 1 − p]
. (5)

In principle, it is theoretically possible to computeP (~r, t) by
taking inverse Fourier-Laplace transform of (5) as long ash(~r, t)

and φ(t) are known. However, the complicated structure of (5)
defies any such attempt, and further, we are only interested in the
behavior of MSD (3) in the asymptotic (larget). For this purpose,
one can utilize the following Tauberian theorem [42], [45],which
provides a relationship between large timet behavior ofF and
small s behavior of its Laplace transform̂F .

Theorem 1:[Tauberian theorem in [42], [45]] Iff(t) ≥ 0,
f(t) is ultimately monotonic ast → ∞, L is slowly-varying at
infinity and 0 < ρ < ∞, then each of the relations

f̂(s) =

∫
∞

0
f(t)e−stdt ∼ L

(
1

s

)
s−ρ as s→ 0

and

f(t) ∼
tρ−1L(t)

Γ(ρ)
as t→ ∞

implies the other. �

In this way, we can obtain the following:

Theorem 2:Let fL(l) ∼ l−µ and φ(t) ∼ t−β (µ, β > 1)
be the probability density of the step-length and pause time,
respectively6. Then, under the aforementioned CTRW formalism,
for p = 0 we have

M(t) ∼ tγ , γ =






1 if µ > 3,

4 − µ if 2 < µ < 3,

2 if 1 < µ < 2,

and for0 < p ≤ 1 we have

γ =

β
µ

1 < µ < 2 2 < µ < 3 µ > 3

1 < β < 2, β < µ 2+β−µ 2+β−µ β−1
1 < β < 2, β ≥ µ 2 N/A N/A

2 < β < 3 2 4−µ 1
3 < β 2 4−µ 1

Proof: Since we are only interested in the asymptotic
behavior of the MSDM(t), without loss of generality, we can
work with 1-D projection (ontox-axis) of the original 2-D
CTRW. To see this, note first thatM(t) = E{‖Zt‖

2}, where
Zt = (‖Zt‖ cos θt, ‖Zt‖ sin θt) ∈ R

2 is the position of a mobile
node at timet andZ0 = (0, 0). Since each step length and angle
in the 2-D random walk arei.i.d., its projection onto x-axis is
also i.i.d. with zero mean (θt is uniform over [0, 2π]) and the
1-D projection‖Zt‖ cos θt also becomes a CTRW with the same
pause time as in 2-D case. In particular, each step of this 1-D
CTRW is symmetric and its MSD is given byE{‖Zt‖

2 cos2 θt} =

M(t)E{cos2 θt} = Const.M(t), thus the MSD behavior of 1-D
version is essentially the same as that of 2-D version. Therefore,
it suffices to show the MSD behavior of 1-D version. We refer

6In the aforementioned CTRW formalism,ψ(t) is used instead offL(l).
Thus, note thatψ(t) ∼ t−µ (1 < µ) becausefL(l) ∼ l−µ and the time
duration t of a single step is equal to the lengthl of the single step times
some constant1/v.
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to [43], [44] for the proof of 1-D version with eitherp = 0 or
p = 1.

For 0<p<1, we extend the proof of 1-D version withp = 1.
As we deal with the 1-D symmetric CTRW, 2-D location term
(~r ∈ R

2) is simply changed by 1-D location term (r ∈ R)
in the predefined functions (i.e.,P (~r, t), f(~r, t), h(~r, t), and
H(~r, t)) with an appropriate 1-D integral operation. Similarly,
Fourier transform (r → k) of f(r) is also redefined asf(k) =∫
∞

−∞
f(r)eikrdr and thusF is used to denote Fourier transform of

F with respect to (r → k) instead of (~r → ~ω). Recall thatP (r, t)

(1-D version ofP (~r, t) (2) with respect to the node location)
and its Fourier-Laplace transform̂P (k, s) determine the slope of
MSD (γ) in the aforementioned CTRW formalism. Given that
ψ(t) ∼ t−µ andφ(t) ∼ t−β (µ, β > 1), the conditional probability
density that a node makes a displacement ofr ∈ R in a single
step for a given time durationt, f(r|t), is still unknown to derive
P (r, t) andP̂ (k, s). However, due to the 1-D symmetry of CTRW,
f(r|t) can be written asf(r|t) = 1

2 [δ(r − vt) + δ(r + vt)] [43],
[44].

