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Abstract— Mobility is the most important component in mobile  the study and comparison of protocols [3], [5]. This appac
ad-hoc networks (MANETSs) and delay-tolerant networks (DTNs).  however, suffers from lack of the amount of available traces
In this paper, we first investigate numerous GPS mobility tr&ces 5 fine time/space scale; most existing traces show onlyaparti
of human mobile nodes and observe super-diffusive behavidn or filtered’ information about the real trajectories of niieb

all GPS traces, which is characterized by a ‘faster-than-hear’ d h . AP . inf .
growth rate of the mean square displacement (MSD) of a mobile N0d€S such as access point (AP) association information or

node. We then investigate a large amount of access point (AP)just contact duration with others, not the actual spagatgoral
based traces, and develop a theoretical framework built upe information of the mobile users on a fine scale. While [3], [5]
continuous time random walk (CTRW) formalism, in which one have tried to extract meaningful metrics and reconstrutdildel
can identify the degree of diffusive behavior of mobile nods even  mopbility patterns out of those filtered traces using someiktci
under possibly heavy-tailed pause time distribution, as irthe case algorithms, such reconstructed traces are applicable fonlshe

of reality. We study existing synthetic models and trace basd . . . .
models in term of the capability of producing various degres particular setting under consideration (e.g., the samepoajrand

of diffusive behavior, and use a set of Evy walk models due to @€ highly sensitive on the choice of the reconstructiooritgm.

its simplicity and flexibility. In addition, we show that dif fusive ~ In this paper, we take a different approach from the above
properties make a huge impact on contact-based metrics and two. We first investigate numerous GPS-based mobility gace
the performance of routing protocols in various scenarios ad  as well as AP-based traces to find out key characteristics in
that existing models such as random waypoint, random diren  moyement patterns of mobile nodes. Unlike previous apjhremc
model or Brownian motion lead to overly optimistic or pessinistic using mobility traces, we specifically focus on the locatisn

results when diffusive properties are not properly captured. Our ; . . .
work in this paper thus suggests that the diffusive behaviorof mobile nodes and how it changes over time. We then find that

mobile nodes should be correctly captured and taken into acunt  there is a common and distinctive characteristic observed i

for the design and comparison study of network protocols. all mobility traces,super-diffusive movement patterwhich is
Index Terms— Mobility models, trace-based models, super- characterized by a ‘faster-than-linear’ growth curve & thean
diffusion, mobile ad-hoc networks, routing protocols square displacement (MSD), i.&{]|Z: — Zo||*} ~ O(t") with

v > 1, whereZ; € R? is the position of the mobile node at time
The mean square displacement (MSD) — average square distanc
traveled by a mobile node over time duration is non-parametric

Mobility is the most important factor in mobile ad-hoc netand does not require arypriori specific mobility model for test,
works (MANETSs) and delay-tolerant networks (DTNs), and hasnd is robust against the noise/error in the coordinatesatile
posed serious challenge to the analysis and design of piston  devices and the granularity of measurement time.
such networks. The mobility pattern directly impacts tiwaying We then study existing synthetic models and trace basedIsmode
contact/inter-contact dynamics among mobile nodes, wlich to find out whether these models can produce varying degifees o
turn affect the performance of any protocol built over thessuper-diffusive behavior as observed from all GPS-basdullityo
mobility patterns [1]. Mobility models that fail to captulkey traces as well as AP-based traces, and show that each model
characteristics in the movement pattern of mobile nodelg@sllt can generate only a limited range of diffusive properties or
in misleading guidelines on the design of new protocols &eitt cannot be conveniently used to produce different degrees of
performance evaluations and thus prevent us from makingha ri diffusive property in practice. As a viable alternative, wee a
decision on our choice. set of Lévy walk models [6] as simple, easy-to-generaté skt

To cope with the issue above, numerous approaches have beensatile mobility models. The Lévy walk model is an isqim
put forth, ranging from various synthetic mobility modgjswith two-dimensional random walks, whose super-diffusive bighna
certain desired properties, to the numerical study of MANE{super-linear growth in MSD) is easily controlled via a &g
protocols using mobility traces obtained from real-worldagure- parameter — the exponent of its power-law step-lengthibigton.
ments. Synthetic mobility models [2], such as random waypoi In particular, for AP-based traces, we show that there isy wa
models, random direction models, random walk or Browniaio extract diffusive property of mobile nodes in AP-baseatés
motion on a square or a sphere, and their variations, have beéhere location informatior¥; of a mobile node is spatially quan-
developed mainly for the purpose of simplicity and the edse tized (to coordinates of APs) and sporadically time-sachlely
analysis, but subsequently been criticized for their uisga when mobile nodes get inside the range of an AP. By capturing
behaviors [3]. Another common approach is to rely on re#he tail behavior of the pause time of mobile nodes and with
mobility traces [4] and use them as inputs to a simulator fahe help of continuous time random walk (CTRW) formalism,
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we set out to extract key characteristics of the mobilityterais Y 1000,

again from MSD measurements. Specifically, we analytically N ~——Normal difusive (y=1.0)
. N - - Super diffusive (y=1.5)

show that under the class of CTRW models, a class of Lévy walk v/ ﬁ .

models interspersed with power-law distributed pause toae I A

easily capture diffusive behavior observed in various /ARdul @’

real traces. Lastly, we provide numerical results that show // \

varying degrees of diffusive properties affect the chamdstics of I Z \

several contact-based metrics and simulation results dowark | ;== 0l o

performance evaluation via six different routing protecolVe / \ 4

consider various scenarios by changing the resource eimtstr (%0 N o

and node density, or by adding pause time. We also show tt@ 7 ty X A0 w0 0 so 1w

impact of diffusive property on network performance by gsin ) W _

different diffusive sets of real trace. In particular, weosh (@) MSD computation (b) Super-diffusive node

that existing models such as random waypoint models, randdig. 1. MSD computation and sample trajectories of two nauiéls different

direction models and Brownian motion models may lead tolgverdifiusive properties. Two nodes moving with the same spaesii(m/s) are

. L ) . . simulated over the same duratiotDQ00 sec).
optimistic or pessimistic results when diffusive propestiare
not properly captured. Our results thus collectively impifyat

correct diffusive behavior of mobile nodes should be taken i the speed of the mobile node (1) (or constant}. In general,

account for the development of new protocols and comparis@e haveM (t) ~ O(t") for some~ > 0. The slope ofM(t) in

with existing ones. a log-log scale4) characterizes how fast a node spreads out in
The rest of the paper is organized as follows. In Section &, wa simple way. Figure 1(a) shows how MSD can be measured. In

provide preliminary background and related work. In Settid,  this figure, as the mobile node starting from the origin focthe

we investigate GPS mobility traces, and characterize tipersu trajectory shown in dashed line, we can collect the displese

diffusive behavior of mobile nodes in terms of MSD. Thenat each time instant and investigate how MSD grows with time

we analyze existing mobility models in the context of theif to uncover the diffusive property of mobile nodes.
diffusive properties, and introduce Lévy walk models asdjo

candidates for producing various degrees of diffusive biehan g Super-Diffusion
Section IV i tigate AP-b dt d ch teéin s .
ection 1V, we Investigate ased traces, and charaeténie When the step-lengtti. has infinite variance o} = o),

diffusive properties when pause time is included. In Sectipwe tge mobile node tends to quickly spread out since longer step

introduce CTRW and generalized MSD for a class of isotrop - o
random walks with heavy-tailed pause time. In Section VI, W\gngths are generated more often. This behavior is callgbr-

. . 2 . - - .
provide simulation and numerical results to show the impa l}:fu5|on[8], [31' while f?rd(.fﬁL < %0 ftis ca}[!led r}ormillldlffus&gg.
of diffusive properties on contact-based metrics and n¢wo € varying degrees of cifiusive properties of mobile no

performance in various scenarios. In Section VII, we disdhe be conveniently captured by the slopg of M(t) in a log-log

i ~ ’Y =
issue of other factors toward the super-diffusive propartgt how scale (i.e.,M(t) ~ t7). For example, we have = 1 for a normal

to incorporate the observed property in traces into the fsekwy lqln‘fuswe caz:a ’ ‘:,Vrt'uey |\>/| SlDfor;uper-diﬁgJS|vE case:: (fgstler-thanl-
walk models. We then conclude in Section VIII. inear growin ot the ). Figure 1(b) shows typical sample

trajectories of two mobile nodes with different diffusiveoperties
(different v). While both nodes have the same speed (1.34 m/s)
and run over the same duration (10000 sec), the super-gidfus
In this section, we present background on the mean squaide ¢ = 1.5) spreads out from the origin much farther than the
displacement — a metric to capture the rate at which mobitiee§10 normal-diffusive node~ = 1.0). As Figure 1(b) illustrates, the

spread out, and the super-diffusion, and then give a briefisary occasional long jumps are key characteristics of supéusiife
of various approaches to the mobility modeling in the litere.  movement patterns.
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Il. PRELIMINARIES