We can now completely deriveP (r, t) and P̂ (k, s). Then, as
discussed earlier, by taking the second derivative ofP̂ (k, s),
we obtain the following equation of MSD in Laplace transform
domain.

M̂(s) = −
∂2P̂ (k, s)

∂k2

∣∣∣∣
k=0

= −
∂2

∂k2

(
Ĥ(k, s) + pĥ(k, s)Φ̂(s)

1 − ĥ(k, s)[pφ̂(s) + 1 − p]

) ∣∣∣∣∣
k=0

=
−s∂2Ĥ(k,s)

∂k2

∣∣
k=0

− ∂2ĥ(k,s)
∂k2

∣∣
k=0

s
[
1 − ψ̂(s) + pψ̂(s)(1 − φ̂(s))

] . (6)

Note that because of the symmetric form off(r|t), M̂(s) can be
simplified as (6). Then, to compute the slope of MSD (γ), we
can exploit the Tauberian theorem (Theorem 1), which provides
a relationship between large timet behavior ofM(t) and smalls
behavior of its Laplace transform̂M(s) (i.e., the slope of MSD
(γ) is mainly determined by the exponent ofs). From (6), we
can deduce thatp only contributes to the constant coefficient in
M̂(s), not the exponent ofs. Therefore, sincep is not related
to the smalls behavior ofM̂(s), after applying the Tauberian
theorem (Theorem 1) to (6), we can finally confirm that the large
time t behavior ofM(t) for 0 < p < 1 is same as that of the case
wherep = 1.

Remark 1:Although this framework of CTRW is based on
a constant speedv, it is possible to generalize into random
speedV with a well-defined probability distribution by rewriting
corresponding equations forh(~r, t) = f(~r|t)ψ(t). �

Theorem 2 provides a convenient relationship among exponents
in the tail distribution of involved quantities. Specifically, if p = 0

(no pause time), the exponent in MSD satisfiesγ ≥ 1 in any
case. Sinceβ = 1.23 ∼ 1.38 and γ ≈ 0.65 ∼ 0.69 in both sets
of UCSD and Dartmouth traces (see Figures 6 and 7), Theorem
2 readily shows that the step-length distribution should follow a
power-law (2 < µ < 3) under a class of isotropic random walks.
Specifically, Theorem 2 gives us an estimate of the step-length
exponentµ = 2 + β − γ = 2.54 ∼ 2.73.

We also provide the estimate of the step-length exponentµ,
numerically. First, in accordance with the power-law tail in the

pause time from UCSD and Dartmouth traces, we choose the
ccdf of the pause time asP{Tpause > t} = (t/10)−β+1 (defined
over t ≥ 10) with β = 1.23 ∼ 1.38 as observed in Figures 6(a)
and 7(a). As to the unknown step-length distributions, we choose
a family of power-law distributionsP{L > l} = l−µ+1 (defined
over l ≥ 1) with different µ to see their effect onγ. As before,
after each step, the node may pause with probabilityp or proceed
to next step with probability1 − p. We denote this generalized
CTRW asGCTRW(µ, β, p) (or a.k.a. Lévy walk with power-law
pause time in case of1 < µ < 3).

p
µ

1.5 2.0 2.5 3.0 4.0

0.05 1.92 1.73 1.08 0.45 0.48
0.1 1.92 1.59 0.82 0.49 0.49
0.2 1.88 1.01 0.72 0.47 0.48

(a) β = 1.38 as in UCSD traces

p
µ

1.5 2.0 2.5 3.0 4.0

0.05 1.92 1.18 0.81 0.30 0.39
0.1 1.92 0.97 0.70 0.33 0.38
0.2 1.86 0.88 0.65 0.31 0.38

(b) β = 1.23 as in Dartmouth traces

TABLE IV

ESTIMATED MSD EXPONENTSγ USINGGCTRW(µ, β, p)
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µ = 1.5
µ = 2.0
µ = 2.5
µ = 3.0
µ = 4.0