A. Mean Square Displacement (MSD) C. Related Work

One way to characterize the movement of a mobile node is toln the literature, numerous synthetic mobility models hagen
measure how far it is away from its current position afteretimproposed to help network designers evaluate and compate- pro
t. This ‘diffusive’ behavior or the rate at which the mobiledso cols on MANETs and DTNs. Examples include random waypoint
spreads out can be described and quantified by so-calledagie mmobility model, random direction mobility model, random lwa
square displacement (MSD) [6], [7]. Specifically, if we defin mobility model and its many derivatives such as Brownianiomot
Z; € R? to be the position of the mobile node at timethen the model on a sphere, among others. (See [2] for a survey.) While
MSD becomes\V (t) £ E{||Z; — Zo||*}, (i.e., the second momentthese models are easy to generate and provide a quick piatifor
of the displacemeni{Z; — Z, || between the current position at timecompare the performance of network protocols, they are lgain
t and the position at time) and /M (t) gives typical amount of for the sake of simplicity and ease of comparison. Recentremp
displacement of the mobile node after timeFor example, for a ical results also indicate that current synthetic mobilitpdels
class of isotropic random walks with finite step-lerigtiariance, are not able to capture the characteristics of the real ipbil
the MSD will grow linearly witht, i.e., M(t) ~ ¢, provided that patterns [10], [11].

1step-length is defined as the distance that a walker movesebelfianging 2This is similar to the case of 2-D Brownian motion with its iamce
its direction. growing linearly witht.



On the other hand, a large set of traces measured in varioud) Available GPS TracesTable | is the summary of GPS
environments [4], [12], [13] have been used to extract thg kéraces of human beings under our consideration for thengiife
characteristics of mobile nodes and construct realistibility properties. Below is the detail about the GPS traces saurces
models [3], [5], [14], [15]. This collection of traces prolds
useful information when many participants are involved &r
long observation period. In [3], [5], authors extract kegti&es in - 560t of data from about 50 countries for various actisitide
mobile traces of their own campus, and propose realisticiliyob <a this as our main source of GPS traces.

models. [16] studied the time and space domain charadtsrist o . _ . )
based on device registrations of mobile users at APs. Ir thei University of Washington: The GPS trace of University of

extended work,Model T [14] included the space registration'Vashington (UW) was collected by one of the authors in [34]
patterns of mobile users, amdodel T++ [15] incorporated both fOr @about two hours. This trace provides thgy co-ordinates of
the time and space registration patterns in their model] [17€ Mobile node every second even inside of buildings bygusin
proposes a mobility model that features time variance aridgie F'ace Lab.
reappearance in mobile traces. In [18], social network rihé® NCSU: NCSU GPS traces [35] were collected from the present
employed to construct their community based mobility modeluthors’ school campus, where one student carried a GP8edevi
and tested with real traces. In our work, we fisdper-diffusive (Garmin eTrex [36]) to collect GPS traces.
movement patternsh mobile traces as the key characteristic, and 2) Extracting MSD from GPS tracesNe investigate diffusive
study other models in the view of producing diffusive prdjgs. pehavior of mobile nodes from all the available GPS traces in
The mobility model has also been a central topic in other scaple I. In order to decouple any effect of pause time fromesod
entific disciplines and various attempts to explain the mu®t giffusive behavior, we first removed all the pause time in@RS

of living organisms in nature have been made [19], [20], [21}races, and then computed MSD from the resulting traces.
In particular, the so-called Lévy walk model, whose definin

characteristics is its super-diffusive property, has badapted

www.gps-tour.info: [33] is GPS device users’ community web-
site where users share GPS traces. This website has aniextens

for modeling the movement patterns of living organisms sagh 10°7 Walk

Microzooplankton [22], seabirds (albatross) [23], reied§4], N Rjnn'i':%

jackals [25], and monkeys [26], [27], as well as capturingirth 2 Inline Skating

foraging patterns [28], [29]. Quite recently, the supdfudive 100l Bicycling

behavior of mobile nodes has also received attention inerepr é

senting human mobility pattern via a limited number of GPS- = .

based traces [30], [31]. In contrast, in this paper, we itigate ‘5" Y £ N S

the vast amount of AP-based traces [4], [12], [13] (for which |  ~Z25° o

GPS-coordinate information is unavailable) through theR@IT A NS

formalism with heavy-tailed nodes’ pause time [3], and fihdtt S| e y=1 ‘

the super-diffusive behavior of nodes’ movement israversal 1o 10t 102 10°

property in all the mobility traces under our study. time (sec)

I1l. DIFFUSIVE BEHAVIOR IN GPSBASED TRACES AND Fig. 2. MSD of human mobile nodes. In all cases, MSD incredaster

SYNTHETIC MODELS than linear (super-diffusive behavior).

In this section, we examine various GPS traces with differen
movement patterns and show all of them display the super-Figure 2 shows the MSD of mobile nodes with different
diffusive behavior. We then study whether the existing lsgtic movement patterns from GPS traces on a log-log scale. In all
models can effectively capture the observed diffusive eriogs. cases, MSD increases faster than linear with 1, which implies
the super-diffusive behavior of mobile nodes. Differentues

A. GPS Traces Validation of v conveniently captures the degree of diffusive behavior. Fo
In this part, we investigate various GPS-based mobilitgesa instance, mobile nodes with inline skate=€ 1.88) tend to spread

for human beings and divide them into several categoriesoba?,Ut quickly ar:?l shovl\ll(.almostbl.cialllst:jc movements ((jiurmg auer(;
on the movement patterns — walking, running, inline skatind time range, while walking mobile nodes & 1.48) tend to sprea

bicycling, in view of future applications such as MetroSe . outa little slower than _mob_ile nqdes with inline skate, btnll S
yeing PP (2] faster than the normal diffusion with= 1 (the case of Brownian

| source [ duration | sample | # of nodes)] motion). Regardless of movement patterns, MSD grows faster
Web-Walking [33] 19 hours | 3-60sec 11 than linear § > 1) in all cases.

Web-Running [33] 27 hours | 3-60sec 22
Web-Inline Skating [33]|| 42 hours | 3—60sec 17

Web-Bicycling [33] || 36 hours | 3-60sec 13 B. Diffusive Behavior in Synthetic Models
UW-Walking [4] 2 hours 1 sec 1
NCSU-Walking [35] 3 weeks| 1 sec 1 In this part, we first study diffusive behavior in current gyatic
mobility models via their MSD and show that most of them
TABLE | are not suitable for capturing varying degrees of supduslife
SUMMARY OF GPSTRACES pattern. We then propose to use a set of Lévy walk models as a

simple alternative to current synthetic models.
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Fig. 3. Mean Square Displacement (MSD) of the existing stithmobility models (a)—(c) and the Lévy walk models on g-log scale.

1) Correlated Random WalksAmong existing synthetic mo- thus is close to that of an isotropic random walk.

bility models, we first consider several correlated randoaikw )
models to see if they can capture super-diffusive behagimce ~ 2) MSD of Correlated Random Walkgigure 3(a) shows the

a mobile node in a correlated random walk tends to move aloPD Of correlated random walks on grid (CRWG) using différen
the same (or similar) direction for a while before changitsy i M0del parameters on a log-log scale. For correlated randalisw
direction, these models might be good candidates for dagtur©" 9rd (CRWG), we generate two sets of trajectories using
super-diffusive behavior. Here, we consider the followisgt Parametersp,q,r) = (0.5,0,0.25) and (p,q,r) = (0.9,0,0.05),

of correlated random walk models currently used in MANEfespectively. The case gf= 0.9 reflects stronger correlations in
simulations. the angles before changing the direction either to righted; |

hich ke the | j . Fi 3 h that |
Correlated Random Walk on Grid (CRWG): A two- which can make the long jumps. Figure 3() shows that larger

. ; e : correlation coefficient with long steps only cause the MSD to
dimensional correlated random walk model on grid is progdse g P y

o - .~ move up, without affecting the linear growth of the MSD.
[37] as a generalization of Manhattan mobility model [1].this . .
. oo Figure 3(b) shows the MSD of Gauss-Markov mobility models
model, a mobile node takes a step to the same direction as th

. - . . - . Wlﬁ1 different degrees of correlationg)(and variances? of
previous one with probability and opposite direction (movmgt . leo. F o4 bil de tends to deviat
backward) with probabilityg, while the probability of turning Ur"Nd angi€fn. Foro = 2,4, a mobilé node tends 1o deviate

right or left is r satisfyingp+¢+2r =1. By assigning different from its prefer_red angle W.'th varying degree of step-leagth
-which all contribute to the linear growth rate of the MSD even
values ofp, ¢, we can control the degree of tendency for a mobile . . )
S when there exists considerable amount of correlatiprs0.95.
node to follow the same direction.
- _ On the other hand, as can be seen for the case-ofl, Gauss-
Gauss-Markov Mobility Model: A Gauss-Markov mobility Markov model is likely to generate ‘ballistic’ trajectory, & 2)
model [2] first assigns an initial speed and direction of a iBob \here the marginal angle distribution is ‘pointed’ with dma
node. After moving for a fixed amount of time the mobile , (the mobile node has favorite direction and remembers this
node updates its speed and direction based on the previgy@ver), and the MSD now grows much faster than linear. In al
speed and direction (much like an auto-regressive reqyisiocases we see that plays a dominant role in shaping the angle
where the speed and turning angle follow Gaussian distoibsit  gjstribution than the amount of correlatign since the effect of

. pr . . . h . ) ) N i
Specifically, the direction (turning angle) of thé" stepén is  smalls persists in the turning angle (the mobile node remembers

updated as its preferred angle forever) while the effect of correlatiawill be
_ smoothed out over longer period as already seen in Figuje 3(a
— _ _ 2
On = pOn—1+ (1 =)0+ /(1= p*)0en s, @ 1osum up, in order to capture the super-diffusive behavitin w

d 9 » . ) ) correlated walk models, one would have to tweak the diginbu
whered;,, =N (0,0°) arei.i.d. zero mean Gaussian with variance, 4 correlations of the angles very carefully. As Figures 3d

2 . . . o —2e
oL pE [0,1] is the correlation coefficient, antl IS Fhe preferr_ed 3(b) show, however, this approach would typically resulgither
direction (angle). Step-length, also follows a similar recursion. = _ 1 or v ~ 2, thereby making it unwieldy or practically

We hgre consider a m.odified version of.this Gauss-Markov noqteasible to generate various mobility patterns with efiéit
for fair comparison with other models in a way that after $Velyegrees of diffusive behavior.

t second, we update its step-length (instead of its speed) wit

its speed (1.34 m/s) and the preferred step-length (10nt)tkep  3) MSD of mobility models with boundary (RWP and RDle

same all the time. MSD of RWP (Random Waypoint) and RD (Random Direction)
This Gauss-Markov model in (1) offers a great deal of fleximodel as shown in Figure 3(c) illustrate the unique diffasiv

bility by controlling the shape of distributiorv] and correlation properties of these models. In both models, a node tends to

structure f). For instance, whep ~ 1 ands? is small, the turning spread out quickly from its initial position with the starf o

angles ¢; in Figure 4) remain almost the same, thus the mobimulation. This gives rise to super-diffusive movemernteras

node will follow a straight line for a very long time, while fo due to ‘ballistic’ trajectories over a short period, durindnich

p =~ 0 and larges the angle distribution approaches to a Gaussidahe slope of MSD is almost ~ 2. By the time at which most

with meané and a large variance, but independent over time, nodes ‘feel’ the boundary of simulation, nodes tend to ckang



their directions and come back. Note that the timescalewiiah A. Available AP-Based Traces

the node diffuses is much shorter than other models in Figure 14 verify diffusive properties in AP-based traces, we use tw
sets of data, University of California at San Diego (UCSD)

v traces [12] and Dartmouth College traces [4], for which AP-
coordinates are available and they are most widely used in
literatures. The summary of AP-based traces is given ineTHbl

[ source || UCSD [12] | Dartmouth [4] |
duration 1 month (2004.910) | 6 months (2004.16)
# of nodes 275 13871
# of APs 196 506
sample every 20 sec depending on devices
place campus campus
area 1200m x 1400m 600m x 700m
(% %) device PDA various
Fig. 4. Isotropic random walk with step-length and turning anglé;. {L;} TABLE Il

arei.i.d. with probability densityf, (1), and{0; } arei.i.d. with unif[0, 2x]. SUMMARY OF AP-BASED TRACES

4) Levy Walk modelA Levy walk model is defined as follows. To extract the data set that can well represent the mobifity o

Suppose that a m_oblle nod_e first chooses a step-lefigind nades from the huge amount of traces in Table Il, we prepsscks
then moves that distance with some constant speed at an a'?éjaeraw data. First, we used only weekday traces as the guanti

Ie:_drawz lclr\}lkl:ormltyf_ a.nﬂ ra?r(]jotmlty frlom'o’tf]ﬂ_t as '”utStrtabt:d N of weekday traces is guaranteed to be large, and the mobility
\gure 4. en 1t inishes that step-length, 1t repeals toeqss, ttern during weekday is more consistent. Then, we coreside

independently of the past. V\/.he.n.the first or thg second ’mom%r]l traces only after 9AM each day, as most mobile nodes start
of the step-lengdi, becomes infinite, the model is called vy doing activities over this period. In order to rule out sHored

Wr?lk [6t]. .FO(; g Levy walk model, the step-length density Hodes leaving the network quickly, we only considered n@obil
characterized by nodes whose traces are at least 3 hours long.

fL®) ~ 1P, 1< p<s,

where p > 1 is required for any valid probability densityB' MSD with Pause Time in AP-Based Traces

function. Under a Lévy walk mobility model, a mobile node While AP-based traces do not have exact coordinates of eobil
occasionally moves along a very long straight line with norfldes, they still contain some information on how quicklyhire
negligible probability, interspersed with successive rstateps Nodes spread out. Recall that for each mobile node and fdr eac
with random orientation. Unlike other mobility models theauld AP with known coordinategz;, y;), we know when the mobile
require subtle choice of several parameters to controliglife Node enters this AP (say,). By tracking this information of
properties, Lévy walk models can directly control the aegr ime instants and coordinates in an increasing ordey;,ofve can

of super-diffusive properties by adjusting the exponenstefp- Compute the distance a mobile node has traveled from itSrgjar

lengthsy (single parameter) as shown in Figure 3(d). point for certain time duration. In other words_, we can abtai
sample values of the MSD and consequently its slogeof a
log-log scale.

IV. DIFFUSIVE BEHAVIOR IN AP-BASED TRACES

In addition to the GPS traces in Section llI-A, there exist

a large amount of mobility traces [4], [12], [13] with many = / A fs/’/
mobile nodes recorded over much longer duration. Thesedrac Ml ~ / .
have been valuable resources and widely used in many studies N ts) t
of MANETSs [5], [10], [38]. Unfortunately, however, they onl \\ L A;2

provide ‘filtered’ information on the location of mobile nesl (AP \
association information [4], [12], [13] or duration of cawt/inter- AP ,' _______ g
contact with other mobile nodes [4]) without exact movement )
patterns of mobile nodes. This prevents us from directlyiyapg tz
the same techniques used in Sections IlI-A to find diffusiee b
havior in mobile nodes. In addition, the long (heavy-tailpduse
time of mobile nodes in AP-based traces further complicates
understanding of their correct diffusive behavior pureiyni the Fig. 5. lllustration of properties/limitations of AP-bakéraces. Location
movement components. In this section, we closely invetgig®- ©f mobile nodes are mapped to AP-coordinates whenever tieegssociated

L . f with APs and unknown otherwise. A is the location where a teohbde
based traces in light of the MSD of mobile nodes and their @aug,ses.
times inside APs. Later in Section V, we will apply the CTRW
formalism to make statistical inference about the trueudiffe In addition to the MSD samples, AP-based traces also contain

properties of mobile nodes in these traces. some information about the pause time of each mobile node.
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Fig. 6. UCSD Traces: (a) CCDF of session tinf&{{session > t}); (b) MSD (from 9AM) on a log-log scale. The inset is for thade that started from
11AM. Power-law density offsegsion iMplies thatTpause also follows a power-law with the same exponent, making tf&DMyrow very slowly; () MSD
after randomization of location of mobile nodes inside APise MSD exponents remain untouched after randomizatiomvadoenpared with Figure 6(b).