γ = 1.92

γ = 1.73

γ = 0.45 ~ 0.48

γ = 1.08

Fig. 8. MSD ofGCTRW(µ, 1.38, 0.05) with µ = 1.5 ∼ 4.0

Tables IV (a) and (b) show numerically measured MSD expo-
nentsγ underGCTRW(µ, β, p) with different parameters. As an
example, Figure 8 shows the MSD forGCTRW(µ, 1.38, 0.05) for
different values ofµ on a log-log scale. As shown in Table IV
and Figure 8, the MSD grows faster with its exponentγ ranging
from around 0.45 (forµ = 4.0) to around 1.90 (forµ = 1.5). In
particular, whenµ = 1.5,γ is close to2, implying that the strong
power-law of the step-length distribution (with infinite mean in
this case) dominates the diffusive behavior, notwithstanding the
strong power-law of the pause time withβ = 1.23 ∼ 1.38. On the
other hand, whenµ is 3 or higher, which correspond to light-tailed
step-length distribution with finite variance,γ remains around
0.45 without any noticeable change in the growth rate. When
the step-length has infinite variance but finite mean (2 < µ < 3),
γ lies between the case of finite step-length variance (µ > 3) and
infinite mean step-length (µ < 2). Throughout, different values
of p have little effect onγ, since the power law structure of the
‘effective’ pause timeT ′ (T with probability p and zero with
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probability1−p) is mostly preserved. All numerical results show
good match with Theorem 2.

Remark 2:While GCTRW(µ, β, p) entails power-law step-
length distribution a priori, we admit the possibility thatother fac-
tors such as strong correlations in angle and any other geometrical
constraints may also lead to the observed diffusive behavior with
desired value ofγ. However, it is intractable to analytically show
any relationship among those factors and the diffusive behavior. In
contrast, we point out that our simple model based on generalized
CTRW provides a clear-cut relationship as shown in Theorem 2
and offers an easy way to synthetically generate mobility traces
with required diffusive behavior, which is an essential attribute
for the design and performance study of network protocols.�

VI. N UMERICAL RESULTS

In Section III and V, the super-diffusive movement patterns
in mobile traces have been observed and estimated using the
formulation of CTRW. The observation of super-diffusive prop-
erty in mobile traces makes us wonder how these properties
make an impact on networking performance. To find out how
diffusive property affects interactions among nodes, we first
present numerical results on contact-based metrics as contact is
the most fundamental event that is related to dynamics among
mobile nodes. Then, we provide the network performance of
six different routing protocols (Direct Delivery [46], First Con-
tact [47], Epidemic [48], Spray and Wait [49], PROPHET [50] and
MaxProp [51]) by using Opportunistic Networking Environment
(ONE) simulator [52].

A. Metrics

1) Contact-based metrics:In the performance evaluation of
DTN routing protocols, ‘contact’ is the most important factor as
nodes have an opportunity of sending and receiving packets only
when they are within the transmission range with other nodes. We
define that there is a ‘contact’ or they ‘meet’ when two nodes
are within their common transmission ranger. Among many
contact-related metrics [53], we distinguish between the number
of new contacts and total contacts among nodes. Below are the
description of contact-based metrics used in this section.

• The total number of new contacts: Whenever a pair of
nodes meet for the first time, this metric is incremented by
one. Future contacts after the first meeting between this pair
of nodes are not counted.

• The total number of contacts: Whenever any pair of nodes
meet, this metric is incremented by one.

2) Metric for the performance of routing protocol:We use
the message delivery ratio to assess the performance of routing
protocols. This metric indicates the ratio of the number of
successfully delivered messages to the number of messages sent
by the sources.

B. Routing Protocol

In this part, we summarize the six routing protocols we consider
in our performance evaluation. The full details of each routing
protocol are in [46], [47], [48], [49], [50], [51]. In both Direct
Delivery [46] and First Contact [47], there exists only a single
copy of the message in the network. In Direct Delivery, the
source forwards a message only when it meets the destination.

In First Contact, the source forwards a message to the first node
it meets, and then that first node forwards the message only when
it encounters the destination. In Epidemic [48], when two nodes
meet, each node copies a message to the other (‘infect’) if the
other node doesn’t have it already. After nodes exchange packets,
they continue to receive packets that they do not have from other
nodes. In Spray and Wait [49], it limits the number of messages
it copies to other nodes. During spray phase,L copies are spread
before it switches to the wait phase, which then performs Direct
Delivery. In Binary Spray and Wait, which is a variant of Spray
and Wait, half of copies are forwarded when a node encounters
the other node until only single copy is left, and then it is switched
to the wait phase. PROPHET [50] uses the node encounter history
and transitivity to increase the performance. In MaxProp [51], the
estimated probability of meeting every other node is exchanged
to prioritize the packet exchange order. In addition, acknowl-
edgements of delivered messages are transferred, so that the old
messages are deleted in the network.

C. Simulation Setup

We use Opportunistic Networking Environment (ONE) simu-
lator [52] for network performance evaluation. ONE simulator
allows users to evaluate the DTN routing protocol performance
easily using created scenarios in the simulator or reading external
trace. Six well-known routing protocols summarized in Sec-
tion VI-B are already incorporated in ONE simulator. Our simula-
tion setup is as follows.50 mobile nodes move around according
to a given mobility model of our choice with constant speed
(1.34 m/s) in an area (1500m×1500m). The source/destination
nodes are randomly selected out of 50 nodes for each message
(packet), and400 messages are sent out for delivery during the
simulation. We set the total simulation time to4000 seconds and
the maximum buffer size of each node to 500 messages. The
message TTL is set to4000 seconds. In Binary Spray and Wait,
the number of message copies is set to6, and in PROPHET,
the delivery predictability transitivity scaling constant β, and
the aging constantγ are set to0.25 and 0.98, respectively. We
gradually increase the ‘density’ of node coverage by changing
their transmission ranger from 25m to 200m. For the underlying
mobility model, as mentioned before, we use a set of Lévy walk
models with differentµ for the step-length distribution to reflect
different degrees of diffusive behaviors. We also use RWP and RD
as reference models and for comparison purpose. All simulation
results are shown by averaging over10 independent trials.

D. Impact of Different Diffusive Behavior

In this section, we investigate the impact of diffusive properties
of mobile nodes on the contact-based metrics and the network
performance of routing protocols. All the mobile nodes under
consideration are assumed to follow the same mobility modelof
our choice.

1) Contact-based Metrics:Figure 9 shows how different dif-
fusive properties make an impact on contact-based metrics.Note
that the number of total contacts in Figure 9(c) is almost thesame
for RD model and all class of Lévy walk models with different
diffusive behaviors under our consideration (γ ranges from 2 to
1, asµ increases from 1.5 to 3.0), except RWP model for the
same transmission ranger. However, the number of new contacts
in Figure 9(a) shows the considerable differences with different
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(a) The number of new contacts (b) New contact with timet (c) The total number of contacts

Fig. 9. Impact of diffusive properties on contact-based metrics: (a) total number of new contacts among all nodes after simulation timet = 4000 seconds;
(b) total number of new contacts during time intervalt; (c) total number of contacts (including those among the same pair of nodes) aftert = 4000 seconds.
Whenµ is smaller (more frequent long steps), nodes tend to spread out further from the starting points, thus creating larger number of new contacts with
other nodes.
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(a) Direct Delivery
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(b) First Contact
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(c) Epidemic
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(d) Spray and Wait
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(e) PROPHET
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(f) MaxProp

Fig. 10. Impact of diffusive properties on message deliveryratio for different
routing protocols. As the nodes tend to diffuse faster (smaller µ), the message
delivery ratio becomes larger. This tendency holds for the performance of all
six routing protocols.

diffusive properties. In addition, Figure 9(a) also reveals that (i)
when mobile nodes diffuse faster (smallerµ, or equivalently,
largerγ), they are more successful in encountering new nodes, and
(ii) for mobile nodes with largerµ (diffuse slower), most of their
contacts are with the same nodes nearby (since the total number
of contacts are the same from Figure 9(c)). Figure 9(b) further
supports this observation; mobile nodes with faster diffusive
property keep reaching out and meet more new nodes as time
goes on. The number of new contacts for faster-diffusive nodes
increases sharply, while nodes with slower-diffusive behavior
(e.g.,µ = 3.0) rarely meet new nodes during the simulation time
(t = 4000 seconds).

2) Performance of Routing Protocol:Figure 10 shows the
average message delivery ratio of a class of Lévy walk models
with different µ, RWP and RD model for each routing protocol.
As can be seen clearly, varying degrees of diffusive behavior
(parameterized byµ) result in widely different network perfor-
mance. In particular, we see that faster diffusive behaviorof
mobile nodes (smallerµ) gives higher delivery ratio under the
same transmission range. This is largely due to the increasein
the number of new contacts with other mobile nodes for smaller
values ofµ, as nodes tend to reach out more aggressively. RD
model, which spreads out quickly in the given bounded area,
shows almost the identical message delivery ratio with a Lévy
walk with µ = 1.5. Note that the ordering of message delivery
ratio in Figure 10 is exactly the same as that of the number of
new contacts shown in Figure 9(a).