As shown in Figure 5, a collection of intervals during whichitting time of a 2-D random walker to the perimeter of AP-
a node is associated with some AP (e.@i,to], [t3,t4],...), disk starting from inside, whose distribution is known to die
tells us how long the node stays inside the range of an Afost exponential [40]. This implies that the tail of the paus
This interval is often called a session time [3]. Note thae ortime probability density functior(¢) also follows a power-law
session time interval consists of actual amount of pause tim(t) ~ ¢t ~* with 3 ~ 1.38.
(point A in AP2 in Figure 5) and the amount of time during Figure 6(b) shows the sample values of the M80t) over
which the mobile node keeps moving within the range of ARime ¢ in a log-log scale using traces from 9AM. (All the
i.€., Tsession = Tpause + Tmove. AP-based trace data reveal thainset figures are from 11AM.) During the time duration from
the session time can be very long and range up to several [8urs2000 to 10000 seconds (for about 2.5 hours), MSD of mobile
(e.g., students stay inside a classroom or library). Thuss i nodes increases with ~ 0.65. As expected, the existence of
reasonable to assume that pause time accounts for the tajdieavy-tailed pause time makes the MSD grow much slower
of the session time interval, as long as the radius of ‘AR:dis compared with the case of GPS traces in Section Ifl48nlike
not so Iargé. the GPS traces, however, it is impossible to extract thegtoee
component from the AP-based traces as mobile nodes do move
around inside APs, whose component is subsumed into thesess
10° time as a whole. Nevertheless, later in Section V, we willivgho
that there is a way to infer the true diffusive behavior of iteb
nodes from their movement components only and that it ismagai
super-diffusive as is the case for GPS traces in SectioA.lll-
Here we point out that the super-diffusive behavior camture
by the super-linear growth of/(¢) should be addressed only
on a relevant time scale, not necessarily over all timd-or
example, mobile nodes in school (students) spread out for a
- - - - while and eventually tend to come back to their starting {oin
10 10 10 . 10 (e.g., dormitory, library or classroom). Indeed, Figure Howes
time (sec) time (sec) . . o .
that the typical timescale for the super-diffusive behavtoup
(2) Session-Time (b) MSD from 9AM, 11AM {5 0(10®) seconds, beyond which the mobile nodes display no
Fig. 7. Dartmouth Traces: (a) CCDF of session time; (b) MSDaolog-  further diffusive behavior or strong tendency to come babhte
log sca_le. _Sesswn time and diffusive behaviors are sinlahose of UCSD that this timescale of several thousands of seconagtisut the
traces in Figure 6. pause time, so with possibly very long pause time (e.g.,raéve
éﬁpurs), the timescale for the diffusive behavior with patigee
would have been prolonged. In both UCSD and Dartmouth traces
session time in Figure 6(a) is collected during the sameoderis'mIIar diffusive properties are opser\_/ed in almost idelttime
as in Figure 6(b). In these figures, we only consider sessioa t scale2000_ < t < 10000 as shown in Figures 6(b) and 7(b). Note
samples up to 10 hours long, since the session time longar tﬁggat t_he time scal@000 S £ < 10000 can repres_ent _the overal
|gu3|ve property well since both movement diffusive peoly

10 hours would be from devices that remain on but are not us . i fairl idered in this ti I
for a long time. Note that the amount of sojourn time inside gff'd pause time are fairly considered in this time scale diges

AP due to movementTiov) has the same order as the first the type of moblle devices. We also point (_)ut that_ t.he diffe
property over time scale< 2000 and¢ > 10000 is sensitive to the

Slope=-0.23

Figure 6(a) shows that the CCDF of the session time in UC
trace data follows a power-law with exponent aroun@3s. The

3A survey in [39] shows that the ratio between total movingetiand total
pause time (stationary time) of students in campus is abdit, 0mplying 4When MSD grows slower than lineas (< 1) as shown in Figure 6(b), it
that they spend on pause about 8 times more than on movement. is called‘sub-diffusive[19].



types of devices and user characteristics of traces. Fongea pause time can effectively capture the diffusive behavirseoved
PDA users are likely to start to move after they turn on thaéaev in the ‘filtered’ AP-based traces.

while laptop userstend to stay where they are right after they

turn on the devices, which explains the different diffugiveperty TABLE Il

for ¢ < 2000. Beyond10000 seconds, MSD tends to decrease or NOTATIONS AND DEFINITIONS USED INSECTIONV

fluctuate around some value in both traces, which is due to thRgtation | Definition

geographical constraints and/or the tendency of coming b&C =377y | mean square displacement (MSD)

the starting point. However, note that the tendency of cgrbick ~ P(7,¢) | joint probability density for a node to be located7aE R2

to the same location that they have left in the morning for DCS if started from the origin at = 0

frace is stronger than Dartmouth trace'. (A!I the use.rs in DC_S el B;gggg:::g ggz::g ?(Irathséetri)r;ﬁlzngltj:ation of a single step
traces are freshmen and most of them live in a dormitory.cwhi  f(#¢) | conditional probability density that a node makes a
corresponds to the different diffusive property over 10000. displacement of* in a single step for a given time duratién

In AP-based traces, since the exact coordinates of mobilesio  "(7%) | joint probability density that a node makes a displacement
of 7in a single step and this takexactlyt seconds

at each time is unavailable inside APs, we have simply assumed (h(7, 1) = F(FI)B(0)
that the coordinate of an AP represents that of all mobileesod H(#,t) | probability that a node makes a displacemen#afi time ¢
within the communication range of APs. To justify this aspam within a single step and it takest least¢ seconds to

; ; ; : ; i complete a single step(7,t) = f(7]t) [ (T)dr)
tion, we did a simple experiment. First, we set the commuitina 6(t) probability density of a pause fime batneen SUCCESSIVES step

ranger of one AP to25m, which is reasonable considering the a(t) probability that a node has not moved until time

real wireless network. Then, we newly set the coordinateache (@(t) = [°p(7)dr)

mobile nodes inside an AP to another randomly (and uniformly — « step-length exponent

chosen location inside the AP-circle of radiugrigure 6(c) shows ‘,\’Aasuéeéim;ngﬁfonem

the MSD M (t) over timet after we randomize the locations of P

mobile nodes inside APs. Observe that the MSD exponents are

largely unaffected by this randomization when compareth wie To set the stage, |g2(7, ¢) be the joint probability density for a

original (non-randomized) version in Figure 6(b). To ekplthis node to be located atc R if started from the origin at = 0. We

behavior, letZ; be the original coordinate of a mobile node aglefine byh(7,¢) the joint probability density that a node makes a

time ¢t and N; be a stationary zero-mean random process in 2-hsplacement of in a single step and this takesactly: seconds.

(independent ofz;) with E{||N;||>} = 3, < oo, representing the We further define by(¢) the probability density of a pause time

‘noise’ in the coordinates of mobile nodes in our randoniat between successive steps. In particuldr;, t) can be written as

procedure. Then, the ‘estimated’ location at timebecomes h(7,t) = f(7|t)y(t), where(t) is the probability density for

Zi 2 Z; + N, whose MSD is in the form of the time duration of a single step arfdr|¢) is the conditional

- 9 9 9 9 probability density that a node makes a displacement of a
M(t) = E{[|Z¢ + Nel[} = E{||Z:]"} + o = M(2) + o single step for a given time duratian For example, if the node

Since we are only interested in the growth rate of the estichatmoves around with constant speedll the time, thenf(vt) is

MSD (slope of M (¢) on a log-log scale), the effect of ‘randomin the form of 4(||7]| — vt) since the node can travel exactly

quantization’ of the coordinates is ruled out in estimatthg Meters during seconds, wheré(-) is the Dirac delta function.

diffusive behavior of the original, but unknow#;. This implies ~ Moreover, based on(7,t) and(t), we further defineH (7, )

that our estimate of the diffusive property through MSD ibust and ®(t). H(,t) denotes the probability that a node makes a

against other types of noises such as frequent associdtioges displacement of” in time ¢ within a single step and it takest

between APs, which is known asping-pong transition41]. least ¢ seconds to complete a single step (i.e., the probability
that a node makes a displacementiofor time ¢ and it does
V. CONTINUOUSTIME RANDOM WALK (CTRW) not necessarily stop to initiate a new step or to stay at tijne

In Section 1V, we showed diffusive properties of AP-baseEhus' H(rt) can be wr_|t_ten asf(7t) [, ¥ (r)dr. In add'“°?‘*.
tracesas is with the pause time added. In this section, wg)(t) Qenpteg the poroobablllty that a node has not moveq until time
introduce and utilize the general framework of CTRW [42]3]i4 ¢, V‘_'h,'(?h IS glven_[t ¢(,T)d7' For reference, aI.I the.notatlons and
[44] in order to uncover the true diffusive behavior of mebil def|n|t|ons.used in thl_s Section _are summanz_ed in Table 1.
nodes in AP-based traces without pause time. Specificaly, w e are interested in computing(r ) as this provides com-
consider a class of isotropic random walks as depicted inrgig, Plete information on where the node will be located at angigiv
but now we allow a mobile node to pause for a random amount #'€ - The desiredP(i", 1) can be obtained by summing over
time with some probability, independently of all others, at each?!l the possible events. Note that a displacement af time ¢
turning point. Then, we present a set of equations to comjpate €N P& made by either a single step or multiple steps. Thus, by
MSD for this generalized CTRW (with heavy-tailed pause jime&onditioning upon first step takem(r,¢) can be decomposed
and identify under what conditions we can recover the ofeservinto the following four (disjoint) cases:
the MSD growth rate of AP-based traces (as seen in Figured 6 an(i) The node reaches in time ¢ within its first step without
7). Lastly, we confirm through theoretical and numericauhss pause duringdo, ¢].
that a class of Lévy walk models interspersed with power-la (i) The node reaches at some earlier time- € (0,t) in its

first step and stays there for a remaining time 7 with
5Many different types of mobile devices contribute to Dartifo trace. probability p
Even though laptop is not the only type of device in this trage use laptop ... ’ I . . .
users as an example to point out that users in Dartmouth arackess mobile (1) The node reacheg # i* at some earlier time € (0,¢) in

in general than the PDA users in UCSD trace over time state2000. its first step, takes no pause time with probability p, and



then continues to move from to reach for a remaining Then, P(&, s) becomes

timet — . ~ ~ R
(iv) The node reaches# i at some earlier time’ € (0, 1) in its P&, s) = H(ff )+p’:(u77 s)P(s) ®)
first step, takes pause time of— 7/ > 0 with probability — (@, 8)[pp(s) + 1 — p]

p, and then continues to move frog to reachr for a
remaining timet — 7.
Note that f or cases (iif) .and. (v), the noda makes displacerog nd ¢(t) are known. However, the complicated structure of (5)
rt— P dur(;ng L= WCh'Chb'n turn "C(:ES'Sts of angther SeVeraﬁefies any such attempt, and further, we are only interestéuki
Steps and pauses. tombining a € cases above, We argug avior of MSD (3) in the asymptotic (largg For this purpose,
to the following recursive equation analogous to the baclwa

i ¢ ch Kol i the th one can utilize the following Tauberian theorem [42], [4Bhich
equation 0 apman-Kolmogorov  equation in the theory rovides a relationship between large timbehavior of ¥ and
Markov processes:

small s behavior of its Laplace transform.

In principle, it is theoretically possible to compute(r,t) by
taking inverse Fourier-Laplace transform of (5) as long.@3t)

t
P(7,t) :H(F,t)+/ drh(F,7) p ®(t—7) Theorem 1:[Tauberian theorem in [42], [45]] Iff(t) > O,
. 0 f(¢t) is ultimately monotonic as — oo, L is slowly-varying at

+ // dQﬁ/ drh(p,7)(1—p)P(F—p,t—7) infinity and 0 < p < oo, then each of the relations

R2 0

- ot T ~ 1o s 1\ _
+f fﬁ/lh/demTMwuaqp@;@t_ﬂ7 @  Jo- [ sweta~i(t)r a0
. R2 P
where H (7, t) t) 7)dr and ®(t and
(7, t) = f(rt) jt T jt tp_lL(t)
Note that as we are interested in the locatibaf the node at F(t) ~ T(p) as t — oo

any given timet, the node would be located #tat timet during

the movement of a single step or pause time, not necessanl)/rf‘
be the end of a single step or pause time. Thus, for the first ajidthis way, we can obtain the following:

second termsH (7, t) and ®(¢) are used instead df(r,t) and Theorem 2:Let f,(1) ~ 1" and 6(t) ~ t=F (1,8 > 1)

¢(t), respectively. be the probability density of the step-length and pause,time

As MSD s the second mqment Of_ the d|splacemﬁ§’g ~ . respectively’. Then, under the aforementioned CTRW formalism,
Zy|| between the current position at timeand the position at of p — 0 we have

time 0 as defined before, Fourier transform (i.e., characteristic

plies the other. O

function) could be a convenient way to derive MSD. We define 1 if >3,
by P(&, -) the Fourier transformi{— &) of P(7,-), i.e.,P(&J,-) = M) ~t, y={4—p if 2<p<3,
[z P(7,-) ¢“Td%7. Thus, MSD can be easily computed by taklng 9 i 1 9
the second derivative aP(,t) and by evaluating it a = 0, ! SH<S
i.e., (G0 and for0 < p < 1 we have
W,
M) =~ lss ®) 3 H l<p<2|2<p<3|pu>3
Similarly, we take Laplace trar_13£orm with respecttt¢t — s) _[1<B<2B<p] 248—p | 248—pn | B-1
and defineP(-,s) = = [;° P(-,t)e”*"dt. Note that we us&” and 7 1<pB<2pB>u 2 N/A N/A
F to denote Founer and Laplace transform Bfwith respect 2<pB<3 2 4—p 1
to  — @) and ¢ — s), respectively. In particularF is 3<p 2 1—p 1
used to denote Fourier-Laplace transformrofover appropriate
arguments. Note that Fourier and Laplace transforms exthibi Proof: Since we are only interested in the asymptotic
following convolution property: behavior of the MSDAM (¢), without loss of generality, we can
. work with 1-D projection (ontoz-axis) of the original 2-D
//Rz[//w g(F—p, ~)d2,3} T = 1(3,)9(3, ), CTRW. To see this, note first that/(t) = E{|Z:||*}, where

Zt = (|| Z¢ cos 04, || Z¢ || sin 6;) € R? is the position of a mobile
node at timer and Z, = (0, 0). Since each step length and angle
oor rt e o~ in the 2-D random walk are.i.d., its projection onto x-axis is
/0 {/o (5 7)g( t—T)dT} dt = f(-,5)g(:, 5), alsoi.i.d. with zero mean ¢; is uniform over|0, 2x]) and the
1-D projection||Z¢|| cos 6; also becomes a CTRW with the same

where f and g are Wall-deflneql functions. use time as in 2-D case. In particular, each step of this 1-D
Therefore, by taking Fourier-Laplace transform of (2) an ETRW is symmetrlc and its MSD is given [ Z |2 cos? 6} —

exploiting the efficiency of the convolutional property, wbtain M(t)E{cos? 6,} — Const.M(t), thus the MSD behavior of 1-D
version is essentially the same as that of 2-D version. Toere

—~ oo JN . - H H
(3, s) :/ {/ P(F, t)ezwrd2f»:|efstdt it suffices to show the MSD behavior of 1-D version. We refer
0 R2
= = o~ = = 6In the aforementioned CTRW formalisng,(t) is used instead of . (1).
= H(d,s) + ph(d, s)@(s) + (1 — p)h(&, s) P(&, 5) Thus, note that)(t) ~ t=* (1 < u) becausefr () ~ I~ and the time
= ~ =, durationt of a single step is equal to the lengthof the single step times
+ ph(@, $)3(s)P(@, 5) (@) gle step s g o gle step

some constant /v.



to [43], [44] for the proof of 1-D version with eithes = 0 or pause time from UCSD and Dartmouth traces, we choose the

p=1. ccdf of the pause time @B{Tpause > t} = (£/10)"PT! (defined
For0<p<1, we extend the proof of 1-D version with=1. overt > 10) with 3 = 1.23 ~ 1.38 as observed in Figures 6(a)

As we deal with the 1-D symmetric CTRW, 2-D location termand 7(a). As to the unknown step-length distributions, weoske

(7 € R?) is simply changed by 1-D location termr (€ R) a family of power-law distribution®{L > I} = [~#*! (defined

in the predefined functions (i.eP(7,t), f(7,t), h(7t), and overl > 1) with different .. to see their effect on.. As before,

H(7,t)) with an appropriate 1-D integral operation. Similarlyafter each step, the node may pause with probabhility proceed

Fourier transform« — k) of f(r) is also redefined ag(k) = to next step with probabilityt — p. We denote this generalized

_ff‘;of(r)eik"dr and thusF is used to denote Fourier transform ofCTRW asGCTRW (i, 8, p) (or a.k.a. Lévy walk with power-law

F with respect to{ — k) instead of £ — &). Recall thatP(r,t) pause time in case df < u < 3).