3) Performance with pause time:In this part, we add pause
time in movement of mobile nodes to consider more realistic sce-
nario because pause time plays an important role in mobility. We
use the generalized CTRW model GCTRW(µ, 1.38, p) introduced
in Section V with p = 0.1, as well as RWP and RD models
interspersed with heavy-tailed pause time (with exponent 1.38 as
extracted from UCSD trace in Section IV) after each step in each
of the models. Figure 11 shows that pause time leads to lower
message delivery ratio for all routing protocols. In particular, the
message delivery ratio ofµ = 2.0 with p = 0.1 displays the
similar trend as that ofµ = 2.5 but with no pause time (shown in
Figure 10) in most routing protocols. In other words, the pause
time induces slower diffusion overall. Again, the performance
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(a) Direct Delivery
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(b) First Contact
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(c) Epidemic
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(d) Spray and Wait
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(e) PROPHET
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Fig. 11. Impact of diffusive properties on the performance of routing protocol
with pause time considered.GCTRW(µ, β, p) model in Section V, along
with RWP and RD are used. While pause time induces longer message
delivery, the ordering of performance is preserved as before.

ordering in Figure 10 remains unchanged even with the addition
of pause time. We also have evaluated the performance for larger
p. The largerp induces slower diffusion, and leads to lower
message delivery ratio as we can easily expect.

4) Performance with different resource constraints:For the
performance evaluation in Section VI-D.2 and VI-D.3, we set
message TTL and buffer sizeB to 4000 seconds and 500 mes-
sages respectively, which is basically no resource constraints. In
this part, we investigate the performance evaluation with different
resource constraints by changing message TTL and buffer size.
We use epidemic routing protocol for performance evaluation,
since most of routing protocols are variant of epidemic routing
protocol with the performance trade off. By adjusting the message
TTL and buffer size, we investigate how the resource constraints
make an impact on network performance (message delivery ratio).
We varies the message TTL from 750 to 1500 seconds and buffer
sizeB from 200 to 300 (messages). Figures 12 and 13 show that
the message delivery ratio always decreases as the resources gets
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(a) TTL = 750 seconds
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(b) TTL = 1500 seconds

Fig. 12. Impact of diffusive properties on the performance of epidemic
routing with different message TTL. The buffer size is set to500 messages.
The ordering of performance results in Figure 10 is preserved.
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(a) Buffer size (B = 200)
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(b) Buffer size (B = 300)

Fig. 13. Impact of diffusive properties on the performance of epidemic
routing with different Buffer sizeB. The message TTL is set to4000 seconds.
The ordering of performance results in Figure 10 is preserved.

more limited. Still, we note that the ordering seen in Figure10
is preserved in all cases.

5) Performance with real trace:In Section VI-D.2 and VI-
D.3, we have shown the impact of diffusive properties on routing
protocol performance for synthetic models with and withoutpause
time. In this part, we show the impact of various diffusive
properties on routing protocol performance via real traces. To this
end, we divide the nodes in UCSD trace into two groups based
on the number of AP changes for 4 hours (from 10 am to 2 pm).
Specifically, if a node changes its AP for 4 hours at least 5 times,
this node is in group A, otherwise it’s in group B. We measured
the MSD slope for nodes in groups A and B, which are0.80

and0.61, respectively. Since these traces are collected under the
same geographic condition, we can show the impact of diffusive
property on performance evaluation through real trace. Thetime
duration of performance evaluation is 4 hours, and the message
TTL is set to 3 hours. As shown in Figure 14, it turns out that
the fast diffusive nodes (group A) show higher message delivery
ratio (than those in group B) under all six routing protocols
considered. This re-confirms the importance of diffusive property
even under the realistic geographic settings in real trace (such as
heterogeneous hotspot locations).