(1-D version of P(r,t) (2) with respect to the node location)

and its Fourier-Laplace transfori(k, s) determine the slope of » Fil 15| 20 | 25 | 30 | 40
MSD (7)7 in the aforergenﬂoned CTRW formahsm. leen_ .that 505 Tos 1731 108 045 048
G(t) ~t~*ande(t) ~ =7 (u, 3 > 1), the conditional probability 01 || 192 159 0.82 ] 049 ] 0.49
density that a node makes a displacement &f R in a single 0.2 1.88 | 1.01] 0.72 | 0.47 | 0.48
step for a given time duration f(r|t), is still unknown to derive (a) @ = 1.38 as in UCSD traces
P(r,t) andP(k, s). However, due to the 1-D symmetry of CTRW,
f(r[t) can be written ag(r[t) = $[5(r — vt) + 8(r + vt)] [43], ) Fil 15| 20 | 25 | 30 | 40
[44]. _ ES 0.05 [[1.92] 1.18] 0.81] 0.30 | 0.39
We can now completely deriv@(r,t) and P(k,s). Then, as 01 1921 0971 0701 033 | 0.38
discussed earlier, by taking the second derivative gk, s), 0.2 186 | 088 | 0.65| 0.31 | 0.38
we obtain the following equation of MSD in Laplace transform (b) 8 = 1.23 as in Dartmouth traces
domain.
= TABLE IV
M\(S) _ _8 Pk, s) ESTIMATED MSD EXPONENTSY USING GCTRW (i, 8, p)
k> =0
R ( H(k, s) + ph(k, s)B(s) )
=32 = =
O \1=h(k, )lpd(s) +1 = pl/ ls=o 10’
O2H (k,s) 92Ti(k,s) o
_ "7 OR? ’k:o _ Ok? ’k:o‘ (6) o
s [1=9(s) + pi(s)(1 - 6(5))] 07

Note that because of the symmetric form fif|¢), M (s) can be
simplified as (6). Then, to compute the slope of MSD), (we
can exploit the Tauberian theorem (Theorem 1), which pewid
a relationship between large timédehavior ofM (¢t) and smalls
behavior of its Laplace transforrﬂ(s) (i.e., the slope of MSD
(v) is mainly determined by the exponent &f From (6), we
can deduce thagt only contributes to the constant coefficient in
J\/i(s), not the exponent of. Therefore, since is not related
to the smalls behavior ofﬁ(s), after applying the Tauberian Fig. 8. MSD of GCTRW (p, 1.38,0.05) with 4 = 1.5 ~ 4.0
theorem (Theorem 1) to (6), we can finally confirm that thedarg
time ¢ behavior of M (¢) for 0 < p < 1 is same as that of the case Tables IV (a) and (b) show numerically measured MSD expo-
wherep = 1. m nentsy underGCTRW (i, 8, p) with different parameters. As an
example, Figure 8 shows the MSD fGICTRW (u, 1.38, 0.05) for
different values ofy on a log-log scale. As shown in Table IV
and Figure 8, the MSD grows faster with its expongnt&anging
from around 0.45 (fopx = 4.0) to around 1.90 (fop, = 1.5). In
particular, wherp = 1.5,~ is close to2, implying that the strong
Theorem 2 provides a convenient relationship among expgenepower-law of the step-length distribution (with infinite axein
in the tail distribution of involved gquantities. Specifigalif p = 0 this case) dominates the diffusive behavior, notwithstamdhe
(no pause time), the exponent in MSD satisfies> 1 in any strong power-law of the pause time with= 1.23 ~ 1.38. On the
case. Sinced = 1.23 ~ 1.38 and~y =~ 0.65 ~ 0.69 in both sets other hand, whep is 3 or higher, which correspond to light-tailed
of UCSD and Dartmouth traces (see Figures 6 and 7), Theorstep-length distribution with finite variance, remains around
2 readily shows that the step-length distribution shoultbfoa 0.45 without any noticeable change in the growth rate. When
power-law @ < u < 3) under a class of isotropic random walksthe step-length has infinite variance but finite mean: (u < 3),
Specifically, Theorem 2 gives us an estimate of the stepthengy lies between the case of finite step-length variance @) and
exponenty =2+ 3 — v =2.54 ~ 2.73. infinite mean step-lengthu(< 2). Throughout, different values
We also provide the estimate of the step-length expongnt of p have little effect ony, since the power law structure of the
numerically. First, in accordance with the power-law tailthe ‘effective’ pause timeT’ (T' with probability p and zero with

M(t) (m?)

o3 >0

time (sec)

Remark 1:Although this framework of CTRW is based on
a constant speed, it is possible to generalize into random
speedV with a well-defined probability distribution by rewriting
corresponding equations fax7, ) = f(7]t)y(¢).
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probability 1 — p) is mostly preserved. All numerical results shown First Contact, the source forwards a message to the fidg no

good match with Theorem 2. it meets, and then that first node forwards the message ordgynwh

it encounters the destination. In Epidemic [48], when twde®

L o : o meet, each node copies a message to the other (‘infect)eif th

length distribution a priori, we admit the possibility traher fac- . .

tors such as strong correlations in angle and any other geioaie other node doesn't have it already. After nodes exchangeepsc
they continue to receive packets that they do not have frdrarot

constraints may also lead to the observed diffusive behaviit : R
: L . nodes. In Spray and Wait [49], it limits the number of message
desired value ofy. However, it is intractable to analytically show.

any relationship among those factors and the diffusive \iehdn it copies to other nodes. During spray phakeopies are spread

contrast, we point out that our simple model based on genedal before it switches to the wait phase, which then performe®ir

CTRW provides a clear-cut relationship as shown in Theoremehvery.' In Binary Spray and Wait, which is a variant of Spra
. . and Wait, half of copies are forwarded when a node encounters
and offers an easy way to synthetically generate mobilages

with required diffusive behavior, which is an essentiatibite the other node until only single copy is left, and then it istshed

. to the wait phase. PROPHET [50] uses the node encountenhisto
for the design and performance study of network protocolsl and transitivity to increase the performance. In MaxPrdd,[the

estimated probability of meeting every other node is exgkdn
Vl. NUMERICAL RESULTS to prioritize the packet exchange order. In addition, awkno

In Section Il and V, the super-diffusive movement patternedgements of delivered messages are transferred, so ¢hatath

in mobile traces have been observed and estimated using #fessages are deleted in the network.

formulation of CTRW. The observation of super-diffusiveopr

erty in mobile traces makes us wonder how these properti&s

make an impact on networking performance. To find out how’ o ) ) )

diffusive property affects interactions among nodes, wet fir We use Opportunistic Networking Environment (ONE) simu-

present numerical results on contact-based metrics asoist lator [52] for network performance evaluation. ONE simatat

the most fundamental event that is related to dynamics amoR{pWws users to evaluate the DTN routing protocol perforeean

mobile nodes. Then, we provide the network performance BRSily using created scenarios in the simulator or readiteyreal
six different routing protocols (Direct Delivery [46], Bir Con- trace. Six well-known routing protocols summarized in Sec-
tact [47], Epidemic [48], Spray and Wait [49], PROPHET [5apa tion VI-B are already incorporated in ONE simulator. Our sia

MaxProp [51]) by using Opportunistic Networking Environme tion setup is as follows;0 mobile nodes move around according
(ONE) simulator [52]. to a given mobility model of our choice with constant speed

(1.34 m/s) in an area (1500x1500n). The source/destination
. nodes are randomly selected out of 50 nodes for each message
A. Metrics (packet), andt00 messages are sent out for delivery during the
1) Contact-based metricsin the performance evaluation of simulation. We set the total simulation time 4600 seconds and
DTN routing protocols, contact is the most important factor as the maximum buffer size of each node to 500 messages. The
nodes have an opportunity of sending and receiving pack#ys omessage TTL is set t6000 seconds. In Binary Spray and Wait,
when they are within the transmission range with other nodé&s the number of message copies is setétoand in PROPHET,
define that there is a ‘contact’ or they ‘meet’ when two nodege delivery predictability transitivity scaling constas, and
are within their common transmission range Among many the aging constant are set t00.25 and 0.98, respectively. We
contact-related metrics [53], we distinguish between thmlver gradua"y increase the ‘density’ of node coverage by Ch‘mqg|
of new contacts and total contacts among nodes. Below are {fgjr transmission rangefrom 25n to 200x. For the underlying
description of contact-based metrics used in this section. mobility model, as mentioned before, we use a set of Levkwal
« The total number of new contacts Whenever a pair of models with different. for the step-length distribution to reflect
nodes meet for the first time, this metric is incremented kgifferent degrees of diffusive behaviors. We also use RWPRID
one. Future contacts after the first meeting between this pas reference models and for comparison purpose. All siiounlat

Remark 2:While GCTRW (u, 3,p) entails power-law step-

Simulation Setup

of nodes are not counted. results are shown by averaging ovér independent trials.
o The total number of contacts Whenever any pair of nodes
meet, this metric is incremented by one. D. Impact of Different Diffusive Behavior

2) Metric for the performance of routing protocoMe use |, this section, we investigate the impact of diffusive pries
the message delivery ratio to assess the performance ofgoulys mopile nodes on the contact-based metrics and the network
protocols. This metric indicates the ratio of the number Qferformance of routing protocols. All the mobile nodes unde

successfully delivered messages to the number of messages gynsideration are assumed to follow the same mobility moéel
by the sources. our choice.

] 1) Contact-based MetricsFigure 9 shows how different dif-
B. Routing Protocol fusive properties make an impact on contact-based meNio®
In this part, we summarize the six routing protocols we adersi that the number of total contacts in Figure 9(c) is almoststiae
in our performance evaluation. The full details of each irmut for RD model and all class of Lévy walk models with different
protocol are in [46], [47], [48], [49], [50], [51]. In both Dect diffusive behaviors under our consideration ranges from 2 to
Delivery [46] and First Contact [47], there exists only aghin 1, asp increases from 1.5 to 3.0), except RWP model for the
copy of the message in the network. In Direct Delivery, theame transmission range However, the number of new contacts
source forwards a message only when it meets the destinationFigure 9(a) shows the considerable differences withedsffit
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six routing protocols.

Transmission Range (m)

(f) MaxProp

200

Impact of diffusive properties on message delivatio for different
routing protocols. As the nodes tend to diffuse faster (Emal), the message
delivery ratio becomes larger. This tendency holds for taégomance of all

diffusive properties. In addition, Figure 9(a) also regetiat (i)
when mobile nodes diffuse faster (smallgr or equivalently,
larger~), they are more successful in encountering new nodes, and
(i) for mobile nodes with largey. (diffuse slower), most of their
contacts are with the same nodes nearby (since the totalerumb
of contacts are the same from Figure 9(c)). Figure 9(b) &rth
supports this observation; mobile nodes with faster diffus
property keep reaching out and meet more new nodes as time
goes on. The number of new contacts for faster-diffusiveesod
increases sharply, while nodes with slower-diffusive béra
(e.g.,u = 3.0) rarely meet new nodes during the simulation time
(t = 4000 seconds).

2) Performance of Routing ProtocolFigure 10 shows the
average message delivery ratio of a class of Lévy walk nsodel
with different n, RWP and RD model for each routing protocol.
As can be seen clearly, varying degrees of diffusive belnavio
(parameterized by:) result in widely different network perfor-
mance. In particular, we see that faster diffusive behawabr
mobile nodes (smaller) gives higher delivery ratio under the
same transmission range. This is largely due to the incrizmse
the number of new contacts with other mobile nodes for smalle
values ofu, as nodes tend to reach out more aggressively. RD
model, which spreads out quickly in the given bounded area,
shows almost the identical message delivery ratio with aylLé
walk with = 1.5. Note that the ordering of message delivery
ratio in Figure 10 is exactly the same as that of the number of
new contacts shown in Figure 9(a).

3) Performance with pause timdn this part, we add pause
time in movement of mobile nodes to consider more realigtie s
nario because pause time plays an important role in mabilg/
use the generalized CTRW model GCTRYV(.38, p) introduced
in Section V withp = 0.1, as well as RWP and RD models
interspersed with heavy-tailed pause time (with expone3® &s
extracted from UCSD trace in Section V) after each step thea
of the models. Figure 11 shows that pause time leads to lower
message delivery ratio for all routing protocols. In parée, the
message delivery ratio gf = 2.0 with p = 0.1 displays the
similar trend as that ofi = 2.5 but with no pause time (shown in
Figure 10) in most routing protocols. In other words, the ggau
time induces slower diffusion overall. Again, the perforroa
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5) Performance with real traceln Section VI-D.2 and VI-
(e) PROPHET (f) MaxProp

D.3, we have shown the impact of diffusive properties oningut
Fig. 11. Impact of diffusive properties on the performanteoating protocol - protocol performance for synthetic models with and withoaiise
w!th pause time con&derecﬂCTRV\_](mB,p) m_odel_ln Section V, along ti In thi t h the i t of . diffusi
with RWP and RD are used. While pause time induces longer agess ime. In this part, we show the impact or various dinusive
delivery, the ordering of performance is preserved as befor properties on routing protocol performance via real trateghis
end, we divide the nodes in UCSD trace into two groups based
on the number of AP changes for 4 hours (from 10 am to 2 pm).

ordering in Figure 10 remains unchanged even with the MitiSpecmcally, if a node changes its AP for 4 hours at least &sim

of pause time. We also have evaluated the performance fgpsrzrlarthIS node is in group A, otherwise it's in group B. We measured

p. The largerp induces slower diffusion, and leads to Iowe|lhe MSD slope for nodgs in groups A and B, which ax&0
message delivery ratio as we can easily expect. and0.61, respectively. Since these traces are collected under the

i i ) same geographic condition, we can show the impact of diféusi
4) Performance with different resource constraintsor the property on performance evaluation through real trace. fithe
performance evaluation in Section VI-D.2 and VI-D.3, We S&jyration of performance evaluation is 4 hours, and the ngessa
message TTL and buffer siz@ to 4000 seconds and 500 mesTT js set to 3 hours. As shown in Figure 14, it turns out that
sages respectively, which is basically no resource cdntdrdn ihe fast diffusive nodes (group A) show higher message eigliv
this part, we investigate the performance evaluation wifflergnt 5+ (than those in group B) under all six routing protocols
resource constraints by changing message TTL and buffer sigynsidered. This re-confirms the importance of diffusiveperty
We use epidemic routing protocol for performance evalmatiogyen under the realistic geographic settings in real trageh(as

since most of routing protocols are variant of epidemic ir@it peterogeneous hotspot locations).

protocol with the performance trade off. By adjusting thessage

TTL and buffer size, we investigate how the resource coimgra ) o N

make an impact on network performance (message delivdoy.ratE- Performance Evaluation by Existing Mobility Models

We varies the message TTL from 750 to 1500 seconds and buffeNumerical results show diffusive properties make a hugeachp
size B from 200 to 300 (messages). Figures 12 and 13 show thmat performance evaluation in DTN routing protocols. Notatth
the message delivery ratio always decreases as the res@ete existing models such as RWP, RD and Brownian motipn=(
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the super-diffusive property. In addition, while we haveimha

focused on the super-diffusive property of emlividual mobile

node, there have also been other important metrics such as

the inter-meeting time between mobile nodes [57], [58],],[59

which may equally impact the overall performance of anyirgut
protocol. In view of these, in this section, we briefly dissuke

% oo Prange B0 20 %0 omisePrange i 20 issue of other factors toward the super-diffusive propertgt how

(b) First Contact to incorporate the observed inter-meeting time distrdoutirom

real traces into the set of Lévy walk models.
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E 60 A i_§ 60 . &7 A. Other Factors Toward the Super-diffusive Property
S awf X S 40 A In Section 11I-B, we studied whether existing synthetic ratsd
2 2o can capture different diffusive properties. We showed that
2 -5-1=0.80 2 -5-1=0.80 , . .
, -A-p=0.61 , -A-p=0.61 set of Lévy walk models can easily generate varying degrees
0 SransmissonRange () 0 0 Sansmissonrange (g 0 of diffusive properties, and the power-law distribution tihe
(c) Epidemic (d) Spray and Wait step-length is the main factor of super-diffusive propertythe

class of 2-D isotropic random walk models. In this section we
study if there exist other factors that also contribute tpesu
diffusive property by considering existing trace based et@that
feature non-isotropic, location-dependent preferencehimosing
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a1 40 the next destination. To this end, we considéodel T [14],
20 Swos 20 080 which is a generic trace-based model built upon user redjgir
o = T = 200 9% = T e >0 patterns. Model T allows arbitrary choice of the distribatiof
Transmission Range (m) Transmission Range (m) . . .
AP locations and the popularity of each AP, so is more general
(€) PROPHET (f) MaxProp popurarity 9

than others in the literature [17], [39]. We have followed thace
Fig. 14. Impact of diffusive properties on message delivetyo for real ; i et
trace. Faster diffusivey{= 0.80) nodes lead to higher message delivery rati(generatlon p_rocefjure pre7senteq n [14.]’ and the para ergs
than slower diffusive ¢ = 0.61). Note that pause time is included for thear_e summarized in _Table Vin this SeCt'or!' we take_ the m_Odel T
MSD slope in real trace. without the pause time for the sake of fair comparison witieot

models introduced in 1I-B.