E. Performance Evaluation by Existing Mobility Models

Numerical results show diffusive properties make a huge impact
on performance evaluation in DTN routing protocols. Note that
existing models such as RWP, RD and Brownian motion (µ =
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(c) Epidemic
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(d) Spray and Wait
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(e) PROPHET
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Fig. 14. Impact of diffusive properties on message deliveryratio for real
trace. Faster diffusive (µ = 0.80) nodes lead to higher message delivery ratio
than slower diffusive (µ = 0.61). Note that pause time is included for the
MSD slope in real trace.

3.0) can predict misleading performance evaluation by being too
optimistic or pessimistic. For example, mobile nodes in RWP
model tend to move much more active than the real movements,
and this may lead to better performance of routing protocol than
real nodes can do. On the other hand, Brownian motion tend to
stick to the same area and are not as active as the real nodes.
This inactive mobility results in too pessimistic performance
evaluation. These results can be also explained qualitatively by the
mixing time [54]. In [55], [56], the authors used the mixing time
as the time until a mobile node reaches its stationary distribution
and claimed that “the larger the mixing time, the more localized
the node movement, and it will take longer for a node to carry a
message to a remote part of the network”. In our numerical results,
we have shown that less diffusive movement such as Brownian
motion leads to lower message delivery ratio over a given time
frame. Similarly, in view of the mixing time argument in [55],
[56], we can say that less diffusive movement such as Brownian
motion is more ‘localized’ (slow mixing), which would translate
into longer time for a message to get to its destination.

VII. D ISCUSSION

So far we have observed that the super-diffusive property is
universal in many real traces and has a significant impact on
routing protocol performance under a wide range of scenarios.
We have used a set of Lévy walk models to easily generate
various degrees of diffusive properties. In this choice, the key
contributing factor toward the super-diffusive property is the
power-law distribution in the step-length as seen in Section V,
but one can also ask if there exist other factors that may induce

the super-diffusive property. In addition, while we have mainly
focused on the super-diffusive property of anindividual mobile
node, there have also been other important metrics such as
the inter-meeting time between mobile nodes [57], [58], [59],
which may equally impact the overall performance of any routing
protocol. In view of these, in this section, we briefly discuss the
issue of other factors toward the super-diffusive propertyand how
to incorporate the observed inter-meeting time distribution from
real traces into the set of Lévy walk models.

A. Other Factors Toward the Super-diffusive Property

In Section III-B, we studied whether existing synthetic models
can capture different diffusive properties. We showed thata
set of Lévy walk models can easily generate varying degrees
of diffusive properties, and the power-law distribution inthe
step-length is the main factor of super-diffusive propertyin the
class of 2-D isotropic random walk models. In this section we
study if there exist other factors that also contribute to super-
diffusive property by considering existing trace based models that
feature non-isotropic, location-dependent preference inchoosing
the next destination. To this end, we considerModel T [14],
which is a generic trace-based model built upon user registration
patterns. Model T allows arbitrary choice of the distribution of
AP locations and the popularity of each AP, so is more general
than others in the literature [17], [39]. We have followed the trace
generation procedure presented in [14], and the parameter settings
are summarized in Table V7. In this section, we take the model T
without the pause time for the sake of fair comparison with other
models introduced in III-B.
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Fig. 15. MSD measurement under Model T [14]. The AP locationsat UCSD
and Dartmouth are used. This shows that trace based models can also lead to
super-diffusive property of mobile nodes to some degree.

Figure 15 shows the measured MSD in a log-log scale as
before, under the AP locations from UCSD and Dartmouth traces,
respectively. It is clear that Model T can generate super-diffusive
property, since the measured MSD slopes are greater than 1. We
expect that this kind of MSD behavior is common to any other
trace-based models relying on campus traces. A mobile node,
from its starting point, tends to spread out quicker than normal
diffusion as it typically moves towards its next location without
much hesitation (wandering around like a pure Brownian motion),
which is translated into the ‘diffusive regime’ (γ > 1) in the

7Weibull CDF equationF (x) = 1 − e−( x

a
)b

and exponential curvey =
p1e−p2x + p3 have been used.
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Parameters Distribution UCSD [12] Dartmouth [4]
No. of APs 196 586

No. and distrib. of clusters Weibull a=2.649, b=1.253 a=6.561, b=1.253
No. of popular APs Exponential p1=0.691p2=0.332,p3=0.250 p1=0.726,p2=0.217,p3=0.232