3.0) can predict misleading performance evaluation by beirg to ‘ ‘
optimistic or pessimistic. For example, mobile nodes in RWP 10% o ucsb |
model tend to move much more active than the real movements, “_Dartmouth
and this may lead to better performance of routing protolcaht

real nodes can do. On the other hand, Brownian motion tend to
stick to the same area and are not as active as the real nodes.
This inactive mobility results in too pessimistic perfonmea \
evaluation. These results can be also explained quaétatby the 107 R °
mixing time [54]. In [55], [56], the authors used the mixirighe R

as the time until a mobile node reaches its stationary Higidn .
and claimed that “the larger the mixing time, the more |oudi 4 ‘
the node movement, and it will take longer for a node to carry a 00 10
message to a remote part of the network”. In our numericalt®es time (sec)
we ,have shown that less diffusive movemerlt such as _BrOWmE’B. 15. MSD measurement under Model T [14]. The AP locatiandCSD
motion leads to lower message delivery ratio over a givere tining Dartmouth are used. This shows that trace based modeliszlead to
frame. Similarly, in view of the mixing time argument in [55] super-diffusive property of mobile nodes to some degree.

[56], we can say that less diffusive movement such as Brawnia

motion is more ‘localized’ (slow mixing), which would traase Figure 15 shows the measured MSD in a log-log scale as

3 104

into longer time for a message to get to its destination. before, under the AP locations from UCSD and Dartmouth sace
respectively. It is clear that Model T can generate supiéusive
VIl. DISCUSSION property, since the measured MSD slopes are greater thae 1. W

o expect that this kind of MSD behavior is common to any other
So far we have observed that the super-diffusive property j$ce-hased models relying on campus traces. A mobile node,
univ_ersal in many real traces and has a significant impact_%m its starting point, tends to spread out quicker thamadr
routing protocol performance under a wide range of scesariQiffysion as it typically moves towards its next locationtiwiut
We have used a set of Lévy walk models to easily genergig,cn hesitation (wandering around like a pure Brownian ami

various degrees of diffusive properties. In this choice Key \hich is translated into the ‘diffusive regime’ (> 1) in the
contributing factor toward the super-diffusive property the

power-law distribution in the step-length as seen in Secio Weibull CDF equationF () = 1 — ¢~ (&)" and exponential curvg =
but one can also ask if there exist other factors that maycedup;e—?2% + p3 have been used.
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| Parameters [ Distribution | UCSD [12] | Dartmouth [4] |
No. of APs 196 586
No. and distrib. of clusters Weibull a=2.649, b=1.253 a=6.561, b=1.253
No. of popular APs Exponential p1=0.691p>=0.332,p3=0.250 p1=0.726,p2=0.217,p3=0.232

Intra-cluster transition prob|| Weibull para. a, b| ps1=2.751,p,2=0.631,p,3=0.032 | pq1=2.550,p,2=0.544,p,3=0.026
with Exponential pb1:1.255,[)1,2:0.452,])17:5:0.361 pbl:1.le,pb2=0.380,pb3=0.355

Intra-cluster trace length Weibull a=4.285, b=0.343 a=5.227, b=0.295
Inter-cluster transition prob Weibull a=0.0078, b=0.3188 a=0.0069, b=0.2673
Inter-cluster trace length Weibull a=254.1, b=0.973 a=351.8 b=0.882

TABLE V

SUMMARY OF MODEL T PARAMETERS

early part of Figure 15. Once the mobile node has visitedrakvepossess. We here maintain that the set of Lévy walk models
locations, it then tends to move back and forth (with its ownan easily accommodate such properties of inter-meetimg ti
schedule, etc) in a constrained area, which correspondbeto tlistribution. First, we have already shown in Section V thay
‘stationary regime’ f ~ 0) shown in later part of Figure 15. power-law pause time distribution can be incorporated thi®
Note that the timescale of the diffusive regime will furttetend Lévy walk model for precisely matching the required degoge
(with smaller slope) when pause time is added as alreadyrshosuper-diffusivity up to some relevant timescale (e.g., ¢éaely
in Figures 6 and 7. part of Figure 15). Then, to determine the transition point from
Both trace-based models and the set of Lévy walks displagwer-law to exponential in the inter-meeting time disitibn,
super-diffusive property. In trace-based models such adeM®, we can apply the argument in [58], [60] where it is shown that t
the non-isotropic and location-dependent preference @dosing boundary size can be properly chosen (scaled) in conjumetith
the next destination or other constraints (e.g., buildimgations) a given MSD of the mobile nodes (after the pause time is caunte
in underlying geometry collectively contribute toward thgper- in) to match the transition point from power-law to exporant
diffusive property. On the other hand, under the class ofyLé fall-off.
walk models the super-diffusivity is directly related withe
expoiient in the power-law step-length distribiitions evaden VIIl. CONCLUSION
possibly very strong pause time, as seen Section V. Thusp whe ] o o
it comes to the question of how to generate mobility scesario N this paper we have shown that super-diffusive behavior is
for proper performance evaluations with super-diffugivitoth the the common ch.aracteristic in the movement of mobile nodes.
trace-based models (e.g., Model T) and the class of Lévk walle have investigated a Iarge number o_f GPS-based traces as
models equally do well and should be preferred over any oth&gll s AP-based traces available in the literature. Ourcaah
synthetic models that do not capture super-diffusivityteNthat Via the use of MSD coupled with CTRW formalism, allows us
each of these choices has pros and cons. The former will be mit Statistically and theoretically identify the (possibhydden)
suitable in capturing any geometric constraints and angueni degree of diffusive behawor_of mobile nodes. Our numerical
feature inherent in the behaviors of participating mobieles, but "esults based on contact metrics and performance evaiuaito
makes it hard to analytically predict the degree of supfiugliity ~ SiX routing protocols show that diffusive property makesuge
as a function of all underlying information (e.g., AP locats and impact on network performance. We expect that our initiatlgt
sizes, etc§, while the latter lacks the precise realism but instea®f! the effect of mobile nodes’ diffusive behavior on the ratw
offers a very simple, parsimonious description of the medé a performance opens up new possibilities .towgrd better desfg
firm relationship among the few input parameters and thetiegu N€twork protocols by uncovering super-diffusive natursested
degrees of diffusivity. This is precisely the reason why veweh in all the mobility traces.
chosen to employ the Lévy walk models in demonstrating the
importance of the super-diffusivity in mobility patterns they ACKNOWLEDGMENTS
give us convenient ways to tune the input parameters towar
any desired degree of diffusive behavior, to the benefit ¢febe
prediction in performance evaluation and new protocol gtesi
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B. Inter-meeting Time in &vy Walk comments that helped improve this work.
Inter-meeting time between mobile nodes has been extdysive
considered in recent literature [57], [58], [59] as this gms how REFERENCES

often mobile nodes meet for any chance of delivering packets _
others. In particular, recent findings that the inter-megtiime ~ [11 F- Bai, N. Sadagopan, and A. Helmy, “Important: A framelvdo

L . systematically analyze the impact of mobility on perforc®of routing
distribution is close to a power-law up to some timescallfad protocols for adhoc networks,” iRroceedings of IEEE INFOCOMSan

by exponential fall-off [57], [58], [60] have become one biet Francisco, CA, April 2003.
key characteristics that any reasonable mobility scenstrmuld
SWhile the theory in Section V is built upon asymptotical festor large
8The mathematical relationship between AP locations, thizie, and the time ¢, we observe that such asymptotical relationship quicklylesein for
resulting MSD exponent is unknown and in general very hardetave. even small-to-moderate values s seen in Figure 8.
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