Intra-cluster transition prob. Weibull para. a, b pa1=2.751,pa2=0.631,pa3=0.032 pa1=2.550,pa2=0.544,pa3=0.026
with Exponential pb1=1.255,pb2=0.452,pb3=0.361 pb1=1.211,pb2=0.380,pb3=0.355

Intra-cluster trace length Weibull a=4.285, b=0.343 a=5.227, b=0.295
Inter-cluster transition prob. Weibull a=0.0078, b=0.3188 a=0.0069, b=0.2673

Inter-cluster trace length Weibull a=254.1, b=0.973 a=351.8 b=0.882

TABLE V

SUMMARY OF MODEL T PARAMETERS

early part of Figure 15. Once the mobile node has visited several
locations, it then tends to move back and forth (with its own
schedule, etc) in a constrained area, which corresponds to the
‘stationary regime’ (γ ≈ 0) shown in later part of Figure 15.
Note that the timescale of the diffusive regime will furtherextend
(with smaller slope) when pause time is added as already shown
in Figures 6 and 7.

Both trace-based models and the set of Lévy walks display
super-diffusive property. In trace-based models such as Model T,
the non-isotropic and location-dependent preference in choosing
the next destination or other constraints (e.g., building locations)
in underlying geometry collectively contribute toward thesuper-
diffusive property. On the other hand, under the class of Lévy
walk models the super-diffusivity is directly related withthe
exponent in the power-law step-length distributions even under
possibly very strong pause time, as seen Section V. Thus, when
it comes to the question of how to generate mobility scenarios
for proper performance evaluations with super-diffusivity, both the
trace-based models (e.g., Model T) and the class of Lévy walk
models equally do well and should be preferred over any other
synthetic models that do not capture super-diffusivity. Note that
each of these choices has pros and cons. The former will be more
suitable in capturing any geometric constraints and any unique
feature inherent in the behaviors of participating mobile nodes, but
makes it hard to analytically predict the degree of super-diffusivity
as a function of all underlying information (e.g., AP locations and
sizes, etc),8 while the latter lacks the precise realism but instead
offers a very simple, parsimonious description of the modelwith a
firm relationship among the few input parameters and the resulting
degrees of diffusivity. This is precisely the reason why we have
chosen to employ the Lévy walk models in demonstrating the
importance of the super-diffusivity in mobility patterns as they
give us convenient ways to tune the input parameters toward
any desired degree of diffusive behavior, to the benefit of better
prediction in performance evaluation and new protocol design.

B. Inter-meeting Time in Ĺevy Walk

Inter-meeting time between mobile nodes has been extensively
considered in recent literature [57], [58], [59] as this governs how
often mobile nodes meet for any chance of delivering packetsto
others. In particular, recent findings that the inter-meeting time
distribution is close to a power-law up to some timescale followed
by exponential fall-off [57], [58], [60] have become one of the
key characteristics that any reasonable mobility scenarioshould

8The mathematical relationship between AP locations, theirsize, and the
resulting MSD exponent is unknown and in general very hard toderive.

possess. We here maintain that the set of Lévy walk models
can easily accommodate such properties of inter-meeting time
distribution. First, we have already shown in Section V thatany
power-law pause time distribution can be incorporated intothe
Lévy walk model for precisely matching the required degreeof
super-diffusivity up to some relevant timescale (e.g., theearly
part of Figure 15)9. Then, to determine the transition point from
power-law to exponential in the inter-meeting time distribution,
we can apply the argument in [58], [60] where it is shown that the
boundary size can be properly chosen (scaled) in conjunction with
a given MSD of the mobile nodes (after the pause time is counted
in) to match the transition point from power-law to exponential
fall-off.

VIII. C ONCLUSION

In this paper we have shown that super-diffusive behavior is
the common characteristic in the movement of mobile nodes.
We have investigated a large number of GPS-based traces as
well as AP-based traces available in the literature. Our approach
via the use of MSD coupled with CTRW formalism, allows us
to statistically and theoretically identify the (possiblyhidden)
degree of diffusive behavior of mobile nodes. Our numerical
results based on contact metrics and performance evaluation with
six routing protocols show that diffusive property makes a huge
impact on network performance. We expect that our initial study
on the effect of mobile nodes’ diffusive behavior on the network
performance opens up new possibilities toward better design of
network protocols by uncovering super-diffusive nature observed
in all the mobility traces.
